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How to patch active plasma and collisionless sheath: A practical guide
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Most plasmas have a very thin sheath compared with the plasma dimension. This necessitates
separate calculations of the plasma and sheath. The Bohm criterion provides the boundary condition
for calculation of plasma profiles. To calculate sheath properties a value of the electric field at the
plasma-sheath interface has to be specified in addition to the Bohm criterion. The value of the
boundary electric field and a robust procedure to approximately patch plasma and collisionless
sheath with a very good accuracy are reported2@2 American Institute of Physics.
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I. INTRODUCTION purposes. Therefore, there have been a number of attempts to
patch the plasma and sheath approximately.

The calculation of plasma profiles is nowadays a routine  Poisson’s equation is a second order equation, and it
task. In most plasmas employed in applications the Debyeequires two boundary conditions: the potential on the wall,
length\p is small compared with the plasma half width ~ and another condition set at the plasma—sheath interface. Be-
Resolving the small Debye length throughout the wholecause the position of the plasma-sheath interface is un-
plasma requires solving the Poisson equation, which is chaknowna priori, the values of both the potential and the elec-
lenging computationally because the electric field has to b#ric field have to be specified. In Refs. 7 and 8 the value
obtained from small differences between the electron and iofle/ (€A ps) Was proposed for the electric field at the plasma—
densities. To avoid the inconvenience, the standard proceduggeath patching point, whei, is the Debye length corre-
is to separate the plasma and sheath regions, and to emplgponding to the plasma density. at the plasma-sheath in-
the quasineutrality condition in the plasma region instead oférface. This electric field has been utilized as the boundary
Poisson’s equation. The Bohm criterion—setting the ion vecondition to join the plasma and sheath in discrete plasma-—
locity equal to the ion sound velocity—gives the boundarysheath models and was used in the calculations oRe¢. 7)
condition for the plasma region and uniquely defines plasm&nd rf(Ref. 3 sheaths.
profiles. In contrast to the plasma region, the Bohm criterion ~ ThiS approach has been recently criticized in Ref. 9,

is not sufficient for a unique determination of sheath properthere it was claimed that such a procedure results in “the
ties. disjunction between the plasma and sheath.” In their

O . .
If the sheath potential is much larger than the electror{esponSé’ the authors of Ref. 8 refuted this claim, and ex-
temperature, it follows from the Boltzmann relation that theP!ined that the sheath solution in Ref. 9 was taken with zero

electron density in the sheath can be neglected, the plasnfiectric field at the plasma-sheath boundary instead of
sheath boundary can be assumed infinitely thin, and the elea—fl(e)‘D_S)' ) .
In this paper, a new procedure for approximate patching

tric field at the plasma-sheath interface can be set to zero. d A lue for the electric field at the pl

This approach has been successfully applied for calculatin hpriﬁose .d new vda lf[e ort g;aectrlc '€ 'atlt elp alsr?a—

sheath parameters in deChild—Langmuir law) and rf eath boundary 1S determined from numerical caicuiations
and the theory of the transition layer to be

- -4
discharges: 967 To/(ENpe) I(\psZ/co)¥5, where Z is the ionization

The relevant question is: Is it possible to calculate sheat e : .
properties with higher accuracy? If all regions with a Iength_requency,cs— Te/Mis the ion sound speed, ahd is the

of orderx and a potential drop order the electron tempera °" Mass. This value agrees with the theory of the transition
D P P PET&  ver between the plasma and shedthn addition, it was

ture T, have to be resolved_, an accurate patching between thf??und that accounting for the small transition region between
plasma and the sheath region has to be performed. In generﬁq,e plasma and sheath regions, which has a width of order

it requires either a direct numerical solution of Poisson’s 25 ' o
. . Aos/L)*®\ps and a potential drop of ordenfg/L)?°T,,
equation throughout the plasma and sheath regions or appl% Ds/L)™Nos P b bs/L)™Te

) . . 8 . Yields an approximate solution which is very close to the
ing matched asymptotic approximations, as described i PP y

) . - s xact solution. These numerical findings verify the theory of
Refs. 5 and 6, and in references therein. Numerical S|mulat— g fy y

. . . . ! he transition layer described in Refs. 5, 6, and 9.

