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Collisionless power dissipation has been calculated analytically taking into account particle trap
in the wave and electron collisions with neutrals. The approximation of analytical calculations fo
decrement of nonlinear Landau damping gives, within an error less than5%, gnl ­ gl tanhs2ntr d,
where gl is the linear Landau damping,n is the total collision frequency, andtr is a bounce
time of trapped electrons. The theory is applied to the calculation of collisionless heating in
bounded low-pressure glow discharge plasma. It is shown that the difference with previously publis
results of linear theory on collisionless power dissipation can be as large as 3 orders of magni
[S0031-9007(98)08192-7]
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Collisionless power dissipation is of fundamental in
terest in plasma physics. Principal examples are Land
damping of longitudinal waves [1] and anomalous skin e
fect of transversal waves [2]. In addition to purely theo
retical interests, collisionless power dissipation plays a
important role in many applications. Examples are supp
mentary plasma heating in fusion devices [3], sustenan
of radio-frequency (rf) gas discharges at low pressur
[4], etc.

The linear theory of collisionless damping breaks dow
for times longer than the bounce time of trapped resonan
electronstr ; smyeF0k2d1y2, wherek is the wave num-
ber andF0 is the amplitude of the electric field potential
For finite perturbations, whengltr , 1, wheregl is lin-
ear Landau damping [1], the problem is essentially nonli
ear. It is generally believed that in this regime of nonlinea
Landau damping, the initial decay of the wave amplitud
will soon turn into nonlinear oscillations and eventually ap
proach a Bernstein-Green-Kruskal (BGK) steady state [
with a lower value of wave amplitude [6]. Recently, this
picture has been confirmed by long-time numerical calc
lations [7]. Results of simulations have shown that claim
of other papers [8,9] that the wave amplitude will eventu
ally decay to zero, are not conclusive.

In a practical plasma, electron collisions with neu
tral atoms, electrons, and ions have to be taken into a
count [10]. Although the collision frequency is small
collisions are the only remaining mechanism providin
wave damping in the nonlinear regime. The decrement
longitudinal waves (nonlinear Landau dampinggnl) was
calculated in [11] under the conditionsgltr ø 1 account-
ing for rare Coulomb collisions. Unlike the linear decre
ment, the nonlinear decrement depends on the amplitu
of the wave and collision frequency.

In the present article a partially ionized plasma i
considered, where electrons collide mainly with neutr
atoms. These conditions are met for a gas dischar
plasma, in which Landau damping has frequently be
measured [12]. It is assumed that the differential cro
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section of electron-atom scattering has no singularity
small angles in the range of energies up to about 30 e
[13], so that small angle scattering does not contribute
the total cross section. This makes it possible to calcula
the decrement of nonlinear Landau damping analytical
for any collision frequency. An approximation to the
analytical calculation for the decrement of nonlinea
Landau damping gives, within an error of less tha
5%, gnl ­ gl tanhs2ntr d, wheren is the total collision
frequency. The derived formula gives the nonlinear wav
damping (gltr ø 1) for any value of collision frequency.
In the limit ntr ¿ 1, tanhsntr d ! 1, and the obtained
result coincides with the linear theory of Landau. In th
opposite casentr ø 1, tanhsntr d ! 0, and my result
corresponds to the O’Neil theory [6]. So, this result is
natural generalization of both theories, and gives the wa
damping for any value of collision frequency. The theor
is applied to the calculation of collisionless heating in
bounded plasma. In the traditional theory, collisionles
heating is constant when the collision frequency tend
to zero. In contrast to this, nonlinear effects cause th
collisionless dissipation to tend to zero asn approaches
zero and to vanish in the limitn ­ 0.

The received result is of general character and can
applied to any bounded plasma (in metals, semicondu
tors, etc.).

The cause of collisionless damping is the interactio
of resonant electrons with the wave. The average sc
tering angleu is considered to beu ¿ Duyyph, where
Du ­ seF0ymd1y2, yph ­ vyk is the phase velocity, and
Duyyph ø 1. This allows one to assume that, after sca
tering in elastic collisions, resonant electrons immediate
leave the resonance region. To obtain the damping co
ficient, the rate of increase of kinetic energy of resona
electrons has to be calculated.

