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Transverse conductivity in a braided magnetic field
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The cross-field current is calculated as a function of the applied electric field, density, and
temperature gradients in a given perturbed magnetic field. The current is calculated both for the
cases of regular and stochastic magnetic fields. The analysis is focused on the impact of local
ambipolarity. It is demonstrated that the local ambipolarity requirement results in the significant
suppression of the cross-field radial current with respect to the current of test particld9980
American Institute of Physic§S1070-664X98)03511-3

I. INTRODUCTION been measured. In the absence of biasing, when the radial
current has to be zero, the negative neoclassical electric field
The issue of transverse conductivity is very important,is predicted, provided toroidal rotation is damped by the
since it determines the radial potential profile in variousanomalous viscosityin the absence of an externally gener-
magnetic field configurations addressed in the context of fuated toroidal rotation, e.g., by an unbalanced neutral beam
sion research. Usually of main interest is the self-consisterihjection).
radial ambipolar electric field, which corresponds to the con-  However, on some tokamak3M-4, Ref. 5, the Texas
dition of zero radial current averaged over the flux surfaceExperimental TokamakTEXT) Ref. 6, Tore Supra, Ref.]7
The interest is further enhanced by the large body of evielectric fields less negative than the neoclassical, or even
dence obtained on many tokamaks that the formation opositive fields, were observed for special regimes. A tenta-
transport barriers is consistent with the paradigm that intive explanation is connected with an intrinsic magnetic field
creased shear in thExB flow leads to a suppression of stochasticity, which can create an additional current of elec-
plasma turbulence, thereby improving the confinement. Magtrons, thus reducing the negative neoclassical electric field.
netic field perturbations produce additional current perpenoOn TEXT and Tore Supra, an ergodic magnetic limiter cre-
dicular to flux surfaces, and thus contribute to the zero curated the extrinsic stochasticity. As a result, a strong reduction
rent condition. Hence the value of the ambipolar electricof the negative electric field was observé®ef. 8. This
field is changed by magnetic field perturbations. Conseeffect could be interpreted in terms of a modified transverse
quently, to calculate the ambipolar electric field in the presconductivity associated with perturbations of the magnetic
ence of magnetic field perturbations, it is necessary to solvéield.
two independent problems. First one has to calculate the ra- The problem of calculation of the current perpendicular
dial current in the absence of magnetic field perturbations ag the flux surfaces in the braided magnetic field also has
a function of electric field, density, and temperature gradisome history. However, the particles that contribute to the
ents. The second step is to obtain a similar expression for theurrent were considered to be test particles. For collisionless
current associated with magnetic field fluctuations. Then th@lasma, the issue of cross-field current in a stochastic mag-
resulting electric field can be determined from the zero curnetic field has been analyzed in Refs. 9—11. According to
rent condition. Therefore, the problem of determination oftheir approach, the current was assumed to be carried by test
the cross-field conductivity, as well as the response of thelectrons. In contrast, in reality, the motion of electrons in a
radial current to density and temperature gradients, arises. braided magnetic field is accompanied by the emerging of
Many authors have addressed the first part of the probpotential, density, and temperature perturbations, which arise
lem. In Refs. 1, 2, and references therein, the emergence @ provide local quasineutrality. These perturbations strongly
the electric field profile has been described in terms of theffect the motion of charged particles, generate the local per-
momentum balance between the damping provided by neaurbed currents, and, as a result, change significantly the
classical parallel viscosity and anomalous transport of thghysical pattern and the averaged cross-field current. There-
parallel momentum caused by turbulence. As a result, theore, the restrictions imposed by the ambipolarity constraints,
perpendicular ion conductivity in a tokamak has been calcuwhich were ignored previously, are very important. It should
lated. The theoretical predictions were verified by severabe noted that the calculation of the transverse conductivity
biasing experiment$Continuous Current Tokamak at the and cross-field current should not be mixed with the problem
University of California, Los AngelegCCT),® Tuman-3!  of a kinetic dynamdRefs. 12, 13 where the current along
and Toroidal Experiment for Technically Oriented Researchhe flux surfaces is analyzed. This interesting and important
(TEXTOR)], where the effective cross-field conductivity has problem is not considered here; still the ambipolar con-
straints should also play a significant role in this cse.
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well as the response to density and temperature graglientsignificant reference to tokamaks and RFPs with a large de-
with a given level of magnetic field perturbations is ad-gree of intrinsic stochasticity.

dressed. In contrast to Refs. 9-11, the ambipolarity con- The paper is organized as follows: in Sec. Il the model is

straint is employed locally, accounting for the fact that thedescribed with the assumptions made, in Sec. Il we deal
current is divergence-free throughout the plasma column. Imith the collisional case so that fluid equations are solved,
other words, the parallel electron current, arising due to th@nd in Sec. IV the more complicated collisionless case is
electron flux along a braided magnetic field line, is short-studied. In both cases, we start the analysis from the nonsto-
circuited by the ion flux across the field. Since electrons arehastic magnetic field, and then investigate the case of the
much more mobile than ions along a magnetic field, a sigstochastic magnetic field.

