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How to patch active plasma and collisionless sheath: A practical guide
Igor D. Kaganovicha)

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

~Received 9 August 2002; accepted 27 August 2002!

Most plasmas have a very thin sheath compared with the plasma dimension. This necessitates
separate calculations of the plasma and sheath. The Bohm criterion provides the boundary condition
for calculation of plasma profiles. To calculate sheath properties a value of the electric field at the
plasma–sheath interface has to be specified in addition to the Bohm criterion. The value of the
boundary electric field and a robust procedure to approximately patch plasma and collisionless
sheath with a very good accuracy are reported. ©2002 American Institute of Physics.
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I. INTRODUCTION

The calculation of plasma profiles is nowadays a rout
task. In most plasmas employed in applications the De
lengthlD is small compared with the plasma half widthL.
Resolving the small Debye length throughout the wh
plasma requires solving the Poisson equation, which is c
lenging computationally because the electric field has to
obtained from small differences between the electron and
densities. To avoid the inconvenience, the standard proce
is to separate the plasma and sheath regions, and to em
the quasineutrality condition in the plasma region instead
Poisson’s equation. The Bohm criterion—setting the ion
locity equal to the ion sound velocity—gives the bounda
condition for the plasma region and uniquely defines plas
profiles. In contrast to the plasma region, the Bohm criter
is not sufficient for a unique determination of sheath prop
ties.

If the sheath potential is much larger than the elect
temperature, it follows from the Boltzmann relation that t
electron density in the sheath can be neglected, the pla
sheath boundary can be assumed infinitely thin, and the e
tric field at the plasma–sheath interface can be set to z
This approach has been successfully applied for calcula
sheath parameters in dc~Child–Langmuir law1! and rf
discharges.2–4

The relevant question is: Is it possible to calculate she
properties with higher accuracy? If all regions with a leng
of orderlD and a potential drop order the electron tempe
tureTe have to be resolved, an accurate patching between
plasma and the sheath region has to be performed. In gen
it requires either a direct numerical solution of Poisso
equation throughout the plasma and sheath regions or ap
ing matched asymptotic approximations, as described
Refs. 5 and 6, and in references therein. Numerical sim
tion of Poisson’s equation for the whole discharge is com
tationally intensive and inefficient. The utilization o
matched asymptotic approximations requires a great dea
mathematical expertise and is not very robust for enginee
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purposes. Therefore, there have been a number of attemp
patch the plasma and sheath approximately.

Poisson’s equation is a second order equation, an
requires two boundary conditions: the potential on the w
and another condition set at the plasma–sheath interface
cause the position of the plasma–sheath interface is
knowna priori, the values of both the potential and the ele
tric field have to be specified. In Refs. 7 and 8 the va
Te /(elDs) was proposed for the electric field at the plasm
sheath patching point, wherelDs is the Debye length corre
sponding to the plasma densityns at the plasma–sheath in
terface. This electric field has been utilized as the bound
condition to join the plasma and sheath in discrete plasm
sheath models and was used in the calculations of dc~Ref. 7!
and rf ~Ref. 3! sheaths.

This approach has been recently criticized in Ref.
where it was claimed that such a procedure results in ‘‘
disjunction between the plasma and sheath.’’ In th
response,10 the authors of Ref. 8 refuted this claim, and e
plained that the sheath solution in Ref. 9 was taken with z
electric field at the plasma–sheath boundary instead
Te /(elDs).

In this paper, a new procedure for approximate patch
is proposed. A new value for the electric field at the plasm
sheath boundary is determined from numerical calculati
and the theory of the transition layer to b
0.962@Te /(elDs)#(lDsZ/cs)

3/5, where Z is the ionization
frequency,cs5ATe /M is the ion sound speed, andM is the
ion mass. This value agrees with the theory of the transit
layer between the plasma and sheath.5,6 In addition, it was
found that accounting for the small transition region betwe
the plasma and sheath regions, which has a width of o
(lDs /L)4/5lDs and a potential drop of order (lDs /L)2/5Te ,
yields an approximate solution which is very close to t
exact solution. These numerical findings verify the theory
the transition layer described in Refs. 5, 6, and 9.

