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Transverse conductivity in a braided magnetic field
I. Kaganovicha) and V. Rozhansky
St. Petersburg State Technical University, St. Petersburg 195251 Russia

~Received 22 October 1997; accepted 26 May 1998!

The cross-field current is calculated as a function of the applied electric field, density, and
temperature gradients in a given perturbed magnetic field. The current is calculated both for the
cases of regular and stochastic magnetic fields. The analysis is focused on the impact of local
ambipolarity. It is demonstrated that the local ambipolarity requirement results in the significant
suppression of the cross-field radial current with respect to the current of test particles. ©1998
American Institute of Physics.@S1070-664X~98!03511-3#
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I. INTRODUCTION

The issue of transverse conductivity is very importa
since it determines the radial potential profile in vario
magnetic field configurations addressed in the context of
sion research. Usually of main interest is the self-consis
radial ambipolar electric field, which corresponds to the c
dition of zero radial current averaged over the flux surfa
The interest is further enhanced by the large body of e
dence obtained on many tokamaks that the formation
transport barriers is consistent with the paradigm that
creased shear in theE3B flow leads to a suppression o
plasma turbulence, thereby improving the confinement. M
netic field perturbations produce additional current perp
dicular to flux surfaces, and thus contribute to the zero c
rent condition. Hence the value of the ambipolar elec
field is changed by magnetic field perturbations. Con
quently, to calculate the ambipolar electric field in the pr
ence of magnetic field perturbations, it is necessary to so
two independent problems. First one has to calculate the
dial current in the absence of magnetic field perturbations
a function of electric field, density, and temperature gra
ents. The second step is to obtain a similar expression fo
current associated with magnetic field fluctuations. Then
resulting electric field can be determined from the zero c
rent condition. Therefore, the problem of determination
the cross-field conductivity, as well as the response of
radial current to density and temperature gradients, arise

Many authors have addressed the first part of the pr
lem. In Refs. 1, 2, and references therein, the emergenc
the electric field profile has been described in terms of
momentum balance between the damping provided by n
classical parallel viscosity and anomalous transport of
parallel momentum caused by turbulence. As a result,
perpendicular ion conductivity in a tokamak has been ca
lated. The theoretical predictions were verified by seve
biasing experiments@Continuous Current Tokamak at th
University of California, Los Angeles~CCT!,3 Tuman-3,4

and Toroidal Experiment for Technically Oriented Resea
~TEXTOR!#, where the effective cross-field conductivity h
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been measured. In the absence of biasing, when the ra
current has to be zero, the negative neoclassical electric
is predicted, provided toroidal rotation is damped by t
anomalous viscosity~in the absence of an externally gene
ated toroidal rotation, e.g., by an unbalanced neutral be
injection!.

However, on some tokamaks@TM-4, Ref. 5, the Texas
Experimental Tokamak~TEXT! Ref. 6, Tore Supra, Ref. 7#
electric fields less negative than the neoclassical, or e
positive fields, were observed for special regimes. A ten
tive explanation is connected with an intrinsic magnetic fie
stochasticity, which can create an additional current of el
trons, thus reducing the negative neoclassical electric fi
On TEXT and Tore Supra, an ergodic magnetic limiter c
ated the extrinsic stochasticity. As a result, a strong reduc
of the negative electric field was observed~Ref. 8!. This
effect could be interpreted in terms of a modified transve
conductivity associated with perturbations of the magne
field.

The problem of calculation of the current perpendicu
to the flux surfaces in the braided magnetic field also
some history. However, the particles that contribute to
current were considered to be test particles. For collision
plasma, the issue of cross-field current in a stochastic m
netic field has been analyzed in Refs. 9–11. According
their approach, the current was assumed to be carried by
electrons. In contrast, in reality, the motion of electrons in
braided magnetic field is accompanied by the emerging
potential, density, and temperature perturbations, which a
to provide local quasineutrality. These perturbations stron
affect the motion of charged particles, generate the local p
turbed currents, and, as a result, change significantly
physical pattern and the averaged cross-field current. Th
fore, the restrictions imposed by the ambipolarity constrain
which were ignored previously, are very important. It shou
be noted that the calculation of the transverse conducti
and cross-field current should not be mixed with the probl
of a kinetic dynamo~Refs. 12, 13!, where the current along
the flux surfaces is analyzed. This interesting and import
problem is not considered here; still the ambipolar co
straints should also play a significant role in this case.14

In the present paper the cross-field current and the cr
field conductivity of a plasma in a braided magnetic field~as

l-
1 © 1998 American Institute of Physics
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well as the response to density and temperature gradie!
with a given level of magnetic field perturbations is a
dressed. In contrast to Refs. 9–11, the ambipolarity c
straint is employed locally, accounting for the fact that t
current is divergence-free throughout the plasma column
other words, the parallel electron current, arising due to
electron flux along a braided magnetic field line, is sho
circuited by the ion flux across the field. Since electrons
much more mobile than ions along a magnetic field, a s
nificant perturbed electric field has to arise, thereby suppr
ing the electron current. Hence, the value of the transve
current obtained in Refs. 9 and 10 can be only treated as
upper estimate. It is demonstrated that the properly ca
lated radial current is significantly smaller.