nificant perturbed electric field has to arise, thereby suppress-

ing the electron current. Hence, the value of the transversg vopEeL

current obtained in Refs. 9 and 10 can be only treated as the

upper estimate. It is demonstrated that the properly calcu- The magnetic field perturbations, potential, plasma den-
lated radial current is significantly smaller. sity n, electron,T, and ion,T;, temperatures are assumed to

Similar self-consistent constraints were also analyzed ifpe constant. We start with the case of the uniform density
Refs. 15—18. In contrast to our approach, a special type cind temperatures to focus attention on the effects caused by
intrinsic drift-Alfvén turbulence, which is responsible for the electric field perpendicular to the flux surface. The gen-
fluctuations of the magnetic field, has been considered. Ieral formulas taking account of density and temperature gra-
Refs. 15 and 16 the radial current has been studied. It wagdients, will be derived at the end of each section. The spatial
shown that for the case of two-dimensiofi2iD) turbulence ~ scales of magnetic perturbations are assumed to be signifi-
the self-consistency constraint results in complete inhibitiorcantly smaller than the small radius of plasma devices.
of the radial current. In Ref. 18 it was shown that heat transTherefore, for simplicity, slab geometry is chosen with
port is also suppressed for a peaked spectrum shifted frolasma parameters depending on xheoordinate, which is
local resonance modes, which is typical for the edge regiomormal to the flux surfaces. The unperturbed magnetic field
of reversed-field pincl{RFP. Qualitatively, the conclusion is given by B=B.,,+B(x)g,=B[e,+0O(x)g], O(X)
is similar to ours: the transverse current is strongly reduced-By/B,<1. Here they axis corresponds to the poloidal di-
due to the ambipolarity constraint. rection in a tokamak, the axis—to the toroidal direction,

In the present paper we consider the more general thre@nd thex axis—to the radial direction. The unperturbed po-
dimensional(3-D) case with a finitek, component of the tential is denoted ag,(x), and the corresponding electric
magnetic field perturbation spectrum. This situation princi-field is Eo=—d¢y/dx. Toroidal effects are neglected in this
pally differs from the 2-D case. In particular, the cross-fieldmodel. A strong anomalous viscosity, diffusion, and heat
current averaged over the flux surface is not zero in the 3-@onductivity, originating due to the small-scale electrostatic
case. On the other hand, we restricted ourselves to the moterbulence, are included into the model. It is assumed that
modest problem when the externally created magnetic fieléhis electrostatic turbulence is independent of the magnetic
perturbations can be considered as the given ones. one, and can be described by corresponding diffusion and

In the case considered, the resulting net current averagedscosity coefficients.
over the flux surface can flow only due to the finite local ~ In contrast to Refs. 15 and 16, where the perturbed mag-
effective cross-field conductivity of ions. The ion viscosity netic field was generated by turbulent plasma currents, so
and inertia terms associated with small-scale plasma pertuthat currents were strictly related to magnetic perturbations,
bations cause this effective local cross-field conductivity.Ampére’s law,j=(c/47)V XB’, we consider the case when
The considerable enhancement of the transverse curreftagnetic field perturbationB’ are created by the external
(with respect to the current driven by the averaged viscosityime-independent currents in the coils. Hence, in the plasma
and inertia occurs even in a regularly perturbed magneticwe haveV xB’=0. The perturbed magnetic field is taken in
field. It becomes especially large in the case of a stochastithe formB’ =3B, exp(kr), where|k,|<|k,|, |k |. Then,
magnetic field, when the field lines come very closely tofrom the Maxwellian equations it follows th&f=0. There-
each other. In this case the average current depends logaritfore, k,= * i \/k2+ kzz, i.e., the perturbations of the magnetic
mically on the ratio of the parallel conductivity to perpen- field reach a maximum at the separatrix and decrease toward
dicular local conductivity. In both cases the resulting aver-the core. This situation corresponds to the case of an ergodic
aged cross-field current is shown to be proportional to thalivertor. The magnetic field perturbations are assumed to be
squared magnetic field perturbations. Both collisional andsufficiently small, so that the following conditions are ful-
collisionless cases are considered. The results obtained cfiled: |kb,/kj|=|k/b /kH|<1 [k L>1, where by,
be employed for the determination of the self-consistent=B;, /B, L=(d In <p0/dx) , k; is the parallel wave vector
electric field in an ergodic divertor. This can be done bka(x) [kyBy(x)+k,B,]/B. Therefore we can apply the
putting to zero the sum of the ion perpendicular currentquasilinear theory based on the small paramétgb, /K|
caused by neoclassical viscosity and the perpendicular cue|kyb, /k|<1. The latter condition means that the displace-
rent generated by an imposed stochastic magnetic field. Iment of the point at magnetic field line ynor x directions is
spite of the fact that the analysis quantified below corressmaller than the transverse spatial scale of the perturbations
sponds to the calculation of cross-field conductivity inprovided the point pass the distadq@l along the magnetic
plasma with a given perturbed magnetic field, it also has dield.
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Finally, we see that the following basic assumptions are

made, which are typical for the case of an ergodic divertor 5 N(Ue*V)Te+ NTe(V Ue) ==V e, 6)
(i) Stationary small-scale perturbations of magnetic field
of low amplitude are considered. 0.71_ .
(i) A magnetic field is created externally by currents in ~~ 9e™ ~XelViTe  Xer ViTe™ o Telis (6)
the coils.
(i) Anomalous transport caused by intrinsic electro- § NU-V)T 4+ nT(V-u)=—V-q )
static turbulence exists. 2 : : i