II. BASIC EQUATIONS

We shall employ fluid equations in one dimension in t
collisionless approximations. The same notation is used a
Ref. 9. These equations consist of the continuity equatio
8 © 2002 American Institute of Physics
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d

dx
~niv i !5Zne , ~1!

the ion momentum conservation equation,

M
d

dx
~niv i

2!52eni

dV

dx
, ~2!

and the Boltzmann relation governing electron density,

ne5n0 expS eV

Te
D . ~3!

Here, the subscriptsi and e denote ion and electron
quantities, respectively, and the subscript 0 correspond
the central density values atx50. V is the potential.

The potential is given by Poisson’s equation

2
d2V

dx2 54pe~ni2ne!. ~4!

The boundary conditions for the system of Eqs.~1!–~4!
are at the symmetry axis (x50), V50, dV/dx50, ne5ni

[n0 ; at the wall (x5L), V5Vw , where Vw is the wall
potential, see Appendix A. The ionization frequencyZ is an
eigenvalue of the system of Eqs.~1!–~4!.

The system of Eqs.~1!–~4! is known to yield results
very close to the exact ion kinetic approach.11,12 Because of
its simplicity, it has been widely employed in theoretical a
engineering studies.

In the limit lDs!L, the potential can be determine
from the quasineutrality conditionni5ne . Substituting the
Boltzmann relation Eq.~3! into the quasineutrality condition
yields the plasma potentialV5Te /e ln ni . Following Ref. 9,
and normalizing Eqs.~1!–~3! in the plasma region (ne5ni)
with Ni5ni /n0 , Ne5ne /n0 , f52eV/Te , U5v i /cs gives9

Ni5
1

11U2 5e2f, ~5!

dU

dx
5

Z

cs

11U2

12U2 . ~6!

Equation ~6! has the solutionxZ/cs52 arctanU2U.5,13

Equation~6! is singular at the pointU51, meaning that the
plasma can not overcome the ion sound velocity in this
lution. Bohm showed that sheath can be patched with
plasma only if v i>cs .14 Therefore, at the plasma–shea
interface (x5Lp) the Bohm criterionv i5cs holds. From the
Bohm criterion, one readily findsZ5(p/221)cs /Lp , and
the plasma solution givesns5n0/2 and Vs52Te /e ln 2 at
the pointU51.

III. PATCHING SHEATH AND PLASMA

The Poisson equation~4! is a second order equation
therefore, it requires two boundary conditions. One is
value of the potential at the wallVw , and another boundar
condition is determined from correct patching with t
plasma. Using direct numerical integration of the system
Eqs. ~1!–~4! for a wide range of parameterslD0 /L, where
lD0 is the Debye length corresponding to the central plas
Downloaded 07 Mar 2003 to 198.35.5.248. Redistribution subject to AI
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densityn0 , it was determined that the value of the elect
field at the point wherev i5cs agrees with the expression,

Es5Te~lD0 /L !3/5/~elD0!, ~7!

to within 10% accuracy and is independent on the wall p
tential. The results of the simulations are gathered in Tab

Table I lists values of the normalized electric fie
eElD0 /Te at the point wherev i5cs for L51, four different
values oflD0 /L ~in a wide parameter range!, and three val-
ues of the wall potentialsVw521,5,10Te . The reference
valuelDr /L50.707131022 was taken to be the same as
Ref. 9. The other values oflD /L include the value half an
order of magnitude larger than the reference value, half
order of and an order of magnitude smaller than the refere
value. The second line in Table I shows the value
(lD0 /L)3/5. From Table I, it is clearly seen that all the valu
in a given column are close to each other, meaning that
value of the normalized electric fieldeElD0 /Te at the point
wherev i5cs is close to the value given by Eq.~7! and is
independent of the wall potential.