Similar self-consistent constraints were also analyzed
Refs. 15–18. In contrast to our approach, a special typ
intrinsic drift-Alfvén turbulence, which is responsible fo
fluctuations of the magnetic field, has been considered
Refs. 15 and 16 the radial current has been studied. It
shown that for the case of two-dimensional~2-D! turbulence
the self-consistency constraint results in complete inhibit
of the radial current. In Ref. 18 it was shown that heat tra
port is also suppressed for a peaked spectrum shifted f
local resonance modes, which is typical for the edge reg
of reversed-field pinch~RFP!. Qualitatively, the conclusion
is similar to ours: the transverse current is strongly redu
due to the ambipolarity constraint.

In the present paper we consider the more general th
dimensional~3-D! case with a finitekz component of the
magnetic field perturbation spectrum. This situation prin
pally differs from the 2-D case. In particular, the cross-fie
current averaged over the flux surface is not zero in the
case. On the other hand, we restricted ourselves to the m
modest problem when the externally created magnetic fi
perturbations can be considered as the given ones.

In the case considered, the resulting net current avera
over the flux surface can flow only due to the finite loc
effective cross-field conductivity of ions. The ion viscosi
and inertia terms associated with small-scale plasma pe
bations cause this effective local cross-field conductiv
The considerable enhancement of the transverse cu
~with respect to the current driven by the averaged visco
and inertia! occurs even in a regularly perturbed magne
field. It becomes especially large in the case of a stocha
magnetic field, when the field lines come very closely
each other. In this case the average current depends loga
mically on the ratio of the parallel conductivity to perpe
dicular local conductivity. In both cases the resulting av
aged cross-field current is shown to be proportional to
squared magnetic field perturbations. Both collisional a
collisionless cases are considered. The results obtained
be employed for the determination of the self-consist
electric field in an ergodic divertor. This can be done
putting to zero the sum of the ion perpendicular curr
caused by neoclassical viscosity and the perpendicular
rent generated by an imposed stochastic magnetic field
spite of the fact that the analysis quantified below cor
sponds to the calculation of cross-field conductivity
plasma with a given perturbed magnetic field, it also ha
ts
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significant reference to tokamaks and RFPs with a large
gree of intrinsic stochasticity.

The paper is organized as follows: in Sec. II the mode
described with the assumptions made, in Sec. III we d
with the collisional case so that fluid equations are solv
and in Sec. IV the more complicated collisionless case
studied. In both cases, we start the analysis from the non
chastic magnetic field, and then investigate the case of
stochastic magnetic field.

II. MODEL

The magnetic field perturbations, potential, plasma d
sity n, electron,Te , and ion,Ti , temperatures are assumed
be constant. We start with the case of the uniform den
and temperatures to focus attention on the effects cause
the electric field perpendicular to the flux surface. The g
eral formulas taking account of density and temperature g
dients, will be derived at the end of each section. The spa
scales of magnetic perturbations are assumed to be sig
cantly smaller than the small radius of plasma devic
Therefore, for simplicity, slab geometry is chosen w
plasma parameters depending on thex coordinate, which is
normal to the flux surfaces. The unperturbed magnetic fi
is given by B5Bzez1By(x)ey5B@ez1Q(x)ey#, Q(x)
5By /Bz!1. Here they axis corresponds to the poloidal d
rection in a tokamak, thez axis—to the toroidal direction,
and thex axis—to the radial direction. The unperturbed p
tential is denoted asw0(x), and the corresponding electri
field is E052dw0 /dx. Toroidal effects are neglected in th
model. A strong anomalous viscosity, diffusion, and he
conductivity, originating due to the small-scale electrosta
turbulence, are included into the model. It is assumed
this electrostatic turbulence is independent of the magn
one, and can be described by corresponding diffusion
viscosity coefficients.

In contrast to Refs. 15 and 16, where the perturbed m
netic field was generated by turbulent plasma currents
that currents were strictly related to magnetic perturbatio
Ampère’s law, j5(c/4p)“3B8, we consider the case whe
magnetic field perturbationsB8 are created by the externa
time-independent currents in the coils. Hence, in the plas
we have“3B850. The perturbed magnetic field is taken
the formB85(kB0k8 exp(ikr ), whereukzu!ukxu, ukyu. Then,
from the Maxwellian equations it follows thatk250. There-
fore, kx56 iAky

21kz
2, i.e., the perturbations of the magnet

field reach a maximum at the separatrix and decrease tow
the core. This situation corresponds to the case of an erg
divertor. The magnetic field perturbations are assumed to
sufficiently small, so that the following conditions are fu
filled: ukxbx /kiu>ukyby /kiu!1, ukxuL@1, where bx,y

5Bx,y8 /B, L5(d ln w0 /dx)21, ki is the parallel wave vector
ki(x)5@kyBy(x)1kzBz#/B. Therefore, we can apply th
quasilinear theory based on the small parameterukxbx /kiu
>ukyby /kiu!1. The latter condition means that the displac
ment of the point at magnetic field line iny or x directions is
smaller than the transverse spatial scale of the perturbat
provided the point pass the distanceki

21 along the magnetic
field.
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Finally, we see that the following basic assumptions
made, which are typical for the case of an ergodic divert

~i! Stationary small-scale perturbations of magnetic fi
of low amplitude are considered.

~ii ! A magnetic field is created externally by currents
the coils.

~iii ! Anomalous transport caused by intrinsic elect
static turbulence exists.

