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Effects of Collisions and Particle Trapping on Collisionless Heating
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Collisionless power dissipation has been calculated analytically taking into account particle trapping
in the wave and electron collisions with neutrals. The approximation of analytical calculations for a
decrement of nonlinear Landau damping gives, within an error less 3kany,, = v, tanh2vr,),
where vy, is the linear Landau damping; is the total collision frequency, and, is a bounce
time of trapped electrons. The theory is applied to the calculation of collisionless heating in a
bounded low-pressure glow discharge plasma. It is shown that the difference with previously published
results of linear theory on collisionless power dissipation can be as large as 3 orders of magnitude.
[S0031-9007(98)08192-7]

PACS numbers: 52.35.Mw, 52.65.Ff, 52.80.Pi

Collisionless power dissipation is of fundamental in-section of electron-atom scattering has no singularity at
terest in plasma physics. Principal examples are Landasmall angles in the range of energies up to about 30 eV
damping of longitudinal waves [1] and anomalous skin ef-[13], so that small angle scattering does not contribute to
fect of transversal waves [2]. In addition to purely theo-the total cross section. This makes it possible to calculate
retical interests, collisionless power dissipation plays arthe decrement of nonlinear Landau damping analytically
important role in many applications. Examples are supplefor any collision frequency. An approximation to the
mentary plasma heating in fusion devices [3], sustenancanalytical calculation for the decrement of nonlinear
of radio-frequency (rf) gas discharges at low pressurekandau damping gives, within an error of less than
[4], etc. 5%, yu = vy tanh2vr,), wherev is the total collision

The linear theory of collisionless damping breaks downfrequency. The derived formula gives the nonlinear wave
for times longer than the bounce time of trapped resonanagamping ;7. < 1) for any value of collision frequency.
electronsr, = (m/e®Pyk?)!/2, wherek is the wave num- In the limit »7, > 1, tanh»7,) — 1, and the obtained
ber and®,, is the amplitude of the electric field potential. result coincides with the linear theory of Landau. In the
For finite perturbations, whem;7, < 1, wherey, is lin-  opposite casevr, < 1, tanHrr,) — 0, and my result
ear Landau damping [1], the problem is essentially nonlincorresponds to the O’Neil theory [6]. So, this result is a
ear. Itis generally believed that in this regime of nonlineamatural generalization of both theories, and gives the wave
Landau damping, the initial decay of the wave amplitudedamping for any value of collision frequency. The theory
will soon turn into nonlinear oscillations and eventually ap-is applied to the calculation of collisionless heating in a
proach a Bernstein-Green-Kruskal (BGK) steady state [Spbounded plasma. In the traditional theory, collisionless
with a lower value of wave amplitude [6]. Recently, this heating is constant when the collision frequency tends
picture has been confirmed by long-time numerical calcuto zero. In contrast to this, nonlinear effects cause the
lations [7]. Results of simulations have shown that claimsollisionless dissipation to tend to zero asapproaches
of other papers [8,9] that the wave amplitude will eventu-zero and to vanish in the limi¢ = 0.
ally decay to zero, are not conclusive. The received result is of general character and can be

In a practical plasma, electron collisions with neu-applied to any bounded plasma (in metals, semiconduc-
tral atoms, electrons, and ions have to be taken into aders, etc.).
count [10]. Although the collision frequency is small, The cause of collisionless damping is the interaction
collisions are the only remaining mechanism providingof resonant electrons with the wave. The average scat-
wave damping in the nonlinear regime. The decrement ofering angleé is considered to b& > Au/v,,, where
longitudinal waves (nonlinear Landau dampipg) was Au = (e®o/m)'/?, vpn = w/k is the phase velocity, and
calculated in [11] under the conditiongr, < 1 account- Au/v,, < 1. This allows one to assume that, after scat-
ing for rare Coulomb collisions. Unlike the linear decre-tering in elastic collisions, resonant electrons immediately
ment, the nonlinear decrement depends on the amplitudeave the resonance region. To obtain the damping coef-
of the wave and collision frequency. ficient, the rate of increase of kinetic energy of resonant

In the present article a partially ionized plasma iselectrons has to be calculated.
considered, where electrons collide mainly with neutral Exact solution of the nonlinear Landau problem.
atoms. These conditions are met for a gas dischargé/e consider a stationary wave in a coordinate system
plasma, in which Landau damping has frequently beemoving with the wave’s phase velocity. We examine the
measured [12]. It is assumed that the differential crosstationary electron distribution function (EDF) at times
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larger than the collision time. The EDF is close to isotropicwhere angular bracket§) denote averaging over time
everywhere at velocities far from the resonance velocity. According to the equation of electron motion in the
vp,.  For the resonance region where strong interactiomvave eE(r, x(7)) = d[v,(t) — v.(7)]/d7. Substituting

with the wave occurs, one has to solve the kinetic equatiothis expression for the electric field and integrat-