Knowing the value of the electric field at the plasma
sheath interface, the sheath properties can be determ
Neglecting the increase in the ion flux due to ionization
the bulk of the sheath region enables one to readily integ
Eqs.~1!, ~2!, giving

ni5
Gs

csF11
2e~Vs2V!

Te
G1/2, ~8!

whereVs is the potential at the plasma–sheath interface
Gs is the ion flux in the sheath. Substituting the ion dens
Eq. ~8! and electron density Eq.~3! into Poisson’s equation
and integrating once gives

1

2 S dh

dyD 2

5
1

2 S dh

dyD
s

2

1g~112h!1/21exp~2h!

2~11g!, ~9!

where, following the same notation as in Ref. 9, these n
malized quantities were introduced:y5(x2xs)/lDs , h
52e(V2Vs)/Te , dh/dyus5lDseEs /Te , and g
52Gs /n0cs . g is a bit larger than unity, and accounts for th
additional ionization in the transition layer and adjace
sheath region~see Appendix B for details!. Equation~9! is
readily integrated, yielding ion and electron density profi
in the sheath, as shown in Fig. 1~a!.

Figure 1 shows very good agreement between the e
and approximate sheath solutions, in contrast to the claim

TABLE I. The value of normalized electric fieldeElD0 /Te for different
values oflD0 /L and wall potentials. The reference valuelDr /L50.7071
31022 was taken from Ref. 9.

lD05lDrA10 lD05lDr lD05lDr /A10 lD05lDr /10

(lD0 /L)3/5 0.102 0.051 0.0257 0.0130
fw51 0.102 0.049 0.0240 0.0119
fw55 0.112 0.052 0.0243 0.0121
fw510 0.117 0.053 0.0244 0.0121
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Ref. 9. In Ref. 9, zero boundary electric field at the plas
sheath interface was used, thus, producing an oversimpl
patching, as described in Ref. 10.

Figure 2 depicts the electric field as a function of t
normalized potential (2eV/Te). This figure is similar to Fig.
2 of Ref. 9 but instead of patching the plasma solution
~6! and the sheath solution Eq.~9! usingEs50, Es given by
Eq. ~7! was used. Apparently, such a patching of plasma
sheath solutions yields an electric field profile, which is ve
close to the exact solution, in disagreement with the claim
Ref. 9.

The patching of the sheath solution of Eq.~9! with the
plasma solution Eqs.~5! and ~6! at the point whereE5Es

apparently gives continuous electric field profiles, beca
the electric field is assumed continuous in the patching. T
disagrees with the claim of Ref. 9.10 At the same time, in
accord with Ref. 9 the value of the electric fieldEs

FIG. 1. ~a! Ion and electron density profiles and~b! ion flow velocity pro-
files calculated from the full system of Eqs.~1!–~4! ~solid lines!, and ap-
proximate solutions in the sheath using Eq.~9! ~dashed line for ion density
and dotted line for electron density!. Approximate solutions in the sheat
with the electric field at the plasma–sheath boundary given by Eq.~7! and
the location shifted from point A (x50.907) to point B (x50.921) are
practically indistinguishable from the exact solution. Prime denotes
sheath solution with the electric field at the plasma–sheath boundarEs

5Te /(elDs), as proposed in Ref. 7. The plasma solution of Eqs.~5!, and
~6! is shown with the dashed–dotted lines. The discharge conditions ar
same as in Fig. 1 of Ref. 9:lD0 /L50.707131022, Vw525Te /e.
Downloaded 07 Mar 2003 to 198.35.5.248. Redistribution subject to AI
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5Te/(elDs) ~proposed for patching in Ref. 7! corresponds to
the point of exact solutionV523Te which is far inside the
sheath, namely, atx50.985. Thus, it neglects part of th
sheath~from x50.907 tox50.985) and correspondingly ne
glects the potential difference (320.62) Te , as compared to
the exact solution.

