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The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is
investigated. The outcome of the calculation is the quantitative prediction of the degree of charge
and current neutralization of the ion beam pulse by the background plasma. The electric and
magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the
plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid
calculations of current and charge neutralization have been performed for parameters relevant to
heavy ion fusion assuming long, dense beams with lehgthV,/w,, whereVy is the beam
velocity, andwy, is the electron plasma frequency evaluated with the ion beam density. An important
conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical
purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force
dominates the electric force and the beam ions are always pinched during beam propagation in a
background plasma. @001 American Institute of Physic§DOI: 10.1063/1.1386804

I. INTRODUCTION focusing in heavy ion fusiofi.In these applications, the
plasma is pre-formed by an external plasma source and is
background plasma is impo_rtan_t for fundamental phys_ics @S  The goals of the present calculation afe: to derive a
well as for a variety of applications. As early as 1934 system of reduced equations for the electric and magnetic
was pointed out that the transport of cosmic rays may b?leld generated by an ion beam propagating through back-
governed by the charge and current neutralization by the am: ound plasma, anh) to develop a semianalytical method

bient plasma. The recent resurgence of interest in charg r robust and easy assessment of the effects of these fields

particle beam transport in background plasma has beegn the beam transport. The case where the beam propagates

brought about by the suggestion that the plasma can be us?lgrough a cold unmagnetized plasma, with plasma density

as a magnetic lens. Applications of the plasma lens, rangingGlrge compared with the beam density, can be studied by use

from heavy ion fusion to high-energy lepton colliders, are  * ) C
discussed in Refs. 3—10. In particular, both heavy ion fusiorﬁ)]c linear perturbation theory/! The transport of relativistic

and high-energy physics applications involve the transport O?Iectron4_téelzlams has been stud|gd n Fjeta|l N various
positivecharges in plasma: partially stripped heavy element£ONtexts. > The transport of a stripped pinched ion beam
for heavy ion fusion; positrons for electron—positron has been also discussed in Ref. 8, where the assumption of

colliders? and high-density laser-produced proton beams fofurrent neutrality was made to determine self-consistent so-
the fast ignition of inertial confinement fusion targets. Thelutions for the electric and magnetic fields. Here, we focus on
emphasis of the present work on positive ions is deliberatéhe nonlinear case where the plasma density has an arbitrary
because, as we demonstrate below, the transport of positiv@lue compared with the beam density, and correspondingly,
ion beams through background p|asma is very different frorﬁhe degree of current neutralization is arbitrary. For simplic—
that of the negatively charged beams. A beam of positivelyty, we neglect transient effects at the plasma boundary dur-
charged particles attracts plasma electrons into the bearilg beam entry into the plasma. At first we assume steady-
whereas a beam of negative charges repels the electrons liate properties in the frame of the beam, and then generalize
of its path. An important consequence, which is one of thethe results for variable shape ion beams. Rosenkdtiti.*?
findings of the present calculation, is that a nonrelativistichave considered the equilibrium of an isolated, charge-
positive ion beam with densitp, can be neutralized to a neutralized, self-pinched ion beam pulse, in the absence of
very high degree by a large-volume tenuous plasma wittbackground plasma. In contrast, we consider the case where
ambient densityn,<ny,. “fresh” uniform plasma is always available in front of the
The beam charge and current neutralization by plasmaeam.
electrons is an important issue for beam propagation in a To simplify the analysis and make the problem tractable,
background plasma. Beam focusing schemes rely on comy number of assumptions have been made. First, we neglect
plete charge neutralization and partial current neutralizatioghe dynamics of the beam ions and plasma ions. The beam
for magnetic focusing in plasma lenseand for ballistic ion  jons are assumed to be moving in theirection with con-
stant axial velocity},. The response time of the plasma ions
dElectronic mail: ikaganov@pppl.gov is determined by the ion plasma frequency, which is much
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longer than the electron response time. Therefore, neglectinglso assumed to be given. The plasma electron density
the dynamics of the plasma ions is well justified. Second, théowever, is a function of both the unperturbed plasma den-
entrance of the beam into the plasma will not be addressed isity n,, and the ion beam density profile. The plasma elec-
the present model. Furthermore, beam ionization effects argons are assumed to be cold, and electron thermal effects are
neglected, and the background plasma in front of the beam iseglected. This approach has been widely used to study
assumed to be uniform and stationary. As a result, all fieldaser-plasma interactiods:'! These assumptions are well
guantities(electric and magneticand the plasma and beam justified for ion beam pulses envisioned for heavy ion fusion.
charge densities and current densities are stationary in a ref- The electron fluid equations together with Maxwell's
erence frame moving axially with the beam. equations comprise a complete system of equations describ-

Additional simplifications of the electron fluid equations ing the electron response to a propagating ion beam pulse.
are possible for long beams where the beam half lenigdh (  The electron fluid equations consist of the continuity equa-
is much longer than both the beam radiug)(and the tion
plasma neutralization length, which is equal to the ratio of n
the beam velocity {,) to the electron plasma frequency —24V-(nNVe) =0, (1)
(wp). The first assumption is used in the Darwin motfel. ot
The second assumption allows further simplifications. Weang the force balance equation
show that under these conditions a reduction of the dimen-
sionality of the problem is possible. For an axisymmetric %HV V)p.=—e
beam, the longitudinal electron flow velocity is determined at e V)Pe
by a on_e-dlr_nensmnal equation in the radial direction for.where—e is the electron chargen is the electron rest mass,
each axial slice of the beam. Furthermore, we show that this, . O .