There are several important parameters in the prob
considered. One can introduce three scales along the m
netic field. In the absence of resonance~when ki remains
finite everywhere! the longitudinal scale is simplyki

21 . If,
for a given wave number, there exists the resonance sur
whereki→0, then the contribution to the plasma perturb
tions is large near such a flux surface. In this case we in
duce a typical longitudinal scale corresponding toki

21 : the
valuekis5Aus'kk'

2 /s i, where the parallel,s i , and the per-
pendicular,s' , conductivities are denoted below. Similarl
one can introducekiD and kiT-the inverse scales associat
with diffusion and heat conductivity~see below!. When the
magnetic field becomes stochastic, the typical scale alonB
is given by the Kolmogorov length of magnetic field lin
divergenceLk . The corresponding parallel wave vector
defined askik;Lk

21. In our analysis we have to choose th
largest of all the parallel wave vectors or the smallest of
corresponding typical longitudinal scales. The result depe
also on the ratio of the mean-free path to the smalles
these longitudinal scales.

In the present paper we shall consider both collisio
and collisionless cases, stochastic and nonstochastic m
netic fields.

III. TRANSVERSE CONDUCTIVITY IN THE
COLLISIONAL CASE lmfpk i!1

We start from the most transparent collisional case w
the mean-free pathlmfp!ki

21. The collisional case, being
rarely found in practical applications, is a good example
the demonstration of the considered effects. To find the
eraged cross-field current^ j x&, we have to find at first the
perturbed parallel currentj i

1. Under validity conditions of
quasilinear theory, the averaged cross-field current is t
given by the averaged projection of parallel current on thx
axis, j x5^ j i

1bx&. We follow here the method proposed
Ref. 19 for the calculation of electron heat conductivity.

A. Cross-field current driven by transverse electric
field

To find the perturbations of parallel current, we have
solve the fluid equations of Ref. 20:

“–j50, ~1!

“–Gi50, ~2!

min~u¹!u52“p1
1

c
@ j3B#2“–p, ~3!

j i5s ibS 2“w1
Te

e
“ ln n1

1.71

e
“TeD , ~4!
e

d

-

m
g-

ce
-
o-

e
ds
f

l
ag-

n

r
v-

n

3

2
n~ue–“ !Te1nTe~“–ue!52“–qe , ~5!

qe52xei“ iTe2xe'“'Te2
0.71

e
Tej i , ~6!

3

2
n~u–“ !Ti1nTi~“–u!52“–qi , ~7!

qi52x i“ iTi2x i'“'Ti , ~8!

where j is the current,u is the plasma velocity,ue is the
electron velocity,s i is Spitzer–Harm parallel conductivity
b5B/uBu, p is the ion viscosity tensor, andxe,i is the heat
conductivity. Perpendicular anomalous heat ion and elec
conductivities can be estimated asxe,i''nD. We have ne-
glected the divergence-free heat fluxes proportional
B3“Te,i , since they do not contribute to the transpo
equations.

The ion viscosity can be caused by the ion–ion co
sions~see, for example, Ref. 20! and/or can be anomalous
i.e., caused by an electrostatic turbulence, which can exis
the plasma. For the time being, we consider only the c
when the zeroth-order temperatures and density pertu
tions are absent. The external magnetic field perturbationb
cause the perturbation of electric potentialw1, ion velocity
u1, and currentj . Note that in the test particle approac
~Refs. 9 and 10! the potential perturbations are neglected
that the calculated current is not divergence-free, as it sho
be according to Eq.~1! ~ambipolarity constraint!.

1. Nonresonant modes k i„x …Þ0

We start the analysis from the simplest case of nonre
nant modes. Such a magnetic field perturbation can be
ated by slightly rippled coils. In the absence of the transve
current, from the continuity, Eq.~1!, (ik i j i50), it immedi-
ately follows that the parallel net current should be zeroj i

52s i@bx(dw0 /dx)1 ik iw1#50). In other words, in con-
trast to the test particle case, the potential perturbati
emerge and cancel the part of the parallel current associ
with radial electric field projection on the magnetic field lin
The solution of the linearized equations~1! and ~4!, corre-
sponds to the constant potential along the perturbed magn
field line. Therefore, the potential perturbations of the fi
order are

w0
152

bx

ik i

dw0

dx
. ~9!

In Refs. 9 and 10 these potential perturbations were
glected. In Fig. 1 the sketch of two possibilities with an
without potential perturbations, Eq.~9!, is shown.

The nonzero parallel current arises if the transverse c
rent is taken into account. The latter can be caused by c
sions with neutrals or driven by ion viscosity and inertia. T
electron finite Larmor radius effects considered in Ref.
~for the case of test electrons! are negligible with respect to
the ion perpendicular currents. The corresponding mec
nism of the cross-field conductivity consists of the followin
The perturbed electric field, Eq.~9!, causesE3B drifts along
the equipotentials. Moreover, the perturbed fields prod
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strongly inhomogeneous drifts. For the potential pertur
tions wk5w0k exp(ikr ), the drift velocity is u'

52(ci/B)wkk3ez . These small-scale drifts result in the io
viscosity and inertia forces. From the momentum bala
equation~3!, it follows that these forces generate the perp
dicular ion current,

j'52c@~min~u'“ !u1“–p!3B#/B2 ~10!

@see Fig. 1~b!#. The parallel current, which arises to close t
circuit, can be calculated from the continuity equation~1!:
ik i j i1“'–j'50. Accounting for perpendicular currents, th
potential perturbations differ from Eq.~9!. They can be
found from Eq.~1!. Since we are interested mainly in dive
gence of the perpendicular current, it is convenient to int
duce the effective cross-field conductivity as

s'k52“–j'k /D'wk . ~11!