From Fig. 2, it is obvious that even patching using t
value of electric fieldEs in Eq. ~7! does leave out a part o
the exact solution. Shifting the patching point by a distan
in potential dVtr5(2ZlDs /cs)

2/5Te /(2e) produces very
good agreement between the approximate sheath solu
Eq. ~9! and the exact solution. This ‘‘disjunction’’ betwee
the plasma and sheath clearly indicates the necessity
special transition layer between plasma and sheath.

IV. TRANSITION LAYER

The transition layer appears due to a sonic singularity
the plasma equations. As shown by Bohm,14 the sheath elec-
tric field can be smoothly patched with the small elect
field in the plasma~small compared with the sheath! only if
the ion flow velocity at the plasma–sheath boundary is lar
or equal to the ion sound velocity. Therefore, a transit
through the ion sound velocity should occur in the plasma
follows from Eq. ~6! that the ion sound velocity cannot b
exceeded in a plasma with a slab geometry, and, theref
the ion sound velocity must be reached at the boundary
tween the sheath and plasma regions. The situation is di
ent for nonslab geometry. If the plasma expands in so
kind of plasma nozzle with cross-sectional areaA(x), the
continuity equations become instead of Eqs.~1! and ~2!,

e

he

FIG. 2. The variation in the electric field in units ofTe /lDs as a function of
the potential in units of (Te /e). The conditions are the same as in Fig.
The finely dotted line corresponds to the sheath solution patched at the
where the plasma solution given by Eqs.~5! and ~6! has the same electric
field Es as given by Eq.~7!, corresponds to point A (2eV/Te50.623). The
coarsely dotted line~practically indistinguishable from the exact solution!
patches the sheath solution at the point B (2eV/Te50.709) with the patch-
ing position being shifted by 0.085. The shifting distance correspond
1/2df tr50.085, wheredf tr is given by Eq.~20!. The plasma solution of
Eqs.~5! and ~6! is shown with dashed–dotted lines. The dashed line co
sponds to the sheath solution utilizing the value of the electric field at
plasma–sheath boundaryEs5Te /(elDs), as proposed in Ref. 7.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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d

dx
~niv iA!5ZneA, ~10!

M
d

dx
~Aniv i

2!52eAni

dV

dx
, ~11!

and Eq.~6! describing the plasma region is modified to

~12U2!
dU

dx
5

Z

cs
~11U2!2US E11

1

A

dA

dxD , ~12!

where the electric fieldE15E2(2Ted ln Ni /dx) is the dif-
ference between the actual electric field and the electric fi
obtained with the quasineutrality assumption and the Bo
mann relation. From Eq.~12!, it is obvious that a transition
from subsonic to supersonic flow is possible only if a plas
channel is expanding, for example in cylindrical or spheri
geometries. A necessary condition for avoiding the sonic
gularity is that the right-hand side of Eq.~12! equals zero
whereU51. In slab geometry it is only possible ifE1.0.
Transition through sonic speed in a slab geometry requ
E.(2Ted ln Ni /dx), i.e., breaking quasineutrality.

Correspondingly, to obtain the mathematical structure
the transition layer one has to solve Poisson’s equation
the sonic point. In the sonic point (x5xs , v i5cs), ni

>n0/2, a series expansion of the ion flux gives

G i>n0/2@cs1Z~x2xs!#, ~13!

and the ion velocity becomes@making use of Eqs.~1! and
~2!#

M ~v i
22cs

2!/252e~V2Vs!2ZMcs~x2xs!, ~14!

yielding the space charge near the sonic point,

ni2ne5
n0

2 F 11Z/cs~x2xs!

A112f22Z/cs~x2xs!
2e2fG . ~15!

Expanding the space charge in Eq.~15! to the first non-
zero term inf andx2xs gives the Poisson equation near t
sonic point,

d2f

dx2 5lD0
22F1

2
~f2fs!