. . ) o is the electron flow velocityp.= y.mV, is the electron

equation holds not only for steady-state ion beams profile bu e s i L
also for slowly varying compared to electron plasma fre_momentum, andye=1/y1-V/c is the relativistic mass

. . . factor. Maxwell's equations for the self-generated electric
guency profiles. Once the longitudinal electron flow velocnyand magnetic field<E andB, are given b
is determined, the electric and magnetic fields can be calcu- 9 ' 9 y

1
E+_VexB

: 2

lated from simple analytical expressions. 4me 10E
As an application of the theoretical model, we study vV <B=——(ZpoNpVp—NeVe)+ - —, 3
transport of the ion beam pulse in the target chamber for
heavy ion fusion. At the present time, the main approach to 1B
heavy ion fusion is ballistic focusing in the target chamber XE==C o @)

from an initial beam radius of about 3 cm down to a spot size . ) )
of about 3 mm. The beam traverses the chamiadius whereVy is the ion beam velocity, andn,, are the number
about 3 m, in near vacuura few mTorr of flibe vapox densities of the plasma electrons and beam ions, respectively,

Typical beam parameters dteCs™ ions with energy 2.5 andZy is 'the lon bgam 'c.har.ge state. . .
GeV, beam velocityV,~0.2c, beam current=4kA, and Considerable simplification can be achieved by applying

main pulse duration 10 ns. The beam ion density range igwe conservation of generalized \_/orticif[y. Indeed, operating
101-10%cm 3, depending on the beam radius, providing on the electron momentum equatl(ﬂ)_wnh VX, and mak-
space-charge potentials of a few MV. This large ion spacéng use of Eq(4), we obtam. the equation for the generalized
charge is to be neutralized by a background plasma. Th¥orticity Q=VXp.—eBic, ie,
plasma can be created in the chamber by an external plasma 3Q
source, by gas ionization by the beam ions, and by photoion- = VX (VexXQ)=0,
ization from the target, which is bombarded by beam ions
preceding the main pulse. Both electrostatic defocusing an@hich can be rewritten in the form
magnetic pinching of the beam have to be avoided for con-
trolled ballistic focusing. Thus large self-electric and self- —+ (V.- V)Q=—-Q(V -V +(Q-V)V.. (5)
magnetic fields have to be avoided during focusing of the ion
beam pulse. Since the beam parameters vary significantly f@&quation (5) shows that the generalized vorticity is trans-
different heavy ion fusion scenarios, analytical results are oported along with the electrons and that the source term is
considerable importance for parametric studies, benchmarlproportional to the generalized vorticity. It can be shown
ing of numerical codes, and comparison with experiments. from Eq. (5) that if Q=0 everywhere at some initial time,
then it continues to vanish at all subsequent times. This is the
class of solutiongwith 2=0) examined in the present pa-
per. (An additional discussion is presented in Appendix B.
For example, if the generalized vorticif is initially equal

We consider all equations in the reference frame of theéo zero ahead of the beam, and all streamlines inside of the
laboratory plasma. The plasma ion response time is assumégam originate from the region ahead of the beavhere
to be large compared with the beam pulse duration, and2=0), then & remains equal to zero everywhere. In the
therefore, the background plasma ion density remains unigeneral case, there may exist solutions wi@re0 at some
form during beam propagation. The beam density profile idocations within the beam, and the streamlines originating

II. BASIC EQUATIONS FOR DESCRIPTION OF ION
BEAM PULSE PROPAGATION IN A PLASMA
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from the region ahead of the beam pass around these regions.1 ¢ Pey  IPer
This class of solutions is not treated in the present paper. I - E[r< ar il ”

the absence of background plasma, an example of a solution

with Q#0 inside the beam has been examined by Rosen- 41re? eV, JE,
bluth et al*? The interaction of solutions witi2#0 with =z (ZonpVp—NeVe) + = o
background plasma will be the subject of future study.

Thus the magnetic field, is related to the electron flow FOr 1ong beams with,>Vy,/w,, the displacement current
velocity, V,, by [the final term on the right-hand side of E41)] is of order

(Vp/ oyl b)°><1 compared with the electron current. Because
I,>ry, is assumed, the second term on the left-hand side of
Eq. (11) is of order ¢,/1,)2(<1) smaller than the first term

on the left-hand side. As we shall prove below, the electron

which has the form of the London equation for ) L
Y : flow velocity does not approach ultrarelativistic values even
superconductivity? Note that Eq(6) is an exact result, and L
for B,—1, therefore, ultrarelativistic electron effects are not

is not obtained under linearization assumptions. Making use

i .~ Important.
of the London equatiof6), the electron momentum equation -
(2) simplifies to become For sufficiently long beam$Eq. (10)], the system of

nonstationary two-dimensional equatiofis—(4) reduces to
IPe a one-dimensional equation for the longitudinal electron flow

(11)

C
B=EV><pe, (6)

- TV(Ke)=—eE, (") velocity V,,, and Eq.(11) can be approximated by
whereK=y.,mc is the electron energy. For laser—plasma 10 [Pe|_ 4re? Z Ve LV 12
interactions, the hydrodynamic equations in this form were rarl"\ T |17 ez (ZoMoVozNeVed), (12

displayed in Ref. 14. , . :
Note that the inertia terms in E€2) are comparable in whereVy, is thez-component of the ion beam mean velocity,

size to the Lorentz force term and cannot be omitted. Esti@nd the subscript is inserted to emphasize the fact that
mating the magnetic field from Ed6), one concludes that Iong|tud|_nal _elec_tron flow velocity is entirely determined by
the electron gyroradiug,=V,,mdeB, is of order the beam the longitudinal ion curreanenb_Vbz. A_s a consequence of
radius. This is a consequence of the fact that the electrorigd: (10), both the electron and ion radial velocities are neg-
originate from the region of zero magnetic field in front of 19iPly small compared with the corresponding longitudinal
the beam. If most electrons are dragged along with the bealfglocities. This is reflected by EGL2), which states that the

and originate from the region of large magnetic field, the€lectron motion is determined by the longitudinal ion cur-
situation may be differerf rent. Note that Eq(12) is valid in the nonlinear regime for

arbitrary values of the plasma density. Equati@8) shows
that the degree of current neutralization is determined by the
ratio of the beam radius, to the skin deptlt/w,, similar to

IIl. APPROXIMATE SYSTEM OF EQUATIONS FOR what is found in linear theorysee, for example, Ref.)3lIf
LONG BEAMS rp,>clwy, the ion current is well neutralized by the electron
A. Steady-state ion beams return current, i.e., the longitudinal electron velocity is recip-

rocal to the plasma densitW(,=Z,Vyn,/ne) and is small

. The forma||sn_1_|n this section Is r_estrlcted to the assumpPyy; he plasma density much larger than the beam density.
tion that all quantities are stationary in the reference frame he net current in the beam region can be estimated from Eq

the moving beam, i.e., all quantities dependtcend z ex-

: o 12) as
clusively through the combination (12
"o
{=Vpt—z. (€Y I wejo (ZpNpVp— NeVe)rdr
Moreover, the analysis is carried out in the laboratory frame
of reference, where the transformation of derivatives is C?ry [ IPes mc® ny Np Iy
= = b b———=4.258be——kA,
d J 9 9 4me\ or " 4e ng o ne 6
3w (23
at), Py \az)  d¢ (13