In our case of externally created magnetic field perturbati
(kx56 iAky

21kz
2; ukzu!ukxu, ukyu) D'wk52k'

2 wk[2(kx
2

1ky
2)wk5kz

2wk . Substituting the expression for the drift ve
locity as a function of potential into Eq.~10! for current, we
have, for the effective cross-field conductivity,

s'k5s'k,i1s'k,v

5 imic
2~v0ky!n/B21h1~k'

2 14kz
2!c2/B2. ~12!

The first term here is the contribution from the inertia forc
wherev05cE0 /B is the velocity of unperturbedE3B drift
along the flux surface~in the y direction!. Note that the in-
ertia term is the result of a combination of both unperturb
drift ~plasma rotation! and small-scale drifts. The contribu
tion to the effective perpendicular conductivity from the v
cosity is calculated by means of substituting the express
for the viscosity tensor given in Ref. 22, whereh1 is the ion
transverse viscosity coefficient. The contribution of oth
components to Eq.~1! results in the divergence-free terms.
the real turbulent plasma, the contribution from the anom
lous viscosity is much larger than from the classical visc
ity. It can be taken into account by replacement of the c
sical viscosity coefficient h1 with the coefficient of

FIG. 1. Scheme of equipotentials~a! without an account of the local ambi
polarity constraint;~b! with an account of potential perturbation, Eq.~7!.
Cross-field and parallel currents are also shown.
-

e
-

-

s

,

d

n

r

-
-
-

anomalous viscosity, which should be of the order ofminD,
whereD is the anomalous diffusion coefficient. However, f
typical plasma parameters the viscosity contribution of
remains small with respect to the inertia term, even tak
into account the anomalous effects. In other words, the
equality us'k,v /s'k,i u;Dkz

2/uv0kyu!1 is usually satisfied.
It is worthwhile emphasizing that the finite cross-fie

conductivity exists only for the magnetic field perturbatio
with finite kz . In the 2-D case, whenkz50, the divergence
of the perpendicular currents, caused by inertia and visco
vanish, the magnetic field line remains equipotential, and
parallel currents arise. The absence of the net radial cur
for two-dimensional magnetic turbulence, due to the se
consistence character of current and magnetic fluctuat
coupled by Ampe`re’s law, was pointed out in Refs. 15 an
16. However, if the 3-D structure of magnetic field perturb
tions is accounted for, the net radial current is not zero a
as we shall see, can be large.

In the presence of the transverse ion currents, the par
current arises. Substituting the expression for parallel c
rent: j i52s i@bx(dw0 /dx)1 ik iw1#50 into the condition
ik i j i1“'–j'50 and using Eq.~11!, we find the solution of
the linearized equations~1! for the potential,

wk
15S 12

s'kk'
2

s'kk'
2 1s iki

2D i

ki

dw0

dx
bxk . ~13!

Accounting for the transverse conductivity, the magne
field lines are not equipotential, due to the second term
the right-hand side~RHS! of Eq. ~13!, which depends on
s'k , ands'kk'

2 !s iki
2. In spite of the fact that the deviatio

from the equipotential case, Eq.~9!, is small, this deviation
determines the parallel current,

j i
15(

k
j i ,k
1 5(

k

s is'kk'
2

s'kk'
2 1s iki

2 bxkE0 . ~14!

We see that the averaged perpendicular current appea
the second order on magnetic fluctuationss'kk'

2 !s iki
2.

Substituting the expression forj i into the expression for the
net currentj x5^ j i

1bx&51/2 Re(k j i
1bxk , we find

j x5
s iE0

2

3(
k

us'k,ik'
2 u21s'k,vk'

2 ~s iki
21s'k,vk'

2 !

us'k,ik'
2 u21~s iki

21s'k,vk'
2 !2 ubxku2.

~15!

In the absence of the resonance surfaces, whereki(x)→0,
estimating uki(x)u;ukyuQ, accounting for s'k,vk'

2

!us'k,ik'
2 u!s iki

2, we have

j x5
E0

2 (
k

s'k,vS k'ubxku
ki

D 2

5E0(
k

3h1kz
2c2

2B2 S k'ubxku
ki

D 2

. ~16!

The last factor in Eq.~16! has to be smaller than unity, sinc
the quasilinear approach is valid if the magnetic field
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rather small, so thatuk'bxk /kiu!1. Hence, the resulting
transverse conductivityJ'b[ j x /E0 is determined by the
perpendicular viscosity~and does not depend on ion inertia!.
It can reach the value ofs'kv by the order of magnitude.

Let us estimate the perpendicular conductivity calcula
above. To do this we compare the result with the cross-fi
conductivity J' in unperturbed magnetic field, which i
caused by the perpendicular viscosity, given in Ref. 22,

J'5miDnc2/B2Lv
2, Lv

225
]2w0

w0]x2 . ~17!

In both cases, we choseh15nmiD for anomalous viscosity
coefficient. Since the ratios'kv /J';k'

2 Lv
2@1, the conduc-

tivity associated with magnetic field perturbations dominat
In a tokamak the perpendicular conductivity is caused by
parallel neoclassical viscosity and by the radial transpor
the toroidal momentum, as is shown in Refs. 1 and 2. It
be one to two orders of magnitude larger than given by
~17!. Nevertheless, due to the large factork'

2 Lv
2, the trans-

verse conductivity, Eq.~16!, may be significant, even in th
devices for controlled fusion~in the edge region!.

It is worthwhile to note that the ambipolar diffusio
~with diffusion coefficientD! plays an important role in the
process. In the absence of averaged density and temper
gradients, neglecting diffusion, we have

]ne

]t
2 ik i j i5

]ni

]t
1“'–j'50.