Exact solution of the nonlinear Landau problem.—
We consider a stationary wave in a coordinate syste
moving with the wave’s phase velocity. We examine th
stationary electron distribution function (EDF) at time
© 1999 The American Physical Society 327
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larger than the collision time. The EDF is close to isotrop
everywhere at velocities far from the resonance veloc
yph. For the resonance region where strong interacti
with the wave occurs, one has to solve the kinetic equat
taking the collisional integral into account,

≠f
≠t

1 yx
≠f
≠x

2 eEst, xd
≠f

m≠yx
­

Z
sf 0 2 fdy ds ,

(1)

whereds is a differential cross section of elastic electron
atom collisions, and focusing the EDF mainly in the ve
locity range:jy 2 yphj # 2 p Du. Outside the resonance
region, the EDF is close to isotropicf0swd, wherew ­
0.5msy2

x 1 y2
y 1 y2

z d is kinetic energy. The collision in-
tegral influx term gives

R
f 0y ds ­ nf0, wheren is total

collision frequency (not just the transport frequency as
the BGK integral). Iff1 is the difference betweenf and
f0swd, Eq. (1) takes the form

≠f1

≠t
1 yx

≠f1

≠x
2 eEst, xd

≠f1

m≠yx

2 eEst, xdyx
≠f0swd

≠w
­ 2nf1. (2)

Note that in Eq. (2) the nonlinear term involving th
product eEst, xd ≠f1

m≠yx
is included, in contrast to linear

theory. The solution of Eq. (2) is

f1 ­

"
2

Z t

2`

eEssst, xstdddde2nst2td dt

#
yx

≠f0swd
≠w

, (3)

wherexstd is the electron trajectory in the wave. Insertin
Eq. (3) into Eq. (1) and averaging over time and velocit
one can find for the slow evolution of the main part of th
EDF f0swd:

≠f0

≠t
1

≠
p

w ≠w

∑
p

w Dswd
≠f0

≠w

∏
­ Stps f0d , (4)

where Stps f0d is a collisional integral accounting for
energy losses in elastic and inelastic collisions, andDswd
is the energy diffusion coefficient:

Dswd ­
Z

Dym2y2
x

d cosadb

4p
, (5)

which is the average, over velocity angle (cosa ­
yxyy; cosb ­ yyy

p
y2

y 1 y2
z ) of the diffusion coeffi-

cient in velocity space:

Dy ­ e2

*
Essst, xstdddd

Z t

2`

Essst, xstdddde2nst2td dt

+
, (6)
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where angular bracketsk l denote averaging over tim
t. According to the equation of electron motion in th
wave eEssst, xstdddd ­ dfyxstd 2 yxstdgydt. Substituting
this expression for the electric field and integra
ing by parts, the diffusion coefficient Eq. (6) take
the form

Dy ­
n

2

*Z `

0
fyxstd 2 yxst 2 tdg2ne2ntdt

+
. (7)

The expression forDy of Eq. (7) has a very transparen
physical meaning. It is the product of the squared veloc
step [yxstd 2 yxst 2 td] by the frequency of this step
n, averaged over the probability to make the step, or
remain in the resonance region without collisions for
time t 2 ne2nt.

The evolution of electron velocity is governed by th
Hamiltonian

Hsyx , xd ­
m
2

syx 2 yphd2 2 eF0 coskx . (8)

Following O’Neil [6] we normalize velocity withDu, time
with tr , and introduce the phasef ­ kx, and dimen-
sionless parameterx instead of total energyHyeF0 ;
2

x2 2 1. The solution of equation of motion is to be foun
in terms of elliptic functions (dn and cn) [6]:

x , 1: yx 2 yph ­
2
x

dnfst 1 t0dyx j xg , (9)

x . 1: yx 2 yph ­
2
x

cnft 1 t0 j 1yxg . (10)

It is convenient to replace variables fromyx and f to
action I and angleQ: I ;

H
u df, Q ;

R df

u y
H df

u .
Q has a simple interpretation:ÙQ ­

≠H
≠I ; 2p

T , where
T is the period ofyxstd oscillations in nonlinear reso
nance. The phase volume is conserved after this vari
transformation:dyxdf ­ dIdQ. Thus averaging ove
velocity angledyxyy and initial phasedf in Eq. (5)
is equivalent to integration overdIdQ. Substituting the
Fourier series expansion (9),(10) foryxstd and changing
the integration fromI to x, ≠I