In this section, an approximate set of equations is dewheredis the characteristic scale length of the electron lon-
rived for a long, cylindrically symmetric beam satisfying  gitudinal momentum derivative. In the case of a smooth pro-
file for ny(r), &~ry, whereas in the case of a step-function
profile, 6~clw,.
wherewp=(47-re2ne/m)1’2 is the electron plasma frequency. In the opposite limit (,<c/w,), the ion beam current is
We also assume that the fields and electron flow velocity andot neutralized, and the electron longitudinal velocity is de-
density are in steady-state in the reference frame movintermined entirely by the ion beam current and does not de-
with the beam. The electron flow velocity is found by sub-pend on the plasma density.
stituting Eq.(6) into theV X B Maxwell equation(3), which The radial electron flow velocity may be determined
yields from the electron continuity equatiqd). We obtain

|b>Vb/wp, |b>rb, (10)
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d
Ver=— F 19_§ f [Ne(Vp=Ve)—n Vb]rdr (14 Fr:me'}’g(Vb_Vez) Evez- (22
wheren,, is the uniform background plasma density without Equation(22) was derived in Ref. 8 in nonrelativistic form.
the beam present. The constany/,, has been added under BecauseV,,<V,, and becaus¥,, is a monotonically de-
the integral in Eq.(14) to make the term in brackets zero creasing function of radial coordinate (if Z,n,V, is a
when the beam is absent. If quasineutrality is assumednonotonically decreasing function of radial coordinaje
Ne(Vp— Ve —NpVp=(Ne—Np)Vp—NeVe,= ZpNpVp— NeVe, the radial force in Eq(22) acting on the beam ions is always

=j,/e, and Eq.(14) simplifies to become inward (F,<0), i.e., it pinches the ion pulse. The radial
1 g (r force in EQ.(22) is greatly reduced fo¥,,~V,, which cor-
Vo= — _J' jrdr, (15)  responds to the case of good current neutralization, and
erne ¢ background plasma density small compared to the beam den-

sity. The value of radial force acting on the beam ions is
strongly reduced in the case of dense plasma& €/ w,,n,
>n,,) where the electron flow velocity is much smaller than
beam velocity.

where j,=e(Z,n,Vp,—NVe,) is the longitudinal current.
Equation(14) is a consequence &f-j=0. The radial elec-
tron velocity is of order ¥,— Ve)r,/lp, and is small com-
pared with the beam velocity,,. SubstitutingV,, andV,,
into Eq. (7) then yields the electric field

1
E=——

v IPe LYK ) (16) B Variable shape ion beams

9 In applications where the ion beam profiles are not sta-
SubstitutingVe, and V., into Eq. (6) yields the azimuthal tionary, ny is not only a function of {,r) but alsot. In this

magnetic field case the introduction of the variabfds inadequate, and we
use the laboratory frame coordinateg,t). For example, in
B— _ E(‘?pez+ (9pe,) (17)  reactor designs for heavy ion fusion, the ion beams converge
el or 4 to smaller radial size during ballistic focusing. Nevertheless,

As can be seen from Eg&L6) and(17), the values of electric if the beam profile variations are slow compared to the elec-
N ' tron plasma frequency, many of the results for stationary

and magnetic fields are strongly reduced in the case of dense
. eams can be applied. First of all, if the ion beam propagates
plasma (,>c/w,,n,>ny) where the electron flow velocity

: : in a preformed plasma, the generalized vorticity is conserved
is much smaller than the beam velocity.
.even for a nonstationary beam, and the London equ&@pn
Finally, the degree of charge neutralization can be esti:

mated directlv from Poisson’s equation is valid. Because the assumptions in E40) are valid for
y q long, slowly varying beams, Eq12) can be used for esti-

mating the longitudinal electron flow velocity. Also because
p=7-VE (18 the radial velocity is much smaller than the longitudinal ve-
locity for long beams, the electric field can be determined

where p=e(Z,n,—ne). Using Egs.(12), (16), and (18) it  from Eq.(7) making use of the time-dependgmy, obtained
can be shown that the maximum deviation from quasineufrom Eq. (12). The space-charge density can be determined

trality occurs wherr,~c/w,, and from Poisson’s equatiofil8). As discussed above, nonrela-
g2 tivistic, long, slowly varying ion beams are well charge neu-
|pl=eBsZoNy - (19 tralized. Thus, the radial electron flow velocity may be ob-

Therefore, for nonrelativistic long ion pulsdg)/eZ,n,<1 tained from the quasineutrality conditiok-j=0, which
and there is almost complete charge neutralization. For ca@iVes
culational purposes, exact charge neutralization,

Verm— = [ Zzrgr+ 23
Ne=ZpNp+Np, (20) e en |1 Joaz o der)s @3

can be assumed and deviations from quasineutrality can
calculated from Eq(18) in a subsequent iteration. Section IV
provides more quantitative estimates.

The radial force acting on the beam ions can also be
determined in terms of the electron flow velocity. Substitut-
ing Egs.(16) and(17) into the ion force equation yields

tﬁere, iz=e(ZpnyVp;—NeVey is the longitudinal current,
andj,=eZ,n,Vy, is the radial beam current. The system of
Egs.(6), (7), (12), (18), and(23) yield a complete system of
equatlons describing long, slow-varying ion beams. In sum-
mary, the only qualitatively new features which emerge for
nonstationary ion beams are two new terms appearing in Eq.
9 (7) and in EQ.(23). These correspond to the time derivative
=~ Z5 (Ke=VpPey)- (21)  of the longitudinal momentum in Eq7), describing the ef-
fects of ion beam density variation, and the effects of radial
Because the radial flow velocity is small compared with thebeam current on the radial electron velocity, described by the
longitudinal flow velocity for long beams, it can be neglectedlast term on the right-hand side of E3). Examples of
in Eqg. (21), which simplifies to become detailed simulations are given in the next section.