If the diffusion were not taken into account, these dens
perturbations would grow until the particle fluxes driven
the perturbed gradients compensate the initial ones. Th
fore, the resulting transverse current would be zero. In
presence of large anomalous ambipolar diffusione2Dn0(Te

1Ti)@us'u ~which is typical for real experiments!, the den-
sity perturbations are washed out. Since the anomalous
fusion fluxes are automatically ambipolar they do not infl
ence the current directly. We shall discuss this problem
more detail in Sec. III B.

2. Resonant modes k i„x …˜0

In the presence of the resonance surfaces the impa
the magnetic field perturbations is most pronounced n
these surfaces. The simplified equation~16! has a singularity
at the resonance surfaces whereki→0, so that the sum ove
k' becomes infinite, since the corresponding perpendic
current j x;ki

24. To calculate the contribution from reso
nances, we have to explore Eq.~15!. This yields the typical
values of ki;kis2Aus'kik'

2 u/s i ~the resonance width!,
which give the main contribution to the sum. Note that no
the effect is determined by the local conductivity driven
inertia. Whenkis.dkyQ ~where dky is the difference be-
tween two neighboringky), many modes contribute to th
resonance and the sum in Eq.~15! can be replaced by th
integral. This criterion is similar to overlapping criterio
~Ref. 23! for a stochastic magnetic field. However, the im
portant difference consists in the fact that resonance w
here is determined by perpendicular conductivity and not
d
ld

s.
e
f
n
.

ure

y

re-
e
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-
n

of
ar

ar

th
y

nonlinear effects, as for the stochastic magnetic field ca
Replacing the sum in Eq.~15! by the integral, we find

j x5
s iE0DB

Ls
, ~18!

where Ls5kis
21, DB5*$ubxku2/@11(ki /kis)4#%

3(dky/2kisdky). The last integral can be easily calculate
provided the amplitude of magnetic fluctuationsbxk changes
insignificantly at the resonance width. Ifkis.DkyQ, where
Dky is the width of the spectrumbxk , we have DB

5p&ubxku2/(4Qdky). Here bxk correspond to resonanc
modeski(x)50. The resulting current depends on the i
local cross-field conductivitys'k only as a square root
From Eq.~18! it follows that the conductivity can be signifi
cantly enhanced, even for anonstochasticmagnetic field.
The enhanced conductivity, Eq.~18!, J'b[ j x /E0 , can be
rewritten in the form

J'b;us'ku
kis

Qdky
S k'ubxku

kis
D 2

. ~19!

In the casekis.dkyQ, many modes contribute to the sum
Eq. ~15!, and the current, Eq.~18!, becomes a continuou
function ofx, and peaks of the currentj x near the resonanc
surfaces are smoothed out. It means that the continuous
hanced conductivity can exist even for a nonstochastic m
netic field ~when there is no overlapping of magnetic i
lands!. However, the validity of Eq.~19! is restricted by the
severe conditionk'ubxku/kis,1. Moreover, the situation
kis,dkyQ is more typical. Let us consider a numerical e
ample. For the typical tokamak parameters~Tore Supra, Ref.
7, major radius R;238 cm, minor radius a;80 cm,
B53 T) we take at the edge regionTe;20 eV,
n;1013 cm23, ky5m/a;0.6 cm21 ~m is the typical poloidal
number for magnetic field perturbations!. The characteristic
widths of resonances in Eq.~14! and ~15! are very
small: kis5Aus'kk'

2 /s iu;231026 cm21!dkyQ
;1.31023 cm21, hence the contribution to the cross-fie
conductivity, Eq.~19!, is less significant than conductivity
Eq. ~16!.

3. Stochastic magnetic field

When the magnetic island width exceeds the dista
between the neighboring islands, the magnetic field beco
stochastic. The stochasticity of magnetic field lines in t
case are characterized by the Kolmogorov’s length of ex
nential divergenceLK5(dkyQ/ky

2Q2b2)1/3 of two neighbor-
ing magnetic lines from being initially at distanced0 :d
5d0 exp(2z/LK). The overlapping criterion of magnetic is
lands~Chirikov criterion! is equivalent to the condition tha
Kolmogorov’s length is smaller than the parallel correlati
length (Qdky)

21, as is shown in Ref. 23. In the stochast
magnetic field, the local transverse transport is strongly a
plified because the magnetic field lines approach each o
very closely for distances larger thanLK along magnetic
field. This effect strongly effects the final expression for t
average current perpendicular to the flux surface.

Let us consider the flux tube of initial sized0 . Due to
stochastic instability, the average distance between neigh
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ing lines is increasing exponentially. But the cross section
a flux tube conserves. Therefore, since the distance betw
the neighboring magnetic field lines exponentially diverg
in one direction, in the other direction it decreases expon
tially: d5d0 exp(2z/LK); see Ref. 24. So, if the distanc
between the two magnetic field lines atz50 is d0 , it be-
comes equal tod0 exp(2z/LK) for z.LK . Due to rather
small cross-field conductivity, the equipotentials almost
incide with the magnetic field lines, Eq.~13!. Hence, an ini-
tial potential dropd0E0 between the two magnetic field line
becomes applied to the very small distanced at z.LK . As a
result, a large electric field of the order ofE0 exp(z/LK)
arises. At such places, where magnetic field lines appro
each other closely, the parallel current is short-circuited
the ion transverse current, in spite of the low value of
cross-field conductivity; see Fig. 2.