taking the collisional integral into account, ing by parts, the diffusion coefficient Eq. (6) takes
af of the form
+vx——eE(tx) f(f—fvda
at dax

v ” — VT
(1) D, = ?<f0 [v,(t) — ve(t — 7)Pve d7'>. @)

wheredo is a differential cross section of elastic electron-+,4 expression foD, of Eq. (7) has a very transparent
atom collisions, and focusing the EDF mainly in the ve- . qica| meaning. Itis the product of the squared velocity
locity range:Jv — v = 2 * Au. Outside the resonance gion 'y, (1) — v,(r — )] by the frequency of this step
region, the EDF is C.'Of(‘? to |sotropﬁ)(w)f,1 Whe”r_e_w ~ v, averaged over the probability to make the step, or to
0.5m(vy + vy + v;) is kinetic energy. The collision in- o ain in the resonance region without collisions for a
tegral influx term gives/ f'v do = v f,, wherev is total timer — ve "7,

collision frequency (not just the transport frequency as in  Tphe evolutlon of electron velocity is governed by the
the BGK integral). Iff! is the difference betweefiand  Hamiltonian

folw), Eq. (1) takes the form

m
aft o aft CE(1.x) af! H(vy,x) = o (v = vp)? — e®gcoskx.  (8)
Jat ax movy
dfo(w) | Following O’Neil [6] we normalize velocity with\u, time
— eE(t, x)v, ow —vf. (2 with r,, and introduce the phas¢ = kx, and dimen-

5|onless arametey instead of total ener )
Note that in Eq. (2) the nonlinear term involving the 2 P X Q¥ /e o =
. The solution of equation of motion is to be found

)(
!{Ohrgg:’ya fl'i(et gglﬁ%n Ic?f E(;Iu(g;e?s in contrast to linear {, terms of elliptic functions (dn and cn) [6]:

£l = |:_jt eE(T,x(T))ef”(th) d7:|vx M, (3) X <live —wvp = %dr{(l +0)/x | x], (9

ow

wherex(7) is the electron trajectory in the wave. Inserting
Eq. (3) into Eq. (1) and averaging over time and velocity,
one can find for the slow evolution of the main part of the

2
X>1:vx—vph=—Cr{l+fo|1/X]- (10)
X

. It is convenient to replace variables fromy and ¢ to
EDF fo(w
f; % action / and angle®: I = $uddp, O = [ g2
fo P [\/—D( ) —— } — S*(fo), (4) © has a simple interpretation® = %% = 27 where
\/— T is the period ofv,(r) oscillations |n nonlinear reso-

where St*(fy) is a collisional integral accounting for nance. The phase volume is conserved after this variable
energy losses in elastic and inelastic collisions, Bid)  transformation:dv.d¢ = dId®. Thus averaging over
is the energy diffusion coefficient: velocity angledv,/v and initial phased¢ in Eq. (5)
d cosadB is equivalent to integration ovefld®. Substituting the
Dw) = [ D,m*v? pym , (5) Fourier series expansion (9),(10) fo;(t) and changing

the integration fronT to y, 5’; = 315 d¢ we find
which is the average, over velocity angle (eos=

v,/v;cosB = v,/yJv2 + v?) of the diffusion coeffi- D, = ”ke@ovﬁhn(”)’ (11)
cient in velocity space: 2m2v3

t . . . . .
_ 2 —v(t—7) where the functiodI(#) is a function of the dimensionless
Dy, = <E(T’x(7)) [—oo E(r,x(1)e dT>’ (6) | collision frequency? = v * 7, and is defined as

2 O )
=) = ~ 1 1 qn 2 1 X _ )
() = VZ[ (1+CI ) 1+< 5 )2 KX4+<1+q2"_1) 1+( 5 )2K dy = tanh27p),

nﬂ'/K,\/ 2n—1)m /2K
12)

whereg = exp(—”TK/), K'=KGK/1 — x?),K(x) = F(x,m/2). Surprisingly, the complex functiol (#) can be very
well approximated simply by tarib). The tanli2) approximation is valid to within error less th&9. Function
[1() is plotted in Fig. 1.
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TRV,

T o where A(o — "7*) = s op: and E, =
% fé E,(x) cog T nx) dx is the Fourier transform of the
— electric field Ey(x). In the caser < w,v/L, the term

Aw — ™) 78(w — ™2) wheres() is the delta
] function. As a result, the diffusion coefficient does not

S depend on collision frequency. Equation (14) shows
= that only resonant particle®, = wL/7n) contribute to
all terms ] collisionless heating, similar to the case of longitudinal
_____ on.yum,apped: waves, for which only resonant particldy, = wk)
...... tanh(2v) | contribute to heating.
o e, Nevertheless, the rf electric field is directed along the
0.01 0.1 1 10 100 plasma boundary, and the rf magnetic field results in only
7 the velocity kicks transversal to the boundary [15]. Thus,

account for rf magnetic field represents such a nonlinear
) ~ _ effect. Nonlinear effects are introduced by the fact that
Decrement of nonlinear wave-At » > 111(7) — 1, he pounce frequency itself dependswon The velocity

Eq. (11) corresponds to the quasilinear theory, and thgicys change the bounce frequency. Thus, electrons move
total power dissipation gives linear Landau decrementy ;i of resonance.