21
Z

cs
~x2xs!G . ~16!

The same result can be obtained by differentiating
Poisson equation~4! and substituting the ion and electro
density derivatives from Eqs.~1!–~3!, which readily gives5

d3f

dx3 5lD0
22Fdf

dx S e2f2
Ni

U2D1
2Ze2f

csU
G . ~17!

Equation ~17! is exact and describes both plasma a
sheath regions. In the limitlD0!cs /Z, the electric field can
be determined by setting the right-hand side of Eq.~17! is to
zero. This procedure fails at certainf5fs , where Ni

5U2e2f. At this point (x5xs), the ion velocity is close to
the ion sound velocityU'1, because the quasineutrali
conditionNi5e2f holds in the nearest vicinity of this poin
In the neighborhood off5fs , the left-hand side of Eq.~17!
must be also accounted for. Performing Taylor expans
nearf5fs : e2f2Ni /U25(U2e2f2Ni)/U

2'1/2@U2(f)
21#'(f2fs), Eq. ~17! becomes
Downloaded 07 Mar 2003 to 198.35.5.248. Redistribution subject to AI
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d3f

dx3 5lD0
22Fdf

dx
~f2fs!1

Z

cs
G . ~18!

Integrating Eq.~18! yields Eq.~16!.
Equation~16! is a nonlinear, nonhomogeneous differe

tial equation. The scaling of the solution for potentialdf tr

and transition layer widthdxtr can be estimated from Eq
~16!, looking for a solution in the form f2fs

5f trF(x/xtr), where F5O(1). Near the pointx5xs , all
terms of Eq.~16! should be of the same order, therefore

df tr

~dxtr!
2 5

1

2
lD0

22~df tr!
2,

1

2
~df tr!

25
Z

cs
dxtr . ~19!

The solution of Eq.~19! is

df tr5S 2lDsZ

cs
D 2/5

, dxtr5lDsS cs

2lDsZ
D 1/5

. ~20!

This scaling Eq.~20! was obtained in matched solution
in Refs. 5, 6, and 13. Note that it is necessary to account
the ionization term@last term in Eqs.~18! and~16!# in order
to obtain a smooth matching of the plasma and she
solutions.15 The functionF(j5x/xtr) is obtained from the
equation

d2F

dj2 5F21j. ~21!

The boundary condition corresponds to the quasineu
region atj,0 F52A2j0,dF/dj51/2A2j0, where2j0

@1 is any large number.
A plot of the functionF(j) is shown in Fig. 3.
In Fig. 3, one can see that the functionF(j) breaks from

the quasineutral solutionFpl(j)52A2j at j.21. The
sonic point corresponds toF(y)50 @see Eq.~14!, second
term on the right-hand side is small compared to the fi

FIG. 3. A plot of normalized potential and electric field in the transitio
layer f2fs5f trF(j5x/xtr) and the normalized electric fieldE
5(f tr /xtr)dF/dj.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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term#. At this point,dF/dj50.962 and the value of electri
field is thereforeEs50.962df tr /dxtr . Substituting scales fo
df tr anddxtr from Eqs.~20! give

Es50.962
Te

elDs
S 2lDsZ

cs
D 3/5

. ~22!

Substituting Z5(p/221)cs /L for a collisionless plasma
gives the same variation for the electric field at the so
point as Eq.~7! but with a factor 0.962@&(p22)#3/5/&
50.907. As can be seen from Table. I, the value of elec
field in Eq. ~7! reduced by a factor 0.907 agrees better w
the numerical simulation results at small Debye lengths~see
the last two columns!.