≠x ­
H ≠u

≠x df we find

Dy ­
pkeF

2
0y

2
phPsñd

2m2y3 , (11)

where the functionPsñd is a function of the dimensionles
collision frequencỹn ­ n p tr and is defined as
Psñd ; 128ñ
X
n­1

Z 1

0

264√
qn

1 1 q2n

!2
1

1 1

≥
n̂

npyKx

¥2
1

Kx4 1

√
qn2 1

2

1 1 q2n21

!2
1

1 1

≥
n̂

s2n21dpy2K

¥2
x

K

375 dx ø tanhs2ñd ,

(12)

whereq ­ exps2 pK 0

K d, K 0 ­ Ks
p

1 2 x2 d, Ksxd ­ Fsx , py2d. Surprisingly, the complex functionPsñd can be very
well approximated simply by tanhs2ñd. The tanhs2ñd approximation is valid to within error less than5%. Function
Psñd is plotted in Fig. 1.
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FIG. 1. Dimensionless functionPsnd.

Decrement of nonlinear wave.—At ñ ¿ 1Psñd ! 1,
Eq. (11) corresponds to the quasilinear theory, and
total power dissipation gives linear Landau decreme
We can then deduce that nonlinear damping is relate
linear damping by

gnl > gl tanhs2ntr d . (13)
As can be seen from Fig. 1, the main contribution atñ ¿
1 is due to untrapped electrons (not trapped in the wa
see the first term on right-hand side (rhs) of Eq. (12). F
ñ , 1, Psñd is less than unity, and, correspondingly, t
power dissipation and nonlinear decrement of the w
decrease. For̃n ø 1Psñd > 2ñ is proportional to the
collision frequency, similar to the result of [11]. Not
that in contrast to [11], where only the limit of rar
collisions was considered, Eq. (13) is valid for arbitra
values of ñ. At small ñ the main contribution to the
power dissipation is due to trapped-in-the-wave electr
[second term on rhs of Eq. (12)], the contribution
untrapped electrons is only about25% compared with
that of trapped electrons. Note, that the obtained re
is also very different from that of [11], where nonline
Landau damping with account for Coulomb collisions w
explored. The main contribution to wave damping in th
case is due to narrow boundary layer around separatri

We have considered electron heating by a monoch
matic longitudinal wave. The theory can be applied to
calculation of collisionless heating in any bounded plas
for an arbitrary electric field. As an example, we ha
chosen the anomalous skin effect in a bounded plasma

Influence of nonlinear effects on diffusion coefficie
in velocity space in bounded plasma.—Let us consider
transverse electric fieldsEysxde2ivt corresponding to
inductively coupled plasma (ICP) in slab geometry, w
sharp boundaries atx ­ 0 and x ­ L. The diffusion
coefficient in velocity space was derived [14] by usi
a quasilinear theory in:

Dsyd ­
pe2L
2y2m2

X̀
n­2`

Z p

0

d cosadb

4p
syyd2jEnj2

3 D

√
v 2

pn
L

yx

!
, (14)
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where Dsv 2
pnyx

L d ­
n

n21fv2spnjyx jyLdg2 , and En ­
1
L

RL
0 Eysxd coss p

L nxd dx is the Fourier transform of the
electric field Eysxd. In the casen ø v, yyL, the term

Dsv 2
pnyx

L d ! pdsv 2
pnjyx j

L d, whereds d is the delta
function. As a result, the diffusion coefficient does n
depend on collision frequency. Equation (14) show
that only resonant particlessyx ­ vLypnd contribute to
collisionless heating, similar to the case of longitudin
waves, for which only resonant particlessyx ­ vkd
contribute to heating.

Nevertheless, the rf electric field is directed along th
plasma boundary, and the rf magnetic field results in on
the velocity kicks transversal to the boundary [15]. Thu
account for rf magnetic field represents such a nonline
effect. Nonlinear effects are introduced by the fact th
the bounce frequency itself depends onyx. The velocity
kicks change the bounce frequency. Thus, electrons m
out of resonance.