There are several important parameters in the problem
considered. One can introduce three scales along the mag- %=~ X1ViTi=xiV.iTi, (8)
netic field. In the absence of resonangehenk, remains wherej is the currentu is the plasma velocityy, is the
finite everywherg the longitudinal scale is simplk”’l. If, electron velocity,o is Spitzer—Harm parallel conductivity,
for a given wave number, there exists the resonance surfade=B/|B|, # is the ion viscosity tensor, ang,; is the heat
wherek,— 0, then the contribution to the plasma perturba-conductivity. Perpendicular anomalous heat ion and electron
tions is large near such a flux surface. In this case we introeonductivities can be estimated gs;, ~nD. We have ne-
duce a typical longitudinal scale correspondingkﬁol: the glected the divergence-free heat fluxes proportional to
Va|uekHU:\/|o'kaL2/o'”, where the parallely,, and the per- BxVTe,i, since they do not contribute to the transport
pendicular,c, , conductivities are denoted below. Similarly, equations.
one can introducép andk;r-the inverse scales associated ~ The ion viscosity can be caused by the ion—ion colli-
with diffusion and heat conductivitysee below. When the sions(see, for example, Ref. 2@nd/or can be anomalous,
magnetic field becomes stochastic, the typical scale abng i.e., caused by an electrostatic turbulence, which can exist in
is given by the Kolmogorov length of magnetic field line the plasma. For the time being, we consider only the case
divergencelL,. The corresponding parallel wave vector is when the zeroth-order temperatures and density perturba-
defined ask,~L, . In our analysis we have to choose the tions are absent. The external magnetic field perturbations
largest of all the parallel wave vectors or the smallest of thecause the perturbation of electric potentie, ion velocity
corresponding typical longitudinal scales. The result depends’, and currentj. Note that in the test particle approach,
also on the ratio of the mean-free path to the smallest ofRefs. 9 and 1pthe potential perturbations are neglected so
these longitudinal scales. that the calculated current is not divergence-free, as it should

In the present paper we shall consider both collisionalbe according to Eq.l) (ambipolarity constraint

and collisionless cases, stochastic and nonstochastic mag-
. Nonresonant modes k (x)#0

netic fields.
We start the analysis from the simplest case of nonreso-
nant modes. Such a magnetic field perturbation can be cre-
IIl. TRANSVERSE CONDUCTIVITY IN THE ated by slightly rippled coils. In the absence of the transverse
COLLISIONAL CASE Nk <1 current, from the continuity, Eq1), (ik,j;=0), it immedi-

We start from the most transparent collisional case wherflitely follows that the parallel net current should be zgfo (
the mean-free path p,<k; * Thpe collisional case, bein = —0y[by(dey/dx) +ik;¢']=0). In other words, in con-

v found i P F"fpl I I.' . . q ' | % trast to the test particle case, the potential perturbations
rra]\rea/ ound in pract:ccar\] app 'C%['O”Z’ 'Sﬁa gooT e?a(rjnphe Ofemerge and cancel the part of the parallel current associated
the emonstra’qon of the considered e eCt_S' ofin the aviith radial electric field projection on the magnetic field line.
eraged cross-field Cu”e'@x% we have't(_) find at_ T'rSt the The solution of the linearized equatiofk) and (4), corre-
perturbed parallel currer]l#. Under validity conditions of sponds to the constant potential along the perturbed magnetic

quasilinear theory, the averaged cross-field current is thefg|q |ine Therefore, the potential perturbations of the first
given by the averaged projection of parallel current onxhe

. 1 .~ order are
axis, jx=(jjby). We follow here the method proposed in
Ref. 19 for the calculation of electron heat conductivity. 1 by deg
0~ ik, dx ©

A. Cross-field current driven by transverse electric
field In Refs. 9 and 10 these potential perturbations were ne-
odlected. In Fig. 1 the sketch of two possibilities with and
without potential perturbations, E), is shown.
The nonzero parallel current arises if the transverse cur-

To find the perturbations of parallel current, we have t
solve the fluid equations of Ref. 20:

V.j=0, (1) rent s taken into account. The latter can be caused by colli-
V.I,=0, ) sions with neutrals or driven by ion viscosity and inertia. The
electron finite Larmor radius effects considered in Ref. 21
1 . (for the case of test electronare negligible with respect to
min(uV)u=—Vp+ - [jxB]-V.m, (3 the ion perpendicular currents. The corresponding mecha-
T 171 nism of the cross-field conductivity consists of the following.
. e - The perturbed electric field, E(), cause€ x B drifts along
Ii=ob| Vet -2V innt == VT, @ the equipotentials. Moreover, the perturbed fields produce
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a anomalous viscosity, which should be of the ordempfiD,
whereD is the anomalous diffusion coefficient. However, for
I E @ (xy)=consiart typical plasma parameters the viscosity contribution often
° remains small with respect to the inertia term, even taking
into account the anomalous effects. In other words, the in-
equality|olk,u/alk,i|~Dk§/|voky|<l is usually satisfied.
b B i i It is worthwhile emphasizing that the finite cross-field
©) conductivity exists only for the magnetic field perturbations
with finite k,. In the 2-D case, whek,=0, the divergence
i ; T i of the perpendicular cnj_rren'Fs, cause_d by ingrtia anq viscosity,
4p ‘ E, + vanish, the magnetic field line remains equipotential, and no
u @iyp=consiant parallel currents arise. The absence of the net radial current
TN for two-dimensional magnetic turbulence, due to the self-
!WV\/\/ consistence character of current and magnetic fluctuations
coupled by Ampee’s law, was pointed out in Refs. 15 and
FIG. 1. Scheme of equipotentiala) without an account of the local ambi- ]_'6' prever, if the 3-D structure O_f magnetlc_ field perturba-
polarity constrainti(b) with an account of potential perturbation, Eg).  tiONS is accounted for, the net radial current is not zero and,
Cross-field and parallel currents are also shown. as we shall see, can be large.

In the presence of the transverse ion currents, the parallel
current arises. Substituting the expression for parallel cur-
rent: j,=—oy[by(dey/dx) +ik,¢]=0 into the condition
ikyjy+V,.-j, =0 and using Eq(11), we find the solution of
éhe linearized equationd) for the potential,

<Y

strongly inhomogeneous drifts. For the potential perturba
tions ¢ =@, explkr), the drift velocity is u,

=—(ci/B) ¢k xe,. These small-scale drifts result in the ion
viscosity and inertia forces. From the momentum balanc

equation(3), it follows that these forces generate the perpen- 1 alkkf ) i dog b 13
dicular ion current, k o K+ ok Kk dx K
j.=—c[(mn(u, V)u+V.m)xB]/B? (10

Accounting for the transverse conductivity, the magnetic
[see Fig. 1b)]. The parallel current, which arises to close thefield lines are not equipotential, due to the second term on
circuit, can be calculated from the continuity equatidn: the right-hand sid¢RHS) of Eqg. (13), which depends on
ik,j,+ V -j, =0. Accounting for perpendicular currents, the o, anda, k% <o kZ. In spite of the fact that the deviation
potential perturbations differ from Eq9). They can be from the equipotential case, E), is small, this deviation
found from Eq.(1). Since we are interested mainly in diver- determines the parallel current,

gence of the perpendicular current, it is convenient to intro-

duce the effective cross-field conductivity as 1 2 lﬁk:

= 2 L -2
. K X o, .K+ok
==V ikl AL gy (12) LTI

In our case of externally created magnetic field perturbation
(k= i KEHKE, [k <[kd, kD) AL gr=—k @p=— (K

+ k§)<pk= ks @ . Substituting the expression for the drift ve-
locity as a function of potential into Eq10) for current, we

oo, k2
10 1 kK] by Eo. (14)

%:/e see that the averaged perpendicular current appears in
the second order on magnetic fluctuatiomsk? <o k.
Substituting the expression fgr into the expression for the

net currentj, = (jib,)=1/2 ReZ,jby, we find

have, for the effective cross-field conductivity, o
O1k=01kiT Ok 2
=imic2(vok,)N/B2+ 7 (K2 +4k2)cYB2.  (12) < oL iKE 12+ 0 K (kS + oy KD bl
The first term here is the contribution from the inertia force, K |01k (o + ok oKD “
wherevy=CcEy/B is the velocity of unperturbe&#xB drift (15)

along the flux surfacéin they direction). Note that the in-

ertia term is the result of a combination of both unperturbe
drift (plasma rotationand small-scale drifts. The contribu-
tion to the effective perpendicular conductivity from the vis-

dn the absence of the resonance surfaces, wkgpg— 0,
estimating  |k(x)|~|k,|®, accounting for o ok?
<|o ik |<ak?, we have

cosity is calculated by means of substituting the expression g, K, [bud
for the viscosity tensor given in Ref. 22, whenpg is the ion =7 > Tiko| "
. . .. . . k I
transverse viscosity coefficient. The contribution of other
components to Eq1) results in the divergence-free terms. In 3771k302 K, [bud 2
the real turbulent plasma, the contribution from the anoma- :Eo§k: >B2 K : (16)

lous viscosity is much larger than from the classical viscos-
ity. It can be taken into account by replacement of the clasThe last factor in Eq(16) has to be smaller than unity, since
sical viscosity coefficientn; with the coefficient of the quasilinear approach is valid if the magnetic field is
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rather small, so thatk, b, /k|<1. Hence, the resulting nonlinear effects, as for the stochastic magnetic field case.
transverse conductivityg, ,.=j,/E, is determined by the Replacing the sum in Eq15) by the integral, we find

perpendicular viscosityand does not depend on ion inejtia oEoDg

It can reach the value af, , by the order of magnitude. jX:L—’ (18
Let us estimate the perpendicular conductivity calculated o

above. To do this we compare the result with the cross-fieladvhere =k}, Dg=[{|byul2[1+ (K /K;,)*1}

conductivity Z, in unperturbed magnetic field, which is ><(dky/2kH05ky) The last integral can be easily calculated,
caused by the perpendicular viscosity, given in Ref. 22,  provided the amplitude of magnetic fluctuatidng changes