This effect is less important in the regime of high col
sionality whenLK.Ls , since for these lengths of the ord
Ls that give the main contribution to the sum, Eq.~15!, the
exponential divergence of neighboring lines is small. In co
trast to the previously analyzed situations, in the more
quently met case whenLK,Ls , the quasilinear theory is no
valid and the fractal structure of the magnetic field has to
taken into account. The estimate of conductivity in this ca
can be obtained by the method proposed in Ref. 19 by
plying the variation principal. From the other side, we c
obtain the same results by taking into account the enha
ment of the transverse current by the substitut
k'

2 ⇒k'
2 exp(2/ukiLKu) into Eq.~15!, accounting for an expo

nential decrease of the distance between equipotentials
large wavelengthski

21 . This procedure gives a correct resu
in the case of test particle diffusion in the collisional ca
see Refs. 19 and 23. The result is also given by Eq.~18!,
where the length Ls is replaced by the factorL̃K

;LK ln(Ls /LK):

j x5
s iE0DB

L̃K

. ~20!

For the stochastic magnetic field lines, the value ofDB is the
diffusion coefficient of the magnetic field lines. Finally, th
resulting transverse current almost everywhere is given
the projection of the parallel current flowing along the ma

FIG. 2. The scheme of equipotentials for stochastic magnetic lines
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netic field lines, and only in some ‘‘narrow’’ places the cu
rent flows directly perpendicular to the magnetic field.

B. The net cross-field current driven by transverse
electric field, density, and temperature gradients

In the presence of density and temperature gradients
ditional transverse currents appear. The averaged cross-
current is then given by the averaged projection of para
current on thex axis j x5^ j i

1bx&. Hence, to calculate the
parallel current j i5s ib@2“w1(Te /e)“ ln n
1(1.71/e)“Te# one has to find density, temperature, and p
tential perturbations. The perturbations of potential, dens
and temperature are coupled.7 To find them one has to solv
the linearized set of fluid equations~1!–~7!. Let us introduce
the variables w0

152(bx / ik i)(dw0 /dx), n0
152(bx / ik i)

3(dn0 /dx), Te0
1 5(bx / ik i)(dTe0 /dx), Ti0

1 52(bx / ik i)
3(dTi0 /dx). These perturbations correspond to the const
value of density, temperature, or potential along the p
turbed magnetic field. First we consider case of nonreson
modes.

1. Nonresonant modes k i„x …Þ0

Due to large parallel electron conductivity, for nonres
nance modes the following inequality is satisfied:ki

@Ae2Dn0Tek'
2 /sei. Thus, it is easy to see from Eq.~1! that

parallel current is much less than the contribution from ea
of the terms, and the potential perturbation is given by

w1'w0
12

Te

en0
~n0

12n1!2
1.71

e
~Te0

1 2Te
1!. ~21!

Similarly, due to the large parallel electron heat co
ductivity, the electron temperature is nearly constant alo
magnetic lines, and perturbed temperature isTe

1>Te0
1 . The

parallel current can be estimated from Eq.~1!: ik i j i

52 ik' j'52k'
2 s i'@w11(Ti0 /en0)n11Ti

1/e#. After sub-
stituting the potential perturbation in the form of Eq.~21!,
we have j i52(k'

2 s i' / ik i)@w0
12(Te0 /en0)(n0

12n1)
1(Ti0 /en0)n11Ti

1/e#. If n1'n0
1 and Ti

1'Ti0 , then j i

52(k'
2 s i' / ik i)(w0

11(Ti0 /en0)n0
11Ti0

1 /e)52(k'
2 s i'bx /

ki
2)(dw0 /dx1Ti0dn0 /en0dx1dTi0 /edx), and zero net

current is given by modified Eq.~16! with substitutionE0

→2(dw0 /dx1Ti0dn0 /en0dx1dTi0 /edx):

j x52
1

2 S dw0

dx
1

Ti0dn0

en0dx
1

dTi0

edxD(k
s'k,vS k'bxk

ki
2 D 2

.

We see that in the absence of ion temperature gradient
parallel current becomes zero, when the radial electric fi
corresponds to the Boltzmann distribution of ions. This res
contrasts with the wide spread opinion that in the presenc
magnetic turbulence the radial electric field corresponds
the Boltzmann distribution for electrons.

The ion density and temperature fluctuations are to
found from continuity equations~2! and~7!. It is easy to see
that divergences of ion fluxes areik iG i i5(ki

2s i i /e2)$@(Te

1Ti)/n0#(n12n0
1)1(Te

12Te0
1 )1(Ti

12Ti0
1 )%, where we

have introduced effective ion parallel ‘‘conductivity:’’s i

5e2n/mii (kyv01kxu0), u052Ddn0 /n0dx is diffusion ve-
locity in thex direction. In the perpendicular ion flux, we ca
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leave only the ambipolar diffusion flux andE3B drift,
since the diamagnetic fluxes are divergence-free, while
inertia fluxes are assumed to be small compared to the
fusive ones (eDn@s i'Te,i). Hence, “'–Gi'5k'

2 Dn1

2 iky@(en0 /Te)ve0
B (w12w0

1)2v0(n12n0
1)#, where ve0

B

5cTed ln n0 /eBdx is the drift associated with the electro
Boltzmann electric fieldw0

B5(Te /e)ln n0.
For heat fluxes, we haveik iqi5ki

2x i(Ti
12T0i

1 )
2(0.71/e)Teik i j i , and “'–qi'5k'

2 x'Ti
12 3

2ikyn0

3@(ev0
T(w12w0

1)2v0(Ti
12Ti0

1 )#, where v0
T5cdTi /eBdx.

