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Abstract

The propagation of a high-current finite-length ion charge bunch through a background plasma is of interest for many
applications, including heavy ion fusion, plasma lenses, cosmic ray propagation, and so forth. Charge neutralization has
been studied both analytically and numerically during ion beam entry, propagation, and exit from the plasma. A suite of
codes has been developed for calculating the degree of charge and current neutralization of the ion beam pulse by the
background plasma. The code suite consists of two different codes: a fully electromagnetic, relativistic particle-in-cell
code, and a relativistic Darwin model for long beams. As a result of a number of simplifications, the second code is
hundreds of times faster than the first one and can be used for most cases of practical interest, while the first code
provides important benchmarking for the second. An analytical theory has been developed using the assumption of long
charge bunches and conservation of generalized vorticity. The model predicts nearly complete charge neutralization
during quasi-steady-state propagation provided the beam pulse durationtb is much longer than the inverse electron
plasma frequencyvp

21, wherevp 5 ~4pnpe20me!
102 andnp is the background plasma density. In the opposite limit, the

beam head excites large-amplitude plasma waves. Similarly, the beam current is well neutralized providedvptb .. 1 and
the beam radius is much larger than plasma skin depthdp 5 c0vp. Equivalently, the condition for current neutralization
can be expressed in terms of the beam current asIb .. 4.25Zbbb~nb0np!kA, wherenb is the beam density,Zb is the ion
charge, andVb 5 bbc is the beam velocity; and the condition for charge neutralization can be expressed asIb ..
4.25bb

3~nb0np!~rb0lb!2kA, wherel b andrb are the beam length and radius, respectively. For long charge bunches, the
analytical results agree well with the results of numerical simulations. The visualization of the data obtained in the
numerical simulations shows complex collective phenomena during beam entry into and exit from the plasma.
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1. INTRODUCTION

Heavy ion beams are envisioned as one of the principal
drivers for inertial confinement fusion~Bangerter, 2001!. In
heavy ion fusion design schemes, the ion beams are focused
onto an indirect-drive target, to produce X-ray radiation,
which compresses the deuterium-tritium pellet and initiates
the fusion process~Meier, 2001!. To protect the chamber
walls and focusing magnets from neutron radiation, liquid
Flibe jets create a region into which the heavy ion targets are
injected~Peterson, 2001!. These jets evaporate gas with a
saturated vapor pressure of few milliTorr. As a result of
electron stripping in ion–atom collisions, the charge state of
the beam ions increases up to 5–8 during propagation over
about 3 m in thechamber~Olson, 2001b!. The space-charge
potential of a typical beam with parameters at the chamber
entrance corresponding to 4 kA current, 10 ns pulse dura-
tion, and 0.28c velocity, wherec is the speed of light, is

approximately 1.7 MV. Due to the stripping of electrons
from the beam ions, the space-charge potential increases
even further. Such high space-charge potentials inhibit beam
focusing, and therefore ballistic focusing relies on various
neutralization schemes to reduce the space-charge potential
to acceptable levels. During ion beam propagation in the
chamber, electrons are drawn into the beam by the positive
ion charge, and the electrons provide some degree of charge
neutralization. For effective neutralization, there should be
enough electron production mechanisms to assure the gen-
eration of total electron charge equal to the ion beam pulse
charge. Sources of electrons include: emission of electrons
by the chamber walls~Bugaevet al., 1975!, extraction of
electrons from a preformed plasma plug~Efthimion & Da-
vidson, 2001!, and photoionization of the chamber gas by
soft X rays emitted by the target~Sharpet al., 2001!.

Neutralization of the beam charge and current in a plasma
is also an important issue for many other applications. For
example, high energy physics applications involve the trans-
port of positive charges in plasma, for example, positrons
for electron–positrons colliders~Rajagopalanet al., 1995!,
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and high-density laser-produced proton beams for the fast
ignition of inertial confinement fusion targets~Rothet al.,
2001!. The recent resurgence of interest in charged particle
beam transport in background plasma is brought about by
the recognition that plasmas can be used as magnetic lenses.
Applications of the plasma lens concept, ranging from heavy
ion fusion to high-energy lepton colliders are discussed by
Rajagopalanet al. ~1995! and Tauschwitzet al. ~1996!.

There have been a number of numerical simulations
schemes that study chamber transport of a heavy ion beam
pulse. These simulations employ electromagnetic particle-
in-cell codes. For example, the BPIC code has been used in
the studies reported by Sharpet al. ~2001! and Vay and
Deutsch~2001!, while Roseet al. ~2001!, Ottinger et al.
~2001!, and Welchet al. ~2002! have utilized the LSP code.
These simulations are typically numerically intensive and
require up to several days of computational time. In addi-
tion, particle-in-cell codes have a considerable numerical
noise in the electron density and the electric field, which
may result in an artificial electron heating.