P insignificantly at the resonance width.Kf,>Ak,®, where

El=miDn02/BzL§, LU*ZZ_%Z_ (17) Ak, is the width of the spectrumb,,, we have Dg

PoIX —mf|bxk|2/(4®5ky) Here b,, correspond to resonance
In both cases, we chosg,=nmD for anomalous viscosity Mmodesk;(x)=0. The resulting current depends on the ion
coefficient. Since the ratio', ,, /=, ~k’L?>1, the conduc- local cross-field conductivityor, , only as a square root.
tivity associated with magnetic field perturbations dominatesFrom Eg.(18) it follows that the conductivity can be signifi-
In a tokamak the perpendicular conductivity is caused by thgantly enhanced, even for monstochasticnagnetic field.
parallel neoclassical viscosity and by the radial transport offhe enhanced conductivity, E¢L8), =, ,=],/Eo, can be
the toroidal momentum, as is shown in Refs. 1 and 2. It cariewritten in the form

be one to two orders of magnitude larger than given by Eq. K K, by \2

(17). Nevertheless, due to the large fackdi?, the trans- B o~lo 62‘; ( . - ) (19
verse conductivity, Eq(16), may be significant, even in the lo

devices for controlled fusiofin the edge region In the casek;,> 6k, ®, many modes contribute to the sum,

It is worthwhile to note that the ambipolar diffusion Eg. (15), and the current, Eq18), becomes a continuous
(with diffusion coefficientD) plays an important role in the function ofx, and peaks of the currepj near the resonance
process. In the absence of averaged density and temperatgafaces are smoothed out. It means that the continuous en-

gradients, neglecting diffusion, we have hanced conductivity can exist even for a nonstochastic mag-
ang an netic field (when there is no overlapping of magnetic is-
—ikyj = +VL = landg. However, the validity of Eq(19) is restricted by the
at severe conditionk, |b,,|/k,,<1. Moreover, the situation

If the diffusion were not taken into account, these densityk,< JKk,® is more typical. Let us consider a numerical ex-
perturbations would grow until the particle fluxes driven by ample. For the typical tokamak parametéfsre Supra, Ref.
the perturbed gradients compensate the initial ones. Therd. major radius R~238 cm, minor radiusa~80cm,
fore, the resulting transverse current would be zero. In th&=3T) we take at the edge regionT,~20eV,
presence of large anomalous ambipolar diffusi8Bny(T,  N~10° cm™3 k,=m/a~0.6 cm * (mis the typical poloidal
+T;)>|o, | (which is typical for real experimentsthe den-  number for magnet|c field perturbationghe characteristic
sity perturbations are washed out. Since the anomalous difvidths of resonances in Eq(14) and (15 are very

fusion fluxes are automatically ambipolar they do not influ-small: Kio= I okazla” ~2x10°° cm i< ok, 0

ence the current directly. We shall discuss this problem in~1.310"% cm™%, hence the contribution to the cross -field

more detail in Sec. Il B. conductivity, Eq (19), is less significant than conductivity,
Eq. (16).

2. Resonant modes k (x)—0 3. Stochastic magnetic field

In the presence of the resonance surfaces the impact of When the magnetic island width exceeds the distance
the magnetic field perturbations is most pronounced neasetween the neighboring islands, the magnetic field becomes
these surfaces. The simplified equati@®) has a singularity stochastic. The stochasticity of magnetic field lines in this
at the resonance surfaces whkye-0, so that the sum over case are characterized by the Kolmogorov's length of expo-
k, becomes infinite, since the corresponding perpendiculanential divergencé « = (k,®/k;®%b?)* of two neighbor-
current j,~k; *. To calculate the contribution from reso- ing magnetic lines from bemg initially at distanc@,: o
nances, we have to explore E45). This yields the typical =8, exp(—z/L). The overlapping criterion of magnetic is-
values of k,~k,,—|o,k?|/o; (the resonance width lands(Chirikov criterion is equivalent to the condition that
which give the main contribution to the sum. Note that nowKolmogorov’s length is smaller than the parallel correlation
the effect is determined by the local conductivity driven bylength © 5ky)*1, as is shown in Ref. 23. In the stochastic
inertia. Whenk;,>dk,® (where ok, is the difference be- magnetic field, the local transverse transport is strongly am-
tween two neighboring,), many modes contribute to the plified because the magnetic field lines approach each other
resonance and the sum in E@5) can be replaced by the very closely for distances larger thdry along magnetic
integral. This criterion is similar to overlapping criterion field. This effect strongly effects the final expression for the
(Ref. 23 for a stochastic magnetic field. However, the im- average current perpendicular to the flux surface.
portant difference consists in the fact that resonance width Let us consider the flux tube of initial siz& . Due to
here is determined by perpendicular conductivity and not bystochastic instability, the average distance between neighbor-
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netic field lines, and only in some “narrow” places the cur-
rent flows directly perpendicular to the magnetic field.