1
Fr=eZ| E— VB
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IV. EXAMPLES OF CALCULATIONS FOR HEAVY ION negative, i.e., the beam attracts the background plasma elec-
FUSION PARAMETERS trons. Further from the beam head, the current neutralization
is better, and jj,rdr decreases and the radial flow velocity

We have performed self-consistent calculations of thgs positive.

electric and magnetic fields and the electron flow velocity — The radial electric field is calculated from the E46).

according to Eqs(13)—(16). In the first iteration, complete Relativistic effects are not important for the conditions of

charge neutrality20) is assumed. The corrections, including Fig. 1, and the radial flow velocity is much smaller than the

small departures from quasineutrality and the effects of distongitudinal velocity. Therefore, the radial electric field is

placement current and radial components of velofy.  determined approximately fronE,~—m/(2e) (avgzjgr)

(11) compared to Eq(12)], are then obtained in the second >0, which is positive in the beam regidfig. 1(f)]. Simi-

iteration. The electron velocity does not approach ultrarelatarly, from Eq. (17), the magnetic field is B

tivistic values even fog,— 1, and therefore, ultrarelativistic ~ — (cm/e)(dV,,/dr), and is shown in Fig. (). Corre-

electron effects are not important. spondingly, the longitudinal flow velocity i¥,,~CcE,/B.

The situation is different in the radial direction, because the

inertia and Lorentz force terms are comparable in size in the

. ) o longitudinal projection of the momentum balance equation
Typical results of the calculations are shown in Fig. 1.(2), and thereforeV,,#cE,/B. The radial force acting on

The characteristic parameters of the ion beam pulse arghe peam ions is always negative as discussed affeige

singly charged CS§ ions; ion energy E,=4 GeV (8, 1(h)].

=0.25); maximum(in the middle section of the beanon

current 1,=4 kA (n,=1.2x10"cm™%); maximum beam B. Variation of electromagnetic fields in the beam for

radius r,=3 cm; half-lengthl,=40cm; and background different plasma densities

plasma densityn,=10*'cm>. The ion pulse is formed in Figure 2 depicts the longitudinal electron velocity and
the drift compression region of the accelerator and is asme electron streamlines for similar conditions to Fig. 1, but
sumed to have a density distribution corresponding to th€yr much smaller background plasma dengityndred times
self-similar solution in the drift compression region, i.e., @smalle). Under these conditions, the skin depth is much
uniform ion density up to radiug(z)=r,\1—(2/1;)%,**and  |arger than the beam radius.6 times larger outside the
zero density for larger radiysig. 1(a)]. For the conditions  peam. Therefore, the electron velocity decays slowly outside
in Fig. 1, the plasma density is chosen to be comparable tghe beam over distances of order the skin défily. 2(a)].
the ion beam density. The skin depth is assumed to beorrespondingly, there is a sizeable radial electric field at
smaller than the beam radius, so the beam current is neutrakistances much larger than the beam radlig. 2b)]. Al-
ized, and the longitudinal electron velocity i%e;  though the background plasma density is hundred of times
=Vpny/(np+ny) in the beam region, and decays exponen-smaller than the beam density, note that it effectively neu-
tially outside the beam over distances of order the skin deptkralizes both the beam current and charge. Because the elec-
[Fig. 1(b)]. The current is neutralized in the beam center uptron longitudinal velocity is comparable in both cades
to about 80%, and because the electron flow velocity is-n, in Fig. 1(b) andn,<ny in Fig. 2a)], the electric fields
monotonically decreasing with radial coordinate[Fig.  are comparable for both cases and the space charge is simi-
1(b)], the degree of current neutralization decreases towardar. Therefore, in the region inside the beam the degree of
the beam edge and approaches 50% at the boundary. Ndt@ctional charge nonneutralizatioh= p/(en,), is small ac-
that this estimate is consistent with E4.3), I,./~1 KA in  cording to Eq(19); however, in the region outside the beam,
the beam center, which is 20% of the beam cur(dritA). If  on distances of order the skin depth, the fields and space
Zy, is increased by stripping). will also rise andl ¢ will charge are of the same order as inside the beam, but the
remain at about 1 kAfor Z,n, ~ng), while the current neu- plasma density is much smaller, so the space charge may
tralization fraction will increase towards 100%. Outside thebecome comparable to the background charge density, as it
beam, only the electron return current is present, and thereloes for the conditions in Fig. 2. In this case, strong plasma
fore, the current is negatiié-ig. 1(c)]. waves, neglected in the present model, may be excited at the
The longitudinal electric fielcE, is located mainly in  head of the beam. Note that for the conditions in Fig. 2 the
front and in back of the beam to accelerate and deceleratadial flow velocity is comparable with the longitudinal ve-
electrons to the velocities required to assure that the electrdocity at the very beginning of the head, and the one-
return current neutralizes the ion beam current. Consedimensional model in Eq12) does not provide an accurate
quently, the longitudinal electric fielde, is of order description of the beam head. The establishment and stability
mV2/(el,) [Fig. 1(d)]. This electric field is small compared of this profile requires a more detailed investigation, which
to the electric field of an unneutralized ion beam, and correwill be addressed in future publications.
spondingly the charge neutralization is close to uiypi- In Fig. 3, the longitudinal electron flow velocity, azi-
cally about 98% in the head and tail of the beam in themuthal magnetic field, radial electric field, and radial force
regions of large gradients, and about 99.5% in the main bodgcting on the beam ions are shown at the midplane of the
of the beam The radial flow velocity calculated from Eq. beam pulse for three values of plasma density. In a dense
(15) is depicted in Fig. (). As the beam enters the plasma, plasma (,>n), the electron velocity/, is inversely pro-
the integralf {j rdr increases, and the radial flow velocity is portional to the plasma density, in order to support the same

A. lon beam at the entrance of the target chamber for
heavy ion fusion
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. lon Beam Density A Electron Longitudinal Velocity
(a) (0)
24
- 0.1§1.0

=0
-2
4 . :

1.0 05 00 05 1.0
zll,

Longitudinal Current

(c) FIG. 1. Characteristics of the ion
beam pulse are: singly-charged ‘Cs
2+ ions; ion energy E,=4 GeV (B,