We can then deduce that nonlinear damping is related t0 i problem becomes similar to the nonlinear Landau
linear damping by damping problem, where nonlinear effects also destroy the

FIG. 1. Dimensionless functiobl(»).

Y = yitanh2uvr,). (13)  resonance conditiom = v, k. During one bounce forward
As can be seen from Fig. 1, the main contributiowat>  and back over the gap, resonant electrons get a velocity
1 is due to untrapped electrons (not trapped in the wavekick: Av, = fL-/LU/v, B gy — ZEL L, — 9L The

see the first term on right-hand side (rhs) of Eq. (12). Fokf magnetic field rotates the velocity kick from to

7 <1, II(7) is less than unity, and, correspondingly, the; direction. Because kinetic energy is conserved,
power dissipation and nonlinear decrement of the Wave A, — v,Av, andAv, = v 26EL 1 0tha resonance

2 = 2% i i / ’ Uy Mgy,
decrease. Fob < 111(7) = 2p is proportional to the egion, the evolution of velocity is described by the system
collision frequency, similar to the result of [11]. Note

that in contrast to [11], where only the limit of rare dv_
collisions was considered, Eq. (13) is valid for arbitrary di
values of ». At small # the main contribution to the do w wdQ
power dissipation is due to trapped-in-the-wave electrons —- = _<_ - 277") =~ 027

oo Q O2%dv,
[second term on rhs of Eq. (12)], the contribution of

untrapped electrons is only aboR§% compared with d 1

= —Av,Sing,

(Ux - Ux,n), (15)

that of trapped electrons. Note, that the obtained result 4i Q°

is also very different from that of [11], where nonlinear where¢p = wt — 27 n, i is a bounce number, ank, is

Landau damping with account for Coulomb collisions wasthe amplitude of the kick. The system is governed by the

explored. The main contribution to wave damping in thatHamiltonian:

case is due to narrow boundary layer around separatrix. wdQ
We have considered electron heating by a monochro- H(vy, ¢) = 20%dv. (Vs = Vsres)® — Av, COSE .

matic longitudinal wave. The theory can be applied to the Ux

calculation of collisionless heating in any bounded plasma (16)

for an arbitrary electric field. As an example, we havelntroducing the normalized variables for velocfty, ] =

chosen the anomalous skin effect in a bounded plasma. ,/#/de) and for timer,,' = VAV, wdQ/dvy, the di-
Influence of nonlinear effects on diffusion coefficientmensionléss Hamiltonian of Eq. (16) coincides with the

in velocity space in bounded plasmalet us consider dimensionless Hamiltonian of Eq. (8). Thus, one can use

transverse electric field€,(x)e '’ corresponding to the results of calculation of diffusion coefficient for non-

inductively coupled plasma (ICP) in slab geometry, withjinear Landau damping Eq. (13), where timeshould be

sharp boundaries at = 0 and x = L. The diffusion  replaced by timer,;. Therefore, the diffusion coefficient
coefficient in velocity space was derived [14] by usingaccounting for nonlinear effects reads

a quasilinear theory in: rll & ™ d cosad B
melL & j” d cosadp D) =555 . j ———" (v, ’|E,|?
D) = —— —F (v,)?|E,|? 2v2m? £, Jo 4
@) 2v2m? n;x 0 47 S
mn
X 6 - — v, |tanh2v7,).
XA(w—Wanx>, (14) (‘” L ") 27m)
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FIG. 3. The real part of the surface impedance in ohts,

FIG. 2. Influence of the second boundary on collisionlessyg 5 function ofv/w. The plasma parameters are density
heating. Dimensionless diffusion coefficient in veloc- 5 — o1 cm3, T, = 5 eV, andL = 4 cm.

ity space G = D, /(¢*E38/2m*wL) for an electric field
E, = Eoexp(—3) as a function of > for the different slab

widths L = 4/7 8, 256. Solid curves with circles correspond

to the analytical formulas (14),(17), dashed lines are Momeamplitudes iq self-sustained 1CP (abput severgleivt
Carlo simulations. [4]), the nonlinear effects start to be important for~

0.3w and the difference with the linear theory can be as
large as 3 orders of magnitude.
From Eq. (17) one can see that nonlinear effects argo:'ET;%L%SOCUUZ‘:‘:EonfegSh Egl(z;%svil(()e:sznd'llph?sn\(/jvoprrko\t\?:;
important at smallv. When » < 7,,,', the diffusion 9 y ged.
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