There are many critical parameters for ion beam transport
in the chamber, including beam current, type of ion species,
radial and longitudinal profiles of the beam density, cham-
ber gas density, stripping and ionization cross sections, and
so forth. This necessitates an extensive study for a wide
range of parameters to determine conditions for optimum
beam propagation. To complement comprehensive numeri-
cal simulations, a number of reduced models have been
developed. Based on well-verified assumptions, reduced
models can yield robust analytical and numerical descrip-
tions and provide important scaling laws for the degrees of
charge and current neutralization. Such general treatments
also have relevance for other applications, which use posi-
tively charged beams, for example, plasma lenses in high
energy physics, and the propagation of cosmic rays in astro-
physics. Depending on the assumptions and simplifications,
a suite of numerical codes has been developed and the codes
benchmarked against one another. This suite is the subject of
this article.

The code suite consists of two different codes: a fully
electromagnetic, relativistic, particle-in-cell~PIC! code, and
a nonrelativistic Darwin model for long beam pulses. The
two-dimensional electromagnetic PIC code uses a leap-
frog, finite-difference scheme to solve Maxwell’s equations
on a two-dimensional rectangular grid in the frame moving
with the beam. The current deposition scheme is designed to
conserve charge exactly, so there is no need to solve Pois-
son’s equation. The other code uses the approximation of a
very long charge bunch, that is, the beam length is much
longer than the beam radius, and therefore the beam can be
described by a number of weakly interacting slices. The
electron motion is described in the quasi-stationary approx-
imation, assuming that the ion beam evolves on a time scale
much longer than the electron plasma period. The electric
field is determined from Poisson’s equation, separately for
each beam slice. As a result of the simplification, the second

code is hundreds of times faster than the first~PIC! code.
The second code can be used for most cases, while the first
code provides benchmarking for the second.

The electron response frequency is of order of the elec-
tron plasma frequency,vp 5 ~4pnpe20me!

102, wherenp is
the background plasma density. For heavy ion fusion appli-
cations, the ion pulse propagation time through the chamber
is much longer than the inverse electron plasma frequency
vp

21. Therefore, a beam–plasma quasi-steady state forms
during beam propagation. The initial step of the study is to
describe the steady-state propagation~in the beam frame! of
an ion beam pulse through a background plasma.

The case where the beam propagates through a cold
plasma, with plasma density large compared with the beam
density, can be studied by use of linear perturbation theory
~Chenet al., 1985!. Here, we focus on the nonlinear case
where the plasma density has an arbitrary value compared
with the beam density, and, correspondingly, the degrees of
current and charge neutralization are arbitrary. The trans-
port of stripped, pinched ion beams has also been discussed
by Hahn and Lee~1996!, where the assumptions of current
and charge neutrality were made to determine self-consistent
solutions for the electric and magnetic fields. M. Rosen-
bluth, E.P. Lee, and R. Briggs~pers. comm.!, have consid-
ered the equilibrium of an isolated, charge-neutralized, self-
pinched ion beam pulse in the absence of background plasma.
In contrast, we consider here the case where “fresh” plasma
is always available in front of the beam, and there are no
electrons comoving with the beam~Kaganovichet al., 2001!.

2. BASIC EQUATIONS FOR DESCRIPTION
OF ION BEAM PULSE PROPAGATION
IN A BACKGROUND PLASMA

In most applications, the background plasma electrons are
cold—the electron thermal velocity is small compared with
the beam velocity. Particle-in-cell simulations show that in
most cases, the electron flow is laminar and does not form
multistreaming. Thus, the electron fluid equations can be
used for the electron description, and thermal effects are
neglected in the present study. The electron fluid equations
together with Maxwell’s equations comprise a complete sys-
tem of equations describing the electron response to a prop-
agating ion beam pulse. The electron cold-fluid equations
consist of the continuity equation,

]ne

]t
1 ¹{~neVe! 5 0, ~1!

and the force balance equation,

]pe

]t
1 ~Ve{¹!pe 5 2eSE 1

1

c
Ve 3 BD, ~2!

where2e is the electron charge,Ve is the electron flow
velocity, pe 5 gemeVe is the average electron momentum,
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me is the electron rest mass, andge is the relativistic mass
factor. Maxwell’s equations for the self-generated electric
and magnetic fields,E andB, are given by

¹ 3 B 5
4pe

c
~ZbnbVb 2 neVe! 1

1

c

]E

]t
, ~3!