tion of Poisson’s equation for the whole discharge is compu-

tationally intensive and inefficient. The utilization of

matched asymptotic approximations requires a great deal df BASIC EQUATIONS

mathematical expertise and is not very robust for engineering  \yie shall employ fluid equations in one dimension in the
collisionless approximations. The same notation is used as in
dElectronic mail: ikaganov@pppl.gov Ref. 9. These equations consist of the continuity equation,
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d TABLE I. The value of normalized electric fieldExp /T, for different
—(njv))=2Zng, (1) values of\po/L and wall potentials. The reference valng, /L=0.7071
dx X 10 2 was taken from Ref. 9.

the ion momentum conservation equation, )\DO=)\Dr\/F) Moo=N\pr )\DOZ)\Dr/\/E Moo= N\p,/10

M d o adVv o Ouo/l)®® 0.102 0.051 0.0257 0.0130
ax(nivi)=—en, @ 42 0.102 0.049 0.0240 0.0119
bu=5 0.112 0.052 0.0243 0.0121
and the Boltzmann relation governing electron density, $y=10 0.117 0.053 0.0244 0.0121
eV
N.=nNg exr{ —) . 3
Te

Here, the subscripts and e denote ion and electron densityng, it was determined that the value of the electric
quantities, respectively, and the subscript 0 corresponds féeld at the point where; = cs agrees with the expression,
the central den_sity va]ues AE=0. V is the pote_ntial. Es:Te()\DO/L)3/5/(e)\DO)u @)

The potential is given by Poisson’s equation

d2v

S d

The boundary conditions for the system of E(5—(4)
are at the symmetry axix€0), V=0,dV/dx=0, ng=n;
=ngy; at the wall k=L), V=V,,, whereV,, is the wall
potential, see Appendix A. The ionization frequergys an
eigenvalue of the system of Eq4)—(4).

The system of Eqs(1)—(4) is known to yield results
very close to the exact ion kinetic approd¢h? Because of

to within 10% accuracy and is independent on the wall po-

(4) tential. The results of the simulations are gathered in Table I.
Table | lists values of the normalized electric field

eE\po /T, at the point where,;=c, for L=1, four different
values of\po/L (in a wide parameter rangeand three val-
ues of the wall potentialy/,,=—1,5,10",. The reference
value\p, /L=0.7071x 10 2 was taken to be the same as in
Ref. 9. The other values ofp /L include the value half an
order of magnitude larger than the reference value, half an
order of and an order of magnitude smaller than the reference
its simplicity, it has been widely employed in theoretical andvalue. 'I;ge second Ilne. n Table | shows the value of
engineering studies. (ADO/!_) . From Table |, it is clearly seen that all t.he values

In the limit Aps<L, the potential can be determined in a given column are close t(_) e_ach other, meaning that the
value of the normalized electric fiellEN o/ T, at the point
wherev;=cq is close to the value given by E¢7) and is
independent of the wall potential.

Knowing the value of the electric field at the plasma—
sheath interface, the sheath properties can be determined.
Neglecting the increase in the ion flux due to ionization in
the bulk of the sheath region enables one to readily integrate

=4e(n;—nNg).

from the quasineutrality condition;=n.. Substituting the
Boltzmann relation Eq3) into the quasineutrality condition
yields the plasma potentisd=T./eInn;. Following Ref. 9,
and normalizing Eqs(1)—(3) in the plasma regionn=n;)
with N;=n;/ng, Ne=n./ng, ¢=—eVIT,, U=v,/c, gives

e —a ¢
Ni 1+U?2 €% ) Egs.(1), (2), giving
du Z 1+U? 5 .= Is (8)
X e 1-u? © | 2e(Vs— V)™
S|
Equation (6) has the solutionxZ/cs=2 arctarl—U.>*3 Te