=0.25); maximum(in the middle sec-
tion of the bearmp ion current I,

.Ojéz/ﬁ—;;%m

Qo
=0 <_é1\© ?'1 =4 KA (n,=1.2x10"cm™3); maxi-
@EO‘PM mum beam radiusry,=3 cm; half-
2 ) length 1,=40cm; and background
plasma density,= 10" cm™3. Shown
in the figure are contour plots in
470 G5 oo 05 1o 470 45 00 05 10 2/l r/ry) space of:(a) ion density

Zl 7| n, in the beam pulse(b) normalized
b b longitudinal electron velocity/,,/V,,;
(c) normalized electron current

Radial Electric Field 17NeVer/(NoV),  where N,

4 =n,(0,0); (d) normalized longitudinal
M electric field E,/E,y, where E,
9 =mV?/(el,) =410 Vicm; () normal-
i ized radial  electron  velocity
Oosmggﬂﬁo Velp/rpVy; () normalized radial
;\_“ 04 T qos.0. @3% 5 electric field in the beamE,/E,q,
= |0 °5§0__%,/ where E,o=mVZ/(er,)=5.467
kVicm; (g) normalized azimuthal
24 magnetic-field B/By,, where B
=mcV,/(er,)=74G; and (h) nor-
4l i malized radial force acting on the
4L - : ; : 10 05 00 05 10 beam ions E,—ByB)/E,o, where
005 00 05 10 z/l, E,o=m\VZ/(er,) =5.467 kv/cm.
b
4 Magnetic Field Radial Force Acting on lons
(<)) 4 (n
21 2

o= 05—=03. 1 S ———— T 5%
e Ny
Lo 0 £ o =) 10\5
= QO.SQO 5:_0;34”//’0'57 w
S50
0.1

return current and provide current neutrality. Therefore, thecause the radial electric field nearly compensates the self-
electric and magnetic fields also decrease with increasingragnetic forcgV,,~V, in Eqg. (21)]. For large plasma den-
plasma density. Figures(® and 3b) show that the radial sity (n,>n,), both the azimuthal magnetic field and the
force acting on the beam ions is less for small plasma densitsadial electric field are small due to the better current neu-
(np<np), compared to the case whemg~n,. This is be- tralization [Fig. 3(c)]. During ballistic focusing, the beam
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FIG. 2. Characteristics of the ion beam pulse are the same as in Fig. 1 but ﬁ 0.04 S
the background plasma density rig=10° cm™3. Shown in the figure are z '\,’ '\/\
contour plots in ¢/l ,r/ry,) space of:(a) normalized longitudinal electron ‘g 04 F
velocity V,,/V,; and(b) normalized integrated radial flux of electrohs : . i . :
= JolNe(Vy—Ve) =NV Irdr/(n,Vy,). The contour plots of', coincide 4 -2 0 2 4
with the electron trajectories in a frame moving with the beam. r/rb

FIG. 3. Radial plots of the normalized electron velocit§.{/Vy), the radial
reduces in radius by about a factor of 10, and the radiaglectric field in the beamH,/E,,), the azimuthal magnetic field in the
electric field and azimuthal magnetic field increase by a simi?®2m 8/Bo), and the radial force acting on the beam iong, (

. . —BuB)/(E;p), shown in the midplane of the ion pulse for the same condi-
lar factor, which follows from Eq(]-?)- An example of simu- tions as in Fig. 1. The three plots correspond to plasma densites:,
lations for smaller beam radius is presented later in Fig. 7. =0.3x 10" cm ™3, (b) n,=10"cm 3, (¢) n,=102cm™2.

Figure 4 shows the degree of fractional charge nonneu-

tralization,f = p/(en,), at the midplane of the beam for three

values of the beam velocity. We have chosen parametetgal, the boundary condition for the fields on the front bound-
such that the departure from quasineutrality is approximatelwry are trivial €=B=0). The dynamics of théstationary

a maximum, corresponding ta,=c/w,, Wwhere wﬁ background ions is neglected, and the plasma electrons are

=4me’n,/m, is the electron plasma frequency calculatedtreated as cold. The beam ions are represented by a station-
using the beam ion density. Moreover, a small plasma den-

sity with n,=0.1n, is also assumed in Fig. 4. For the con-
ditions in Fig. 4, the maximum value dfis about 0.BZ, "~ - :

which is much smaller than unity. Therefore, quasineutrality 0.2 . o _ﬁ:g:g‘r’
is very well satisfied. | R
0.11

p/len,)
T
H
1
]

C. Comparison of theoretical predictions with the
results of electromagnetic particle-in-cell code 0o % -

To check the theoretical predictions, we developed a
two-dimensional2D) electromagnetic particle-in-ce{PIC) J0'1o 1 2 3
code([for details see Ref. 16In developing this PIC code,
we followed the approach of Morse and Nelson as given ir.I:IG. 4. Radial plots of the degree of fractional charge nonneutralizdtion
Ref. 17. The code uses a leap-frog, finite-difference 50F1%me=p/(enb) at the midplane of the ion beam pulse in background plasma
to solve Maxwell's equations(3) and (4) on a two-  assuming three values of beam velogiyc. The beam radius is chosen to
dimensional rectangular grid in the frame moving with thebe ro=c/wy, where wp=4me’n,/m, is the electron plasma frequency
bearm. The current depositon scheme i designed to conser e eaied s beam on dery, e bar radus chosen
charge exactly, so there is no need to solve Poisson’s equarrgjization. The corresponding beam current is £g8A, and the plasma
tion. Since the plasma ahead of the pulse is electrically newensity isn,=0.1n,.
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(@) Assuming a step-function profile faor,(¢',y), linear theory
m— et predicts electron density oscillations with amplitudg in-
4 43 - 38 side the beam, i.e.,
. -36 - 29

21 - 29 - 22

- 22 - 14 wp
a o 14 - 07 ne(Z,y)_an 1_C05(_(Zb(y)_z) Ny, (25)
é 04 07 -0 Vb
° wherez,(y) is the coordinate of the beam front. Figur@)s

shows that the linear results are not valid, and the amplitude

4 of oscillations can be as much as six times larger than the
20 10 0 10 20 linear results. Nonlinear effects can also account for large
cZo, increases in wave amplitud®even in a cold plasma model.