This problem becomes similar to the nonlinear Land
damping problem, where nonlinear effects also destroy
resonance conditionv ­ yxk. During one bounce forward
and back over the gap, resonant electrons get a velo
kick: Dyy ­

RLyyx

2Lyyx

eEy sx,td
m dt ­

2eEnL
myx,n

, yx,n ­
vL
pn . The

rf magnetic field rotates the velocity kick fromy to
x direction. Because kinetic energy is conserve
yxDyx ­ yyDyy andDyx ­

yy

yx

2eEnL
myx,n

. In the resonance
region, the evolution of velocity is described by the syste

dyx

di
­ 2Dyx sinw,

dw

di
­ 2

µ
v

V
2 2pn

∂
ø

vdV

V2dyx
syx 2 yx,nd ,

dt
di

­
1
V

,

(15)

wherew ­ vt 2 2pn, i is a bounce number, andDyx is
the amplitude of the kick. The system is governed by t
Hamiltonian:

Hsyx , wd ­
vdV

2V2dyx
syx 2 yx,resd2 2 Dyx cosw .

(16)
Introducing the normalized variables for velocityfyxg ­q

DyxV2

vsdVydyx d and for timet
21
nl ­

p
DyxvdVydyx, the di-

mensionless Hamiltonian of Eq. (16) coincides with th
dimensionless Hamiltonian of Eq. (8). Thus, one can u
the results of calculation of diffusion coefficient for non
linear Landau damping Eq. (13), where timetr should be
replaced by timetnl. Therefore, the diffusion coefficient
accounting for nonlinear effects reads

Dsyd ­
pe2L
2y2m2

X̀
n­2`

Z p

0

d cosadb

4p
syyd2jEnj2

3 d

√
v 2

pn
L

yx

!
tanhs2ntnld .

(17)
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FIG. 2. Influence of the second boundary on collisionle
heating. Dimensionless diffusion coefficient in veloc
ity space G ­ Dyyse2E2

0dy2m2vLd for an electric field
Ey ­ E0 exps2 x

d d as a function of n

v for the different slab
widths L ­ 4ypd, 25d. Solid curves with circles correspond
to the analytical formulas (14),(17), dashed lines are Mon
Carlo simulations.

From Eq. (17) one can see that nonlinear effects a
important at smalln. When n ø t

21
nl , the diffusion

coefficient is proportional ton andDsyd ! 0 asn ! 0.
This is in contrast to the linear theory, whenDsyd remains
a constant atn ! 0.

Figure 2 is a plot of the diffusion coefficient for a fixed
velocity (y ­ 5vd) as a function ofnyv, for gap lengths
L ­ 4dyp and25d.

For small fields velocity kicks are also small (Dyx ø
yx) and theory agrees well with MC simulation. Fo
larger values of the electric field the kicks are not sma
(Dyx , yx) and the dependence ofD on n is even more
complex.

Influence of nonlinear effects on surface impedan
in bounded plasmas.—In [16,17] the anomalous skin
effect was considered ignoring the induced rf magne
field. To show the importance of nonlinear effects, th
real part of the surface impedanceZ with and without
taking nonlinear effects into account was calculate
The real part of surface impedance is related to t
power absorptionP by ResZd ­ 2PjZj2yE2

0 . The power
deposition into a unit volume of plasma,P, can be
expressed in terms ofDy [Eqs. (14) or (17)] and the
electron distribution functionfsyd [14]:

P ­ 4pm
Z `

0
y3Dysyd

d
dy

fsyd dy . (18)

Figure 3 depicts the real part of the surface impedan
as a function ofnyv. The profile of the electric field
and the imaginary part of the surface impedance we
taken in analytical form from [16]. Figure 3 shows tha
the value of the real part of the surface impedan
decreases considerably atn , t

21
nl due to the influence

of nonlinear effects. For typical values of electric fiel
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FIG. 3. The real part of the surface impedance in ohms,z ,
as a function ofnyv. The plasma parameters are density
N ­ 1011 cm23, Te ­ 5 eV, andL ­ 4 cm.

amplitudes in self-sustained ICP (about several Vycm
[4]), the nonlinear effects start to be important forn ,
0.3v and the difference with the linear theory can be a
large as 3 orders of magnitude.
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