For typical edge tokamak conditions, discussed above,
allel ion transport is large:e2k'

2 Dn0!ki
2us i iu(Te1Ti) and

k'
2 x'!ki

2x i , so n1'n0
1 andTi

1'T0i
1 ; ion density and tem-

perature are nearly constant along magnetic lines.
In the opposite case, when

e2k'
2 Dn0@uki

2s i i~Te1Ti !u;ukye
2n0~ve0

B 2v0!u, ~22!

k'
2 x'@ki

2x i i ;ukyn0v0u, ~23!

density and ion temperature perturbations are small,n1

!n0
1, Ti

1!Ti0 . The parallel current is then j i

5(k'
2 s i' / ik i)(w0

12Te0n0
1/en0)52(k'

2 s i'bx /ki
2)(dw0 /dx

2Tedn0 /en0dx). So, only for rather exotic parameters, th
ambipolar condition~zero net current! is achieved for the
radial electric field, which corresponds to the electron Bo
zmann distribution.

Another mechanism of cross-field conductivity asso
ated with large parallel ion flux exists.25 The density gradi-
ents produce plasma flow along the curvilinear magn
field. As a result, in the second order on magnetic pertur
tions, cross-field current appears. In the Chew–Goldberg
Low approximation, the ion viscosity is given by

p5~pi i2pi'!@~B/B!~B/B!2I/3#,

where, in accordance with the Braginskii expression~Ref.
20!,

pi i2pi'523h0~ ik iuik2 1
3“–u!, h050.96nTi /n i i .

The x component of the flux-averaged current is determin
by the perpendicular component and by the projection of
parallel current̂ j x&5^ j'x&1^ j i•bx&. From the momentum
balance equation it follows that the first term on the RHS
the previous equation is defined by curvilinear viscosity,

^ j'x&5 K c

B
~pi'2pi i!~b“ !byL .

The projection of the parallel current is calculated from t
current continuity equation,

^ j ibx&5(
k

K c

B
~pi'2pi i!

kz

3ki
~b“ !byL .

The detailed calculations can be found in Ref. 25.

2. Case of resonant modes k i˜0 and stochastic
magnetic field

As we have seen in previous section, the main contri
tion to the current is due to resonance modeski

;Aus' /seiuk'
2 . For this very smallki , ion density and tem-
n
if-

r-

-

-

ic
a-
r–

d
e

f

e

-

perature perturbations are also small, according to condit
~22! and~23!. In the presence of large anomalous ambipo
diffusion, the electron temperature fluctuations can be
glected with respect to the potential ones for these resona
modes, since electron temperature fluctuations are was
out by much stronger cross-field transportxe';nD
@us i'uTe,i /e2. As a result, we have the same final expre
sions, as before, but with a replacement2“w
⇒2“w1(Te /e)¹ ln n1(1.71/e)“Te . For example, Eq.
~20! modifies to

j x5
s iDB

L̃k
S 2

dw0

dx
1

T0e

e

d ln n0

dx
1

1.71

e

dT0e

dx
D . ~24!

The combination in the brackets is rather natural in this
pression, however, it differs from the similar result of Ref.
for the collisionless case, where it wasj x;@2]w0 /]x
1(Te /e)(] ln n0 /]x)1(0.5/e)(]T0e /]x)#. Also important is
the presence of correlation lengthL̃k .

IV. STUDY OF THE MORE COMPLICATED
COLLISIONLESS CASE

A. Transverse current in the collisionless
case lmfpk i@1

At first we neglect density and temperature gradients.
describe the electron motion under these conditions, we
the drift electron kinetic equation,

~v ib1v0ey!“ f 2DD' f 1
e

me
b“w

] f

]v i
5St~ f !, ~25!

where St(f ) is the electron collision integral. We also intro
duce the anomalous diffusion into Eq.~25! through anoma-
lous diffusion coefficientD.

The potential perturbations are given by Eq.~13!, but
with different electron parallel conductivitys ik . For ions,
analogously to the collisional case, the cross-field conduc
ity is mainly determined by the inertia: s'k
5 imic

2(v0ky)n/B2 both for collisionless and collisiona
cases. To finds ik one has to solve Eq.~25!. Separating the
isotropic and the anisotropic parts of the distribution fun
tion, from Eq.~25! we find the value of the parallel conduc
tivity given in Ref. 26~the electron collision integral is take
in the t approximation!:

s ik5
4pe2

3Te
E dv

3
v4f ~M!~v !

@ iv0ky1neff~k,v !1vei1~kiv !2/~ iv0ky1neff~k,v !!#
,

~26!

where f (M) is the Maxwellian distribution,nei is the
electron–ion collision frequency,neff is the frequency of the
electron phase decorrelation. The first term in the denom
tor corresponds to additional momentum loss freque
iv0ky , the second term represents phase decorrelation;
last term arises due to spatial nonlocality. The spatial non
cality results in decreasing of conductivity in comparis
with the collisional case.
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For example, in the absence of collisions and of a
mechanism of electrons escape from the magnetic field l
the real part of conductivitys ik becomes zero. This situatio
corresponds to the Boltzmann equilibrium for electrons. T
frequency of the electron phase decorrelation is governe
the stochastic escape of electrons from the magnetic
line caused by the transverse anomalous diffusi
neff(k,v i)>max$Dk'

2;@1/3(]ki /]x)2Dv i
2#1/3%; see, for ex-

ample, Ref. 27. The last term is associated with amplificat
of phase decorrelation, due to the combined effect of shea
ki and electron motion along magnetic line. It should
noted that, in spite of the fact that the frequencieskyv0 , neff ,
nei are small with respect tokiv, they cannot be omitted in
Eq. ~26!, otherwise the parallel conductivity becomes ze
since electrons with positive and negative parallel veloci
are affected equally by an electric field.