Equation(6) is singular at the point) =1, meaning that the whereVj is the potential at the plasma-sheath interface and
plasma can not overcome the ion sound velocity in this sof' is the ion flux in the sheath. Substituting the ion density
lution. Bohm showed that sheath can be patched with th&qg. (8) and electron density E¢3) into Poisson’s equation
plasma only ifv;=c..}* Therefore, at the plasma—sheath and integrating once gives

interface &=L ) the Bohm criteriorv; = ¢ holds. From the

N I 1/dn\? 1(dy)\?
Bohm criterion, one r(_aad|ly find€=(m/2—1)cs/L,, and E(d_ _E(d_ +y(1+27) Y2+ exp — 7)
the plasma solution givess=ny/2 andVs=—T./eln2 at y Y/s
the pointU=1. —(147), ©)
where, following the same notation as in Ref. 9, these nor-
lIl. PATCHING SHEATH AND PLASMA malized quantities were introduced:=(X—Xs)/Aps, 7

=—e(V-VyIT,, dn/dy|;=NpeE/T,, and vy

The Poisson equatiofd) is a second order equation, =2I"3/nycs. yis a bit larger than unity, and accounts for the
therefore, it requires two boundary conditions. One is theadditional ionization in the transition layer and adjacent
value of the potential at the wall,,, and another boundary sheath regior{(see Appendix B for details Equation(9) is
condition is determined from correct patching with thereadily integrated, yielding ion and electron density profiles
plasma. Using direct numerical integration of the system ofn the sheath, as shown in Fig(al
Egs. (1)—(4) for a wide range of parameteks,o/L, where Figure 1 shows very good agreement between the exact
Apo Is the Debye length corresponding to the central plasmand approximate sheath solutions, in contrast to the claim of
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FIG. 2. The variation in the electric field in units ©f/\ ps as a function of

the potential in units of T./e). The conditions are the same as in Fig. 1.
The finely dotted line corresponds to the sheath solution patched at the point
where the plasma solution given by E@S) and (6) has the same electric
field E5 as given by Eq(7), corresponds to point A{eV/T,=0.623). The
coarsely dotted lindpractically indistinguishable from the exact solution
patches the sheath solution at the point-Be(V/ T,=0.709) with the patch-

ing position being shifted by 0.085. The shifting distance corresponds to
1/26¢,=0.085, whered¢,, is given by Eq.(20). The plasma solution of
Egs.(5) and(6) is shown with dashed—dotted lines. The dashed line corre-
sponds to the sheath solution utilizing the value of the electric field at the
plasma-sheath boundaBt=T./(e\ps), as proposed in Ref. 7.

=T./(e\ps) (proposed for patching in Ref) torresponds to
the point of exact solutioW = — 3T, which is far inside the
sheath, namely, ax=0.985. Thus, it neglects part of the
FIG. 1. (8 lon and electron density profiles afio) ion flow velocity pro- sheath(from x=0.907 tox= 0.985) and correspondingly ne-

files calculated from the full system of Eqd)—(4) (solid lineg, and ap- . .
proximate solutions in the sheath using E9). (dashed line for ion density glects the potential difference (30.62) Te, as compared to

and dotted line for electron densityApproximate solutions in the sheath the exact solution.
with the electric field at the plasma—sheath boundary given by(Band From Fig. 2, it is obvious that even patching using the

the location shifted from point AX=0.907) to point B =0.921) are  yglue of electric fieldE, in Eq. (7) does leave out a part of

practically indistinguishable from the exact solution. Prime denotes th . e . . .
sheath solution with the electric field at the plasma—sheath bouritlary ‘the exact solution. Shifting the patching point by a distance

. . _ 2/
=T./(e\ps), as proposed in Ref. 7. The plasma solution of Bgs.and 1N potential oVy=(2Z\ps/Cy) 5Te/(29? produces very '
(6) is shown with the dashed—dotted lines. The discharge conditions are thgood agreement between the approximate sheath solution

same as in Fig. 1 of Ref. /L =0.7071X10"?, V,,= —5T,/e. Eg. (9) and the exact solution. This “disjunction” between
the plasma and sheath clearly indicates the necessity of a

o special transition layer between plasma and sheath.
Ref. 9. In Ref. 9, zero boundary electric field at the plasma