¹ 3 E 5 2
1

c

]B

]t
, ~4!

whereVb is the ion beam flow velocity,ne andnb are the
number densities of the plasma electrons and beam ions,
respectively~far away from the beamner np!, andZb is the
ion beam charge state. The plasma ions are assumed to
remain stationary withVi 5 0. The assumption of immobile
plasma ions is valid for sufficiently short ion pulses with
2l b , rb!M0me ~Kaganovichet al., 2001!. Here,rb and 2l b

are the ion beam radius and length, respectively, andM is
the plasma ion mass.

Considerable simplification can be achieved by applying
the conservation of generalized vorticityV ~Kaganovich
et al., 2001!. If V is initially equal to zero ahead of the beam,
and all streamlines inside of the beam originate from the
region ahead of the beam, thenV remains equal to zero
everywhere, that is,

V [ ¹ 3 pe 2
e

c
B 5 0. ~5!

Substituting Eq.~5! into Eq.~2! yields

]pe

]t
1 ¹Ke 5 2eE, ~6!

whereKe5 ~ge21!mec2 is the electron kinetic energy. Note
that the inertia terms in Eq.~6! are comparable in size to the
Lorentz force term and cannot be omitted. Estimating the
self-magnetic field from Eq.~5!, we conclude that the elec-
tron gyroradius is of the order of the beam radius. This is a
consequence of the fact that the electrons originate from the
region of zero magnetic field in front of the beam. If most
electrons are dragged along with the beam and originate
from the region of large magnetic field, the situation may be
different~Kaganovichet al., 2001!.

3. APPROXIMATE SYSTEM OF EQUATIONS
FOR LONG DENSE CHARGE BUNCHES
(Vb/vp, rb ,, l b)

In this section, an approximate set of equations is derived
for a long ~rb ,, l b!, cylindrically symmetric ion charge
bunch satisfying

Vb0vp ,, lb. ~7!

For long bunches~rb ,, l b!, radial derivatives are much
larger than longitudinal derivatives. Therefore, it follows

from Eq. ~5! for cylindrically symmetric beams that the
azimuthal self-magnetic field is determined in terms of the
longitudinal flow velocity, which gives

B 5 2
c

e

]pez

]r
. ~8!

The displacement current, the last term on the right-hand
side of Eq.~3!, can be neglected under the condition in
Eq. ~7!. Thus, Eq.~3! simplifies to become

2
1

r

]

]r
r

]

]r
pez5

4pe

c
~ZbnbVbz2 neVez!. ~9!

Equation~9! has been also derived by Welchet al. ~2002!.
Equation~9! describes the degree of current neutralization
of the beam. Under the condition in Eq.~7!, the degree of
charge neutralization is very close to unity~Kaganovich
et al., 2001!, and the quasi-neutrality condition holds with

ne 5 Zbnb 1 np, ~10!

wherenp is the background plasma ion density.
For a flat-top ion beam density profile with constant ve-

locity Vb, Eq.~9! has the solution in the nonrelativistic limit

Vez~r ! 5
ZbnbVbz

Zbnb 1 np 512
W

11 W

I0~r0dpb!

I0~rb0dpb!
, r , rb,

1

11 W

K0~r0dp!

K0~rb0dp!
, r . rb,

~11!

where

W 5
dpbI0~rb0dpb!

dp I1~rb0dpb!

K1~rb0dp!

K0~rb0dp!
. ~12!

Here, In~x! and Kn~x! are the modified Bessel functions,
dp5c0~4pnpe20me!

102,anddpb5c0@4pe2~np1Zbnb!0me#
102.

The fractional degree oflocal current neutralizationfc~r ! is
defined by Davidson and Qin~2001!

fc~r ! 5
neVez~r !

ZbnbVbz

. ~13!

Substituting Eqs.~10! and~11! into Eq. ~13! gives the de-
gree of current neutralization at the beam center and at the
beam edge. We obtain

fc~0! 5 12
W

11 W

1

I0~rb0dpb!
, ~14!

and

fc~rb! 5
1

11 W
. ~15!
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Note that in the limitrb .. dp, fc~0! r 1, and fc~rb! r

dp0~dp 1 dpb!, and the current flows at the edge of the beam
over distances of the order ofdpb. Moreover, for more real-
istic ion beam density profiles, the edge profile falls off over
a finite widthdrb. Equation~15! is valid only if drb R dpb,
and in the opposite limit withdrb .. dpb, we obtainfc~rb!r1.
The self-magnetic field can be calculated making use of
Eq. ~8! and Eq.~11!. The degree of magnetic neutralization
fm~r ! inside the beam is determined by the degree of current
neutralization defined by

fm~r ! 5 2
Ie~r !