B. The net cross-field current driven by transverse
electric field, density, and temperature gradients

In the presence of density and temperature gradients ad-
ditional transverse currents appear. The averaged cross-field
current is then given by the averaged projection of parallel
current on thex axis j,=(jib,). Hence, to calculate the
parallel current ji=ob[—Ve+(Te/e)V Inn
+(1.71k)VT,] one has to find density, temperature, and po-
tential perturbations. The perturbations of potential, density,
and temperature are couplédo find them one has to solve

FIG. 2. The scheme of equipotentials for stochastic magnetic lines.  the linearized set of fluid equatiofi$)—(7). Let us introduce

the variables gg=—(b,/ik;)(dgo/dx), ng=—(b,/ik;)
X(dno/dx),  Tao=(by/ik))(dTeo/dx), Tho=—(by/ik)

ing lines is increasing exponentially. But the cross section ofx(dT;,/dx). These perturbations correspond to the constant

a flux tube conserves. Therefore, since the distance betwee@lue of density, temperature, or potential along the per-

the neighboring magnetic field lines exponentially divergesurbed magnetic field. First we consider case of nonresonant

in one direction, in the other direction it decreases exponenmodes.

tially: 6= 8, exp(—2z/Lg); see Ref. 24. So, if the distance

between the two magnetic field lines &0 is &;, it be- 1. Nonresonant modes k (x)#0

comes equal tod, exp(—z/Lg) for z>L. Due to rather Due to large parallel electron conductivity, for nonreso-

small cross-field conductivity, the equipotentials almost conance modes the following inequality is satisfiel;

incide with the magnetic field lines, E¢L3). Hence, an ini- > \/m, Thus, it is easy to see from E€L) that

tial potential dropsoE, between the two magnetic field lines parallel current is much less than the contribution from each

becomes applied to the very small distad&t z>Lx. Asa  of the terms, and the potential perturbation is given by

result, a large electric field of the order &f exp@Lk)

arises. At such places, where magnetic field lines approach ot~ (Pé_ E (né_nl)_ 1'_71(1-10_1-1)_ (21)
each other closely, the parallel current is short-circuited by €ng e € €

the ion transverse current, in spite of the low value of the  gjmijarly, due to the large parallel electron heat con-
cross-field conductivity; see Fig. 2. ductivity, the electron temperature is nearly constant along

_ Th_is effect is less im_portant in the regime of high colli- magnetic lines, and perturbed temperaturd is=TL,. The
sionality whenL>L ., since for these lengths of the order parallel current can be estimated from E€): ik,j,

L, that give the main contribution to the sum, Ef5), the  _ _jy ; — K20, [o + (Tioleng)nt+Te]. After sub-
exponential divergence of neighboring lines is small. In con;ityting the potential perturbation in the form of E@J),
trast to the previously analyzed situations, in the more freye  have ji=— (K2 oy, 1ik,)[ @3~ (Teo /€M) (NE—n1)
guently met case whdng <L, the quasilinear theory is not +(Tio/engnt+TYe]. If nl~n} and Ti~T;y, then j,
valid and the fractal structure of the magnetic field has to be_ —(kf o0 /iku)(qD(lﬁ-(Tio/efb)n(l)+Tilo/e)= —(kf o bl

taken into account. The estimate of conductivity in this casekz)(d%/derT_Od no/enydx+dTe/edy), and zero net
| 1 ]

; : I
can be obtained by the method proposed in Ref. 19 by apsrrent is given by modified Eq16) with substitutionE,

plying the variation principal. From the other side, we Ca”—>—(dcpoldx+T-0dn0/en0dx+dT-O/edx):
obtain the same results by taking into account the enhance- ' '

ment of the transverse current by the substitution . 1 (deo Tigdng dTig >
k?=k? exp(2/k Lk|) into Eq.(15), accounting for an expo- 751 dx T engdx T edx/ 4 Ttk
nential decrease of the distance between equipotentials f
large Wavelengthk“’l. This procedure gives a correct result
in the case of test particle diffusion in the collisional case:
see Refs. 19 and 23. The result is also given by (Eg),

kL bxk) 2
—rk .
l

%e see that in the absence of ion temperature gradient the
parallel current becomes zero, when the radial electric field
corresponds to the Boltzmann distribution of ions. This result
where the lengthL, is replaced by the factorly contrast.s with trlle Widehsprea_d lopinioq thfgtlin the presence of
Ly (L, /Ly): magnetic turbu ence t e radial electric field corresponds to
the Boltzmann distribution for electrons.
0EqDg The ion density and temperature fluctuations are to be
jx=—=". (200 found from continuity equation&) and(7). It is easy to see
Lk that divergences of ion fluxes a'rks”l“m:(kﬁam/ez){[(Te