Indeed, in a one-dimensional model the nonlinear perturba-
tion of the electron plasma density can be determined by
combining Poisson’s equation, total energy conservation, and
the conservation of electron fl#.This gives

d’® . @0 NoVp
—— =—4me| ny({) — ————].
d¢® TE JVi—2ed/m

Equation (26) describes nonlinear plasma oscillations and
has no solution ifb approacheanﬁ/Ze, where the electron
density tends to infinity. For a step-function density profile
for the beam ions, E426) can be solved analytically to give
for the electric fielde= —d®d/d{,

® neV
E2=81-ref (nb— 00

————|d®
0 JVi—2ed/m

Ahead of the beam, the potential and electric field are zero;
0 20 at the maximum of the electron density oscillation, the po-
tential also has a maximum with®/dZ =0, and the electric

field is zero. Therefore, the maximum potential in the plasma
FIG. 5. The excitation of plasma waves by the beam head is calculated iBsciIIation is given by
two-dimensional slab geometry using the PIC-MC cdRef. 25 for the
following dimensionless beam parameterg,=0.5, r,=1.5¢/w,, |, ® PRV
=15/w,, N,=ny,, andZ,= 1. Shown in the figure aréa) electron charge max 0Yb

Np® ma= ———d®.
density contour plots in yz/c,w,y/c) parameter space, and electron b™ max 0 /V§—2e¢)/m

charge density vsdyz/c) (b) for y=0 and(c) for y=c/w,. The arrows
show the beam edge. The singularity in electron density occurs when electrons are
completely stopped by the potential barrier, i.e., the maxi-

) i ) i i mum potential energg® ., corresponds tcmvf,/z. Making
ar_);j(lr]rthe?ovmg fLamélcurrent density on :\he _S|mulat|0n lése of Eq.(28) one obtains that the conditiord,,,
grid. To advance the electrons, we use the tlme-centerezmvﬁl2 occurs when

leap-frog scheme first introduced in Ref. 16.
Figures 5 and 6 show the results of self-consistent elec- ny=n,. (29

tromagnetic two-dimensional particle-in-clPIC) simula- Theref ¢ . file for the ion d . ith
tions in slab geometry. The simulation results in Fig. 5 show erefore, a step-function profile for the lon density wit

some phenomena associated with the finite neutralizatioﬂenSIty equal or Iarger than the background plasma density
length, neglected in the analytical theory, particularly the ex-Induces Iarge-amplltude plasma waves, Wh.'Ch bre{;\k anq gen-
citation of plasma waves by the beam front. erate_multlple electron flows, as observed in the s_,lmula_tlons.
Figure 5 also shows the importance of two-dimensional
effects. The linear result in Eq24) predicts that the plasma

D. Generation of plasma waves by the beam edge waves trail the beam front independently for any giyeand

nonrelativistic theory, the plasma waves trail the beam fronféatures of the plasma waves in Fig. 5, even qualitatively.
with period| )= 27V, /w,, and the electron density is given The plasma waves in Fig. 5 do not repeat the beam edge

(26)

(27)

0
CZ/(DD

(28)

by (see, for example, Ref)4 fqrm as predic'ted by' the linear theory in E84), but have a
. different two-dimensional structure. Furthermore, the plasma
[ @p / by 2P waves are excited before the beam front at the radial edge of
—n,= — (¢~ ——dl’.
Me(&Y) =M f ® sm( Vy, (¢ ))nb(g ) A ¢ the bean(see Fig. &)] and decay away from the front, in

(24 contrast to the predictions of linear theory. The accurate de-
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FIG. 6. Comparison of 2D particle-in-cell simulations

03 - (e) ' ' - —-PC with theoretical predictions for the following dimen-
K] sionless parameters: 8,=0.5, r,=15/w,, I,
. 02 20,00 =30c/w,, andn,=n, performed in two beam cross-
@ e sections: the midplane at=0, and near the beam front
3 0.1 —;2 atz=25c/ w, . The ion profile is smoothed according to
E £ Eq. (30), with al,=6c/w,=(6/7)I,. Shown are radial
E 0.0 2 plots of (a) normalized electron density. /n, ; (b) nor-
k= cg” malized longitudinal currentrV,—neVe,)/(nyc); ()
501 _-0 02l . . : ‘ normalized azimuthal magnetic fieldgB/(2mw,C);
T4 2 0 2 4 (d) the normalized radial electric fieldE, /(2mw,c);
y Y and (e) normalized longitudinal electric field
eE,/(2mw,c).
01 (c) " [pPic— -
Fluid ——
o
&
S 0.0
2
g =25
R S M TR I

scription of plasma wave excitation has to be performed usby the beam front. Figure(B) shows the difference in the
ing a nonlinear two-dimensional model and is beyond thecurrent profile at two different beam cross sections. In the
scope of present paper. region of the beam headz€ 25c/wp) the beam radius,,

To minimize the excitation of plasma waves, a smooth= 1.6c/ wp is comparable to the skin depth, and correspond-
ion beam profile is used in the simulations shown in Fig. 6.ingly the electron current neutralizes about 80% of the ion
We choose the profile current. In the midplane of the bear= 0), the beam radius

Z2\2 [y r,=3c/w, is larger than the skin depth, and correspondingly
Np(Y,Z) =nNyg f( (l—) +| = ) (300  the electron current neutralizes more than 90% of the ion
b ' current in the beam center. The degree of current neutraliza-
where tion is smaller at the beam edge due to the sharp variation of
0. s>1 the ion current profile. According to E12), the electron
' 1—s ' return current is a smooth decreasing function of radial co-
f(s)=4 g|l—|, 1l—a<s<1, (32) ordinater, and cannot neutralizéhe nearly discontinuolis
L a<1 ion current. The magnetic field shows very good agreement
, s<l-a.