Ib~r !
, ~16!

where Ie~r ! is the electron current, Ie~r ! 5
2e*0

r neVez2pr dr, andIb~r ! is the ion beam current,Ib~r !5
Zbe*0

r nbVbz2pr dr, both within radius r. Substituting
Eqs.~8! and~11! into Eq.~16! gives

fm~r ! 5 12
2dpb

r

W

11 W

I1~r0dpb!

I0~rb0dpb!
. ~17!

Note that forr 5 rb, the degree of magnetic neutralization
also gives the ratio of the total net current to the total beam
current, that is,Inet0Ib512 fm~rb!.Asimilar expression was
derived by Welchet al.~2001!. The ratio of the beam radius
to the skin depth can be expressed as

rb

dp

5 2S Ib

IA

fpD102

and
rb

dp

5 2F Ib

IA

~11 fp!G102

,

~18!

where IA [ ~mec30e!bb ' 17bbkA is the ~nonrelativistic!
Alfven current for electrons with velocitybbc and fp [
np0~Zbnb! is the normalized plasma density. Therefore, the
normalized net currentInet0Ib is a function ofIb0IA and fp,
which can be expressed as

Inet

Ib

5 F IA

Ib

~11 fp!G102 W

11 W

I1~rb0dpb!

I0~rb0dpb!
. ~19!

The degree of net current neutralization is illustrated in
Figure 1 as a function of the normalized plasma density for
different values ofIb0IA. For fp . 0.5, Eq. ~19! can be
approximated within 5% accuracy as

Inet

Ib

5
L~ fp!

@4Ib~ fp 1 1!0IA 1 L2~ fp!#102 , ~20!

whereL~ fp! 5 2!fp0~!fp 1!fp 1 1!.
If the ion beam density profile has a finite edge thickness

drb, then Eq.~19! is valid only if drb ,, dpb, or equivalently,
fp .. 0.5~rb0drb!2!IA0Ib.

The electric field is obtained from Eq.~6!. Small depar-
tures from charge neutrality can be estimated by making use
of Poisson’s equation:

~Zbnb 1 np 2 ne! 5
¹{E

4pe
. ~21!

Here,np denotes density of background ions. It is conve-
nient to introduce the average degree of charge neutraliza-
tion ^ f & over the beam cross section defined by

^ f & 5 12

2E
0

rb

~Zbnb 1 np 2 ne!r dr

Zbnb rb
2 . ~22!

Making use of Poisson’s equation~21!, we obtain from
Eq. ~22!

^ f & 5 12
E~rb!

2peZbnb rb

. ~23!

In the nonrelativistic case, Eq.~6! givesE52~me0e!Vez]Vez0
]r, and making use of Eq.~11!, the degree of charge neutral-
ization is given by

^ f & 5 12
2bb

2

11 fp

dpb
2

rbdp

1

~11 W!2

K1~rb0dp!

K0~rb0dp!
. ~24!

Note that in the limitrb .. dp, Eq.~24! reduces to

^ f & 5 12
2bb

2

11 fp

dpb
2dp

rb~dpb
2 1 dp

2!
. ~25!

It can be readily shown~Kaganovichet al., 2001! that
the maximum deviation from quasi-neutrality occurs when
rb ; c0vp, and the degree of nonquasi-neutrality is bounded
by ~Zbnb 1 np 2 ne!0~Zbnb! , 0.25bb

2. Therefore, for non-
relativistic, long ion pulses, there is almost complete charge

Fig. 1. Plot of normalized net current in the beam versus normalized plasma
densitynp0Zbnb for different values ofIb0IA.
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neutralization. For heavy ion fusion parameters,bb , 0.25
and degree of charge neutralization is more than 98%.

In the nonrelativistic limit, the force acting on the beam
ions is~Hahn & Lee, 1996; Kaganovichet al., 2001!

Fr 5 mee~Vbz2 Vez!
]Vez

]r
. ~26!

It follows from Eq.~9! thatVbz . Vez and]Vez0]r , 0, and
therefore the force acting on the beam ions in the presence of
a dense plasma is alwaysfocusing~Fr , 0!.

The effective self-electric perveance in the presence of
plasma scales as 12 ^ f &, where^ f & is the averaged charge
neutralization defined in Eq.~24!. Moreover, thetotal effec-
tive perveance including both self-electric and self-magnetic
effects scales as~Davidson & Qin, 2001!

Qeff

Q0

5
12 ^ f & 2 bb

2@12 fm~rb!#

12 bb
2 , ~27!

where the magnetic neutralizationfm~rb! at the beam edge is
defined in Eq.~17!. Here, the beam perveanceQ0 in the
absence of plasma is defined by

Q0 5
2pe2Zb

2nb rb
2

gb
3MVb

2 . ~28!