For the stochastic magnetic field lines, the valu®gfis the ~ +T;)/nyl(n*—ng) + (Ti—TL) + (T —=TH)}, where we
diffusion coefficient of the magnetic field lines. Finally, the have introduced effective ion parallel “conductivity:&,
resulting transverse current almost everywhere is given by e2n/mii(kyv0+ ky,Ug), Ug=—Ddng/nydx is diffusion ve-
the projection of the parallel current flowing along the mag-locity in thex direction. In the perpendicular ion flux, we can
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leave only the ambipolar diffusion flux anBXB drift, perature perturbations are also small, according to conditions
since the diamagnetic fluxes are divergence-free, while i022) and(23). In the presence of large anomalous ambipolar

inertia fluxes are assumed to be small compared to the didiffusion, the electron temperature fluctuations can be ne-
fusive ones éDn> UILTe,) Hence, V, -T k2Dn glected with respect to the potential ones for these resonance
—|ky[(enO/Te)veO(<p — o) —vo(nt—nd)7, where v, modes, since electron temperature fluctuations are washed

=cT.d In ny/eBdxis the drift associated with the electron out by much stronger cross-field transpog,, ~nD

Boltzmann electric fieldpS=(T./€)In n,. >|0i,|Te,; /€% As a result, we have the same final expres-
For heat fluxes, we haveik,q=k2x,(Ti—Tg) sions, as before, but with a replacementV¢
—(O. 7lle)Teik”jH, and V..g.= th - —3ikyng  =—Ve+(Tc/€)V Inn+(1.71€)VT,. For example, Eq.

X[(evi(et—p)—vo(TH—TH)], wherevy= ch /ede (20) modifies to

For typical edge tokamak conditions, discussed above, par-

allel ion transport is Iargeezkan0<k |oi|(Te+T;) and JX:UlDB _ %+ Toedn Mo 1.71dTo, _

k?x, <k’x;, sont=n} andTl ~Tg;; ion density and tem- Ly dx e dx e dx

perature are nearly constant along magnetic lines.
In the opposite case, when

(29)

The combination in the brackets is rather natural in this ex-
pression, however, it differs from the similar result of Ref. 9

e?k2Dng> Koy (Te+ Ty)|; [kye®no(vi—vo)|,  (22)  for the collisionless case, where it wig~[—deo/ox
) ) +(Te/€)(9 In ny/3xX)+(0.5) (I Tge/ 3X)]. Also important is
kx> kixini lkynovol (23 the presence of correlation length.

density and ion temperature perturbations are snall,
<n$é Ti1<TiO-l The ) parallel current i is thenj,  |v. STUDY OF THE MORE COMPLICATED
= (Kl o, 11k (95~ Teong/ €M) = — (K2 07, b /KF) (dpo /X COLLISIONLESS CASE

—Tedng/enydx). So, only for rather exotic parameters the
ambipolar condition(zero net currentis achieved for the

radial electric field, which corresponds to the electron Bolt-
zmann distribution. At first we neglect density and temperature gradients. To

Another mechanism of cross-field conductivity associ-describe the electron motion under these conditions, we use
ated with large parallel ion flux exiss.The density gradi- the drift electron kinetic equation,
ents produce plasma flow along the curvilinear magnetic of
field. As a result, in the second order on magnetic perturba- (v b+veg)Vf— DALf+ — bV(p &——St(f ), (25
tions, cross-field current appears. In the Chew—Goldberger— Ui
Low approximation, the ion viscosity is given by where Stf ) is the electron collision integral. We also intro-
7= (py— pi [ (BIB)(BIB) — I/3], ﬁ)laze;i?fejsaggrr;(aleof;:;edrl]fgrmon into E@5) through anoma

A. Transverse current in the collisionless
case Appk>1

where, in accordance with the Braginskii expressiief. The potential perturbations are given by E3), but
20), with different electron parallel conductivity,,. For ions,
Pi—PiL=—370(iKU— 3V 1),  70=0.90T, /v analogously to the collisional case, the cross-field conductiv-

ity is mainly determined by the inertia: o
The x component of the flux-averaged current is determined=jm, CZ(Uok Yn/B? both for collisionless and collisional
by the perpendicular component and by the projection of theases. To fll’ld)'”k one has to solve Eq25). Separating the
parallel current(j,) =(j ) +(j;-by). From the momentum jsotropic and the anisotropic parts of the distribution func-
balance equation it follows that the first term on the RHS Oftion, from Eq(25) we find the value of the para||e| conduc-

the previous equation is defined by curvilinear viscosity, tivity given in Ref. 26(the electron collision integral is taken

c in the 7 approximation:
<jtx>:<§(pit—piu)(bv)by>- A
. . . UHk_ 3T j v
The projection of the parallel current is calculated from the e
current continuity equation, M (p)
X
) c k [ivoky+ ves(K,v) + v g+ (Kjv)?/ (ivoky+ ver(k,v))]’
(Jib)=2 <§(Pit—pi) f(bv)by>- Oy el o Oy el
K I (26)
The detailed calculations can be found in Ref. 25. where fM is the Maxwellian distribution,ve; is the

electron—ion collision frequency, is the frequency of the
electron phase decorrelation. The first term in the denomina-
tor corresponds to additional momentum loss frequency
ivoky, the second term represents phase decorrelation; the

As we have seen in previous section, the main contributast term arises due to spatial nonlocality. The spatial nonlo-
tion to the current is due to resonance modks cality results in decreasing of conductivity in comparison
~\]o| log|K?. For this very smalk, , ion density and tem-  with the collisional case.