between the analytical formuldEgs.(12) and(17)] and the
Here, ny, is the maximum beam densitg(t)=10t3— 15t* PIC simulation results. The amplitude of the electric field is
+6t% anda is a parameter characterizing the width of pro- much smaller than the magnetic field. Therefore, the contri-
file smoothing. Plasma waves are not excited if the width ofoutions due to numerical noise and plasma waves are more
the beam front is much longer than the plasma period, i.epronounced in Figs. (6) and Ge) compared with Fig. &).
a|b>|p_ For example, plasma waves are very weakly ex-For the conditions in Fig. 6, the spatial resolution was 932
cited for the conditions chosen in Fig. 6, whegd, X 198 with nine particles per cell, which totals more than one
=6l,/m, and the electron density is equal to the ion densityand one-half million particles and requires a few hours of
within noise errorgFig. 6(a)]. calculations on a one-processor Dell Pentium 1 GHz work-

Figure 6 shows good agreement between results of thstation. It is evident that an accurate calculation of the elec-
PIC simulations and the fluid calculations, both performed irtric field using PIC simulations is very cumbersome in con-
slab geometry. The establishment of quasineutrality is clearlyrast with the semianalytical approach described above. In
evident in Fig. 6a). Small deviations from quasineutrality summary, the very good agreement of the electric and mag-
are due to numerical noise and excitation of plasma wavesetic fields validates the proposed theory.
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FIG. 7. Characteristics of a converging ion beam pulse.
-1.0 . : . . -1.0 ; . " T The figure labels and beam parameters are the same as
1.0 -05 OMO 0.5 1.0 1.0 05 g/? 05 1.0 in Fig. 1, except the unperturbed plasma density is
b b 102 cm3. The beam has propagated from a distance 5
Radial Velocit ) o m to a distane 1 m from the chamber center, ballisti-
1.0 adial velactty 1.0.. Radial Electric Field cally converging to zero radius at the chamber center.
(e) (f) Emittance effects and ion beam charge variations are
05 05 neglected.
-0.003
‘\: ’ 05&\0.008 w E ’
-0.51 0.5
-1.0L- . . . " -1.0L ; . . .
1.0 05 00 05 10 1.0 -05 00 05 10
2/, 2/l
1.0 Magnetic Field 10 Radial Force Acting on lons
(9) Ty
1.0+ \ : n -1.0L, . . .
1.0 05 00 05 10 10 -05 05 1.0
z/lb 2/l
E. Converging ion beam ion beam, neglecting the radial ion thermal velocity, the

Figure 7 shows the results of simulations for a converg-beam density profile can be readily found td"be

ing beam. The beam is assumed to be ballistically focused 2 i

from its initial radius at the entrance to the chamber to zero nb(r,z,t):nbo?f r7,z—Zceme(t) : (32
radius at the chamber center, located at a digt&hm from

the chamber entrance. The initial beam parameters at thgherezis the distance from chamber cent8gg (1) is the
chamber entrance are taken to be the same as the parameteosition of the beam center, aridr,z) is the initial beam

in Fig. 1. During ballistic focusing, neglecting the influence density profile in Eq(31). The ion beam density profile for
of self-fields on the beam ions, the beam ion trajectories ar . ft) =1 m is shown in Fig. @). lon beam charge varia-
straight lines converging to the chamber center with meation effects due to possible beam ion ionization have been
radial velocity V,, =V /Zs;, where Z;; is the distance neglected Z,=1). As can be seen from the figure, the beam
from the chamber center to the chamber entrance. For a colddius is reduced approximately by a factor of five times
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compared with Fig. 1, and the beam density is peaked in thevhich at maximum is of ordemvﬁl(erb)] is larger than the
beam head region. The background electron density in Fig. Beam radius whenevem{m;)(2l,/r,)?>>1. For the beam
has been increased by a factor of one hundred compared wigfarameters considered for heavy ion fusion, the beam aspect
Fig. 1, withn,=10"cm™3. This high value of plasma den- ratio (I,/r},) is less than one hundred, and the background
sity is assumed at distances close to the target because of gaa dynamics can be neglected for all gases, except possibly
photoionization produced by the “foot” prepulse striking the for hydrogen.
fusion pellet, producing large amount of radiation at earlier ~ The analytical formulas derived in this paper can provide
times?? The electron longitudinal flow velocity obtained an important benchmark for numerical codes and provide
from Eq.(12) is shown in Fig. ). The corresponding skin scaling laws for different beam and plasma parameters. The
depth,c/w,=0.17 cm, is comparable to the beam radius insimulations of current and charge neutralization performed
the beam center and larger than the beam radius in the bedior conditions relevant to heavy ion fusion typically showed
head. Therefore, the ion current is neutralized in the beamery good charge neutralization and considerable current
center and is not neutralized in the beam head. Correspondeutralization. Moreover, an important conclusion of the
ingly, the magnetic fieldEq. (6)] in the beam head is much present analysis is that for long, dense bedtesgth |,
larger than in the beam tdisee Fig. 7g)]. The electric field >V,/w,, whereV, is the beam velocity, and, is the
is calculated from Eq.7) and depicted in Figs.(d) and 7f). electron plasma frequency evaluated with the ion beam den-
The radial electron flow velocity shown in Fig(€] is more  sity), the charge neutralization is very good even for a tenu-
negative compared with the steady-state situation in K. 1 ous background plasma with density much smaller than the
due to the beam convergen@mpare Eqs(23) and(15)].  beam density. The background plasma is collected radially
The charge neutralization estimated from ELf) is close to  over the distances of order the electron skin depth, and the
unity, i.e., about 98%. As evident from Fig(hf, the radial small value of plasma density can be well compensated by
force acting on the beam ions is a maximum at the beanthe large dimension of the collecting region.
edge and in the front part of the beam.
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netic fields generated by an ion beam pulse have been deter-
mined in the nonlinear case for arbitrary valuesmf/ny,
under the assumption of a long beam, where the beam leng
is much longer than the beam radius and the plasma neutral-
ization length ¥, /wy). Under these conditions, a reduction In the present work we have attempted to avoid using
in the dimensionality of the problem is possible. Assumingspecific gauges and expressed all results in terms of the elec-
an axisymmetric beam, the longitudinal electron flow veloc-tric field E=—V¢—c 'dA/dt and the magnetic field
ity is determined for one-dimensional variations in the radial=V X A. Since a number of authors find it convenient to use
direction for each axial slice of the beam. The electric andhe scalar and vector potentiaks,and A, we list here for
magnetic fields are then readily calculated from the longitucompleteness some of the popular gauges, and also introduce
dinal electron flow velocity. As a result, numerical simula- a new gauge, which is, in our opinion, well suited for the
tions are very fast, even for very long beams with a largeproblem at hand. Examples of the gauges used in the litera-
ratio of the beam length to the beam radius. Since the eledure include the Coulomb gaug#,-A=0, the transverse
tron response time is much faster than the ion beam pulséoulomb gaugey, -A, =0, and the Arnowitt—Fickler rela-
duration, any variations in plasma or beam parameters arévistically covariant gaugeA,n*=0, whereA , is the 4D
adiabatically slow on the electron time scale. The approachkector potential, and is any 4D vector, e.g., the 4D momen-
used here can be generalized to the case of nonuniform nottm p# can be used as.?® If we choosep” as the momen-
stationary plasma density and beam density profiles, antim of the plasma ions, then the Arnowitt—Fickler gauge
forms the basis for a hybrid semianalytical approach to b&educes to zero electrostatic potentigl=0. Even more
used for calculations of beam propagation in the target chanelaborate gauges designed to cancel specific terms in Max-