Substituting Eqs.~17!, ~24!, and~28! into Eq.~27! yields

Qeff

Q0

5 2gb
2 bb

2
Inet

Ib
F12

Vez~rb!

Vb
G, ~29!

whereVez0Vb is given by Eq.~11!. Note that Eq.~29! is
similar to Eq.~26!. The second term on the right-hand side
of Eq.~29! is small except forfp ,, 1 andIb .. IA04. There-
fore the self-electric perveance is dominated by the self-
magnetic perveance, and thetotaleffective perveance scales
as normalized net current defined in Eq.~20! except for
the case of very tenuous plasma. To within 5% accuracy,
K1~x!0K0~x! ' 1 1 10~3x! for x . 0.1, andI0~x!0I1~x! '
!11 40x2 for arbitrary x. ThereforeQeff 0Q0~IA0Ib, fp! in
Eq. ~30! can be readily calculated as a function ofIb0IA and
the normalized plasma densityfp by making use of the above
approximations and Eqs.~12! and~18!. The total effective
perveance can be expressed as

Qeff 5 2
Zbme

gb M

rb

dp

@W1 fp0~11 fp!#

~11 fp!~11 W!2

K1~rb0dp!

K0~rb0dp!
. ~30!

In the nonrelativistic limit, and forrb .. dp and fp .. 1, it
follows thatWr 1 and Eq.~30! simplifies to give

Qeff 5 2
Zbme

M

rb

2dp

1

~11 fp!
. ~31!

The effective perveanceQeff~IA0Ib, fp! is illustrated in Fig-
ure 2 as a function of the normalized plasma density for
different values ofIb0IA. Note that Eq.~31! gives a different
sign for the perveance than Olson’s electrostatic result for a
plasma plug,Qe 5 Zbme0M ~Olson, 2001a!. Also, the per-
veance in Eq.~31! is greatly reduced for the case of beam
propagation in dense plasma withnp .. Zbnb.

In summary, Eqs.~6!–~21! describe the quasi-steady-
state self-consistent electron motion induced by a long, dense
ion charge bunch. Examples of calculations and compari-
sons with the results of electromagnetic particle-in-cell sim-
ulations can be found in Kaganovichet al. ~2001! and
Kaganovich~2002!.

5. DISCUSSION

The propagation of a finite-length ion beam pulse through a
background plasma has been studied. The analytical solu-
tions for the electric and magnetic fields generated by the
ion beam pulse have been determined in the nonlinear case
for arbitrary values of beam and plasma densities, under the
assumption of a long beam, where the beam length is much
longer than the beam radius. Under these conditions, a re-
duction in the dimensionality of the problem is possible.
Assuming an axisymmetric beam pulse, the longitudinal
electron flow velocity is determined for one-dimensional
variations in the radial direction for each axial slice of the
beam@Eq. ~9!# . The electric and magnetic fields are then
readily calculated from the longitudinal electron flow veloc-
ity using Eqs.~6! and~8!, respectively.

The approach used here can be generalized to the case of
nonuniform, nonstationary plasma density and beam den-
sity profiles, and forms the basis for a hybrid semianalytical
approach to be used for calculations of beam propagation in

Fig. 2. Plot of normalized total effective perveance,Qeff 0Qe, whereQe 5
Zbme0M, versus normalized plasma densitynp0Zbnb for different values
of Ib0IA.
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the target chamber. This work is now underway. The analyt-
ical formulas derived in this article can provide an impor-
tant benchmark for numerical codes and provide scaling
laws for different beam and plasma parameters.

The charge neutralization depends crucially on the beam
length, and is determined by product of beam pulse duration
to plasma frequency,l bvp0Vb. If l bvp0Vb .. 1, the degree of
charge neutralization is very close to unity. Current neutral-
ization is usually weaker than charge neutralization. There-
fore, the magnetic pinching force dominates the electric
force, and total effective perveance is negative during quasi-
steady-state beam propagation through the background
plasma. The degree of current neutralization is determined
by the ratio of the beam radius to the skin depth,rb0~c0vp!.
The effective perveance of the beam including the effects of
background plasma is given by Eq.~30!.

In summary, the analytical results agree well with the
results of numerical simulations for ion beam charge and
current neutralization. The visualization of the data ob-
tained in the numerical simulations shows complex col-
lective phenomena during beam entry into and exit from
the plasma, and will be described in future publications.
Further visualization is also available on the website
http:00w3.pppl.gov0;nnp.
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