Employing the electron kinetic equation and Eqs.~1!,
~2!, for the Maxwellian distribution function, we find

j x5
1

2
E0 ReS (

k
ubxku2s ikI s~ki! D , ~27!

I s~ki!5
s'kk'

2

s'kk'
2 1s ikki

2 . ~28!

Similar to the collisional case, the resulting cross-fie
current exists even for a nonstochastic magnetic field;
decorrelation between the phases of the parallel current
the perturbation of the magnetic field is caused by
anomalous electron diffusion or by the electron–ion co
sions. The resultingJ'b depends on the local ion perpe
dicular conductivity. In Ref. 28 it was incorrectly stated th
electron radial flux could appear in the presence of magn
islands only due to collisions. It is clear that without a
mechanism of transverse escape, electrons are bound
the magnetic field line and cannot move in the radial dir
tion, since the magnetic field lines are regular and do
diverge in the radial direction, on average. It can be sho
formally. Equation~25! without drifts and diffusion reads a

v ib“ f 1
e

me
b“w

] f

dv i
5St~ f !.

Integrating this equation over parallel velocity, one can
that electron currentj i5*v i f dv50, since there are no losse
from the magnetic field line and*St(f )dv50. In Ref. 28 the
collision integral was taken in the form St(f )
52n f , introducing artificial sink. The radial electron shi
can arise only for nonstationary magnetic islands, when m
netic islands appear and disappear randomly, resulting in
fective radial electron diffusion.

As we have discussed in Sec. III A, for the typical tok
mak parameters, the characteristic widths of resonance
Eqs. ~27! and ~28! are very small:kis5Aus'kk'

2 /s iu;3
31025 cm21, neff /v;531024 cm21!dkyQ;1022 cm21.
It means thatj x has strong narrow peaks at resonance s
faces;ki

24(x) at ki(x)→0.
These peaks are smoothed if the magnetic field is

chastic and the magnetic islands are overlapped. Simila
the collisional case, the transverse current for a stocha
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magnetic field is considerably enhanced, and to estim
the current we should perform the substitutio
k'

2 ⇒k'
2 exp(2/ukiLKu). The frequency of electron escap

from the magnetic field line,neff(k,v i), is also considerably
increased, since now the effective cross-field electron di
sion is DBv i , whereDB is the diffusion coefficient of the
stochastic magnetic field lines. SubstitutingDBv i instead of
D, we find neff5vi /LK—is determined by the Kolmogorov
length. Thus, for typical parametersneff;107– 108 s21,
which is much larger thanv0ky;106, nei;104. The electron
inertia and collisions can thus be omitted in Eqs.~26! and
~28!. Since for the stochastic magnetic fieldLK,1/(Q
•dky) the sum in Eq.~27! can be replaced by the integra
The integration of Eq.~27! yields

j x5e2i sDstnE0A 2

pmeTe
, i s'

1.6

ln~ us iLK
2 /s'kk'

2 u!
,

~29!

wherek' with logarithmic accuracy is the typical value o
kz . The result of Eq.~29! differs from the current of tes
electrons found in Refs. 9 and 10 by the factori s , which
accounts for the ambipolarity constraint. The ratio
s iLK

22/s'kk'
2 is very large~can reach 106); hence, the value

of ln(usiLK
22/s'kk'

2 u) can be of the order of 15. Therefore
the impact of the local ambipolarity constraint is very impo
tant.

B. The net cross-field current driven by transverse
electric field, density, and temperature
gradients in the collisionless case lmfpk i@1

Analogously to Sec. III B, the ion and electron tempe
ture and density perturbations can be neglected compare
the potential ones for resonance modes. As a result of
solution of the kinetic equation~25! accounting for density
and temperature gradients, we have29

j x5(
k

ubxku2G~ki!,

G~ki!5I s~ki!
2pe2

3 E dvv4f ~v !Re

3F F] ln n

]x
2

e

Te

]w0

]x
1S mv2

2Te
2

3

2D ] ln Te

]x G
S iv0ky1neff~k,v !1nei1

~kiv !2

iv0ky1neff~k,v ! D G .

Similar to Sec. IV A, in the case of a stochastic magne
field,

j x5 i seDstnA2Te

pme
S ] ln n

]x
2

e

Te

]w0

]x
1

1

2Te

]Te

]x D .

~30!

The resulting equation~30! differs from the current of tes
electrons found in Refs. 9 and 10 by the factori s , which
accounts for the ambipolarity constraint. The result obtain
in the approximation of the test particles can be reduced
the order of magnitude.
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V. CONCLUSIONS

We calculated the effective transverse conductivity w
the ambipolarity constraint employed locally. The local se
consistent electric field is taken into account, which result
the reducing of the effective transverse conductivity with
spect to the conductivity calculated in the model of the t
electrons. For the case of two-dimensional magnetic per
bations, the average current is exactly zero, as pointed o
Refs. 15 and 16, so that one has to develop a th
dimensional model. The resulting average current perp
dicular to the flux surface is determined by the local cro
field conductivity of ions, which becomes considerable
the small-scale magnetic field perturbations. Due to this f
the considerable average perpendicular current exists bo
stochastic and regularly perturbed magnetic fields.
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