PPENDIX A: ELECTROSTATIC AND VECTOR
TENTIALS

ber. This work is now underway. well's equations have been proposed in Ref. 3.
The assumption of zero generalized vorticity can be bro-  Equation(7) suggests that a natural choice of gauge is
ken if plasma is generated inside the beam, where the mag- ed=K (A1)
e

netic field is not zero. Therefore, if a considerable amount of
plasma is produced by beam ionization processes, the apthich gives
proach presented here requires modification. e

The assumption of immobile background ions can be —A=p,. (A2)
incorrect for very long beams. Indeed, the radial displace-
ment of a plasma ion with magg; during the beam pulse All other gauges imply that the vector potential would
duration 2,,/V}, caused by the radial electric field in E46)  differ from the momentuncp./e by the gradient of an arbi-
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trary function[Eq. (6)]. For example, in the present analysis, similar to the analysis performed in hydrodynamics in Ref.
the full Coulomb gauge is not convenient because of th&6. Consider the circulatio® of the canonical momentum
necessity to make the vector potential divergence free,
V-A=0. C= 3§ (pe—eAlc)- &r, (B2)
For cylindrically symmetric beams, it is convenient to

use the transverse Coulomb gauge, A, =0. In cylindrical  taken along a closed loop, whekeis the vector potential,
geometry, assuming axisymmetry in the azimuthal directionand B=V x A is the magnetic field. We shall consider the
it follows thatA, =0, and the fields are completely described|oop as “frozen-in,” moving together with the electron fluid.
by the electrostatic potentiah, and thez component of the  The evolution of the circulation of the canonical momentum
vector potentiah=A,€,, whereg, is a unit vector along the s determined by its full derivative
z axis. Therefore, the fields can be expressed as dc d

10A, . =1 § (pe—€Alc)- or. (B3)

B=VA,X&, E=-V¢—_—78. (A3) dt — dt

The full derivative accounts for the fact that the contour po-

Integration of the London equatiof6) gives an explicit sition is changing. Application of the chain rule results in

equation for the vector potential

dC d d
e — — —_— . et - —_—
“AB=p—Vx, (A4) dt fﬁdt(pe eAlc)- or+ ﬂg (Pe—eA/C) - g T
¢ (B4)
wherex is an unknown function. From the radial ComponentSubstitutingd5r/dt= 8V, and using Eq(2) gives
of Eq. (A4) it follows that €
dC e
x(z,r)=—f p..dr, rTi §E[ch‘)—VeX(VXA)—(Ve-V)A]-5r
r
and the longitudinal component of the vector potential can be + 3E (pe—e€A/lC)- 8V,. (B5)
expressed as
eA 9% a5 Rewriting 6V .= (6r- V)V, we express
—A,= P, —.
chePezt AS) Sr-(VVo)-A=dr-[AX(VXV)+(A-VI)V].  (B6)
Finally, the electrostatic potentiab can be determined by Substituting this expression into E¢B5) and rearranging
integrating the radial component of E), which gives terms yields
3 dx dC e
e¢_Ke+Vb(9_§- (A6) Tl jgg[chﬁ—V(Ve-A)]-é‘rvL f}gpe.ave. (B7)

The use of any particular gauge does not really simplify | integrals in Eq.(B7) are equal to zero for closed con-
the problem. We have listed them here for reference only. (o5 since the integral over a gradient is equal to zero for

closed contours, and the last integral on the right-hand side
of Eq. (B7) is an integral over the differential function
APPENDIX B: CONSERVATION OF THE L(Pe)Pe- 0Ve=0L(Pe), Where L(p)=pe-Ve—Ke. There-
GENERALIZED VORTICITY fore, the circulation of the canonical momentum is con-
served, i.e.dC/dt=0.
The success of the analytical solution for the nonlinear Applying Thompson’s theorem, the circulation defined

charge and current neutralization of an ion beam pulse in & Eq. (B2) can be rewritten as the surface integral of the
pre-formed plasma relies heavily on the London equaﬂorgeneralized vorticity

(6), which is based on the assumption of zero generalize
vorticity. In this appendix we give a detail proof of the con-
dition for validity of this assumption.

Equation(5) for the generalized vorticityf) can be ex-

C= fﬁ (pe—e€Alc)- or

pressed as =f VX (pe— eA/c)-éSEf Q- 68S, (B8)
aQ
W+(V8-V)Q=—Q(V-Ve)+(Q~V)Ve. (B1)  where 8S is the fluid surface element. Note that because

J Q- §S=constant, the terms on the right-hand side of Eq.
Equation(B1) shows that the generalized vorticity is trans- (B1) describe the distortion of the fluid surface elemést
ported along with the electrons and that the source term oBecausedC/dt=0, the circulationC is conserved along
the right-hand side is proportional to the generalized vorticelectron streamlines. Therefore, the condit@s-0 is pre-

ity. Therefore, if the generalized vortici® is initially equal  served on the streamlines, and(}=0 everywhere initially,

to zero everywhere, then it remains equal to zero everythen  remains equal to zero everywhere at subsequent
where. To elaborate further we include another derivationtimes.
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