To summarize, the transition region is a distinct regio
which cannot be attributed to either the sheath or plas
regions. Indeed, though in this region the quasineutra
condition approximately holds~see Fig. 1x'0.9040.94),
the electric field cannot be determined from the quasineu
ity condition@see Eq.~16!#. From the other side, even thoug
Poisson’s equation is used to determine the properties o
transition region, this region is not a sheath if the Boh
concept of the sheath is used: a ‘‘region, characterized by
negligible electron density.’’ 14

V. CONCLUSION

An approximate procedure to patch sheath and plasm
proposed. The sheath and plasma are patched at the
where the value of the electric field Es

50.962Te /elDs(2lDsZ/cs)
3/5, the transition layer is ac

counted simply by shifting the sheath solution from t
patching point by a distancedxtr5lDs /(2lDsZ/cs)

1/5 and
the potential bydV52(2ZlDs /cs)

2/5Te /(2e). For most
practical purposes, the value ofdV!Te is very small com-
pared to the sheath potential and can be neglected.

ACKNOWLEDGMENTS

The author is grateful to Ron Davidson, Raoul Frankl
Valery Godyak, Kyle Morrison, Yevgeny Raitses, Edwa
Startsev, and Gennady Shvets for helpful discussions.

This research was supported by Department of Ene
via the University Research Support Program of Prince
Plasma Physics Laboratory.

APPENDIX A: NOTE ON WALL POTENTIAL

The wall potential is to be determined by equating t
ion and electron fluxes. The ion flux isG i>nscs , from Eq.
~13!. The electron flux is given by an integral over the ele
tron velocity distribution function~EVDF! for all electrons
with velocity directed toward the wall

Gew5newS me

2pTe
D 1/2E

0

`

vx expS 2
mevx

2

2Te
Ddvx . ~A1!

Integrating yields

Gew5newS Te

2pme
D 1/2

, ~A2!
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where the electron density at the wallnew is to be determined
from the Boltzmann relationnw5ns exp@e(Vs2Vw)/Te#.
Therefore, equating the ion and electron fluxes at the w
gives

Vs2Vw5
Te

2e
lnS M

2pme
D . ~A3!

Equation~A3! is correct for a collisionless sheath and eith
collisional or collisionless plasmas. For the case of a co
sionless plasma,Vs52Te /e ln 2.

Though in the present paper only the Boltzmann relat
is used, it is necessary to note that the Boltzmann relatio
not accurate for electrons leaving the plasma and being
at the wall ~so-called loss cone!. The Boltzmann relation
requires a Maxwellian EVDF and that the electrons a
trapped in a potential well. Because of fast losses to the w
the EVDF is non-Maxwellian in the loss cone. Therefore
is necessary to solve the kinetic equation for fast electron
obtain a correct EVDF in the loss cone, and, subsequentl
predict the wall potential. Examples of such a calculation
given in Ref. 16. The analytical solution of the EVDF in th
loss cone is given in Ref. 17.

APPENDIX B: IONIZATION IN THE SHEATH REGION

Ionization in the sheath region is determined by the
tegral

I sh5ZE
xs

xw
ne~x!dx. ~B1!

Changing the variable of integration fromx to the normal-
ized potentialh5e(V2Vs)/Te , the integral~B1! becomes

I sh5ZnslDSE
0

hw e2h

dh/dy
dh, ~B2!

where the normalized electric fielddh/dy is given by Eq.
~9!. The function (112h)1/21exp(2h)22'h3/3 at h!1,
for that reason, the integral~B2! diverges ifEs50 (dh/dy
5A2/3h3/2).15 Therefore, the main contribution to the inte
gral is at smallh. Numerical integration shows that withi
5% accuracy,

E
0

hw e2h

dh/dy
dh'

1.3

AeEslDs /Te

~B3!

in the wide rangeeEslDs /Te50.01– 0.3. Substituting this
estimate for the integral Eq.~B3! into Eq. ~B2!, one obtains
an equation for g52Gs /n0cs , where Gs5n0cs/2
1Zn0dxtr/21I sh. Finally, we obtain

g511
Z

cs
S dxtr1

1.3lDs

AlDseEs /Te
D . ~B4!
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