2. Case of resonant modes k |,—0 and stochastic
magnetic field
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For example, in the absence of collisions and of anymagnetic field is considerably enhanced, and to estimate
mechanism of electrons escape from the magnetic field linahe current we should perform the substitution
the real part of conductivity, becomes zero. This situation kf:kf exp(2/k,Lg|). The frequency of electron escape
corresponds to the Boltzmann equilibrium for electrons. Thdrom the magnetic field lineyg(k,v,), is also considerably
frequency of the electron phase decorrelation is governed bincreased, since now the effective cross-field electron diffu-
the stochastic escape of electrons from the magnetic fieldion is Dgv,, whereDg is the diffusion coefficient of the
line caused by the transverse anomalous diffusionstochastic magnetic field lines. Substitutibgv, instead of
ver(K,v ) =maxDk%;[1/3(dk, /9x)?DvZ]¥3}; see, for ex- D, we find vei=v,/Ly—is determined by the Kolmogorov
ample, Ref. 27. The last term is associated with amplificatiodength. Thus, for typical parameters.;~10'—10° s %,
of phase decorrelation, due to the combined effect of shear afhich is much larger thangk, ~ 1P, vei~10*. The electron
k, and electron motion along magnetic line. It should beinertia and collisions can thus be omitted in E¢36) and
noted that, in spite of the fact that the frequendigis,, ves, (28). Since for the stochastic magnetic fieldc<1/(®
vei are small with respect thjv, they cannot be omitted in - k,) the sum in Eq(27) can be replaced by the integral.
Eq. (26), otherwise the parallel conductivity becomes zero,The integration of Eq(27) yields

since electrons with positive and negative parallel velocities
ic fi . . 2 . 1.6
are affected equally by an electric field. iy=€% ,DNEy\)| —=, i,~ . a—
Employing the electron kinetic equation and E@s), TMeTe In(|oyLic/ o1 kKT
(2), for the Maxwellian distribution function, we find (29
1 wherek, with logarithmic accuracy is the typical value of
szi Eo RQ(E b 2o o(Ky) |, (27) k,. The result of Eq.(29) differs from the current of.test
k electrons found in Refs. 9 and 10 by the facigr, which
K2 accounts for the ambipolarity constraint. The ratio of
(k)= — (29) oHL,ZZ/(rL_kI;f is very large(can reach 19; hence, the value
o kKT + oyk] of In(jojLg ?/a, (k?]) can be of the order of 15. Therefore,

Similar to the collisional case, the resulting cross-fieldthe impact of the local ambipolarity constraint is very impor-

current exists even for a nonstochastic magnetic field; théant'

decorrelation between the phases of the parallel current and

the perturbation of the magnetic field is caused by the

anomalous electron diffusion or by the electron—ion colli-B. The net cross-field current driven by transverse
sions. The resulting , , depends on the local ion perpen- €lectric field, density, and temperature

dicular conductivity. In Ref. 28 it was incorrectly stated that 9radients in the collisionless case  Appk;>1

electron radial flux could appear in the presence of magnetic  Analogously to Sec. Ill B, the ion and electron tempera-
islands only due to collisions. It is clear that without any ture and density perturbations can be neglected compared to
mechanism of transverse escape, electrons are boundedti potential ones for resonance modes. As a result of the

the magnetic field line and cannot move in the radial direC'So|ution of the kinetic equatio(QS) accounting for density
tion, since the magnetic field lines are regular and do nojnd temperature gradients, we h&ve

diverge in the radial direction, on average. It can be shown
formally. Equation(25) without drifts and diffusion reads as szz bul2G(k,),

e of
vbVi+ —DbVe —=Stf ). 2re?

Integrating this equation over parallel velocity, one can see

that electron currenjt,= fv,fdv=0, since there are no losses aglnn e dpy [mv? dInTg
from the magnetic field line anfiSt(f )dv=0. In Ref. 28 the ax  Te ax |\ 2T, IX
collision integral was taken in the form $tj X (k”v)z )

N W

= —pf, introducing artificial sink. The radial electron shift ivoKy+ ver(K,v) + veit
can arise only for nonstationary magnetic islands, when mag-
netic islands appear and disappear randomly, resulting in eBimilar to Sec. IV A, in the case of a stochastic magnetic
fective radial electron diffusion. field,

As we have discussed in Sec. Il A, for the typical toka- T
. e
Ix=1,6Dsn\/ e

ivoky+ Veff(k,l))

mak parameters, the characteristic widths of resonances in
Egs. (27) and (28) are very small:k,,= \|o | (k?/oy|~3

X  Te OX 2T x|

(alnn e do, 1 dT,

e

X1075 em Y, ver/v~5x10"% cm i< ok, ©~10 2 cm L, (30)
It means thaf, has strong narrow peaks at resonance surThe resulting equatio30) differs from the current of test
faces~ kH"‘(x) atk;(x)—0. electrons found in Refs. 9 and 10 by the facikgr which

These peaks are smoothed if the magnetic field is stoaccounts for the ambipolarity constraint. The result obtained
chastic and the magnetic islands are overlapped. Similar tim the approximation of the test particles can be reduced by
the collisional case, the transverse current for a stochastitie order of magnitude.
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