sheath interface was uged, thus, producing an oversmphﬁeRll TRANSITION LAYER
patching, as described in Ref. 10.
Figure 2 depicts the electric field as a function of the  The transition layer appears due to a sonic singularity in
normalized potential € eV/T,). This figure is similar to Fig. the plasma equations. As shown by Botfhthe sheath elec-
2 of Ref. 9 but instead of patching the plasma solution Eqtric field can be smoothly patched with the small electric
(6) and the sheath solution E() usingE;=0, E given by  field in the plasmgsmall compared with the sheatbnly if
Eq. (7) was used. Apparently, such a patching of plasma anthe ion flow velocity at the plasma—sheath boundary is larger
sheath solutions yields an electric field profile, which is veryor equal to the ion sound velocity. Therefore, a transition
close to the exact solution, in disagreement with the claim othrough the ion sound velocity should occur in the plasma. It
Ref. 9. follows from Eq. (6) that the ion sound velocity cannot be
The patching of the sheath solution of E§) with the  exceeded in a plasma with a slab geometry, and, therefore,
plasma solution Eq95) and (6) at the point whereE=E;  the ion sound velocity must be reached at the boundary be-
apparently gives continuous electric field profiles, becauséwveen the sheath and plasma regions. The situation is differ-
the electric field is assumed continuous in the patching. Thignt for nonslab geometry. If the plasma expands in some
disagrees with the claim of Ref.’8.At the same time, in kind of plasma nozzle with cross-sectional arkg), the
accord with Ref. 9 the value of the electric field;  continuity equations become instead of E{S.and (2),

0-5 T T T T T T T T T
0.800.820.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
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where the electric fieldE,=E—(—Ted In N;/dx) is the dif-
ference between the actual electric field and the electric fiel
obtained with the quasineutrality assumption and the Boltz-
mann relation. From Eq12), it is obvious that a transition
from subsonic to supersonic flow is possible only if a plasma
channel is expanding, for example in cylindrical or spherical

d /
£ (MwiA) =ZneA, (10 - = F——(¢)"*; - - -dF/dg
M d Anp?)=—eA av 11
ax Anivi)=—eAn ., (11)
and Eq.(6) describing the plasma region is modified to N
1-U? du—21+u2 Ul Ey+ 12 Z
( )a—c—s( ) 1A dx) (12) L
o
L

geometries. A necessary condition for avoiding the sonic sin- -5 ' -4 -3 ' _'2 ' -1 ' 0 ' 1
gularity is that the right-hand side of E¢l2) equals zero

whereU=1. In slab geometry it is only possible i;>0. 3

Transition through S.OHIC spegd na Sl.ab geometry reqUIreg . 3. A plot of normalized potential and electric field in the transition
E>(—TcdInN;/dX), i.e., breaking quasineutrality. layer ¢— ¢s=p,F(é=x/x,) and the normalized electric fieldE

Correspondingly, to obtain the mathematical structure of= (¢ /x,)dF/dé.
the transition layer one has to solve Poisson’s equation near
the sonic point. In the sonic pointxEXs, vi=Cg), N;
=nyl/2, a series expansion of the ion flux gives

d*¢ [de z
I'i=ng/2[cst+Z(Xx—XJ)], (13 D&~ Mool g (9~ 99 F ol (18
a2nd the ion velocity becomdsnaking use of Eqs(1l) and Integrating Eq/(18) yields Eq.(16).
(2] Equation(16) is a nonlinear, nonhomogeneous differen-
M(Ui?_cg)/zz —e(V—V) —ZMcy(X—Xy), (14) tial equation. The scaling of the solution for potenti&p,,

- _ . and transition layer widthbx, can be estimated from Eg.
yielding the space charge near the sonic point, (16), looking for a solution in the form ¢— b,

No 1+Z/cy(X—Xy) ) = ¢dyF(X/Xy), whereF=0(1). Near the pointx=xg, all
n—Ng=— —e 2. (15) terms of Eq.(16) should be of the same order, therefore
2 | J1+2¢—2Z/c(x—xo) 56 ) .
tr _
Expanding the space charge in Eg5) to the first non- (ox)? 5%5(5%)2. §(5¢tr)2=C—S5Xn- (19
zero term in¢ andx— X gives the Poisson equation near the
sonic point, The solution of Eq(19) is
d2¢ - 1 7 2)\DSZ 2/5 Cs 1/5
e~ Moo\ 5 (=697 - (x=x9)|. (16 Obu=| "¢ ]+ XuThos| 5 7] - (20

The same result can be obtained by differentiating the  This scaling Eq(20) was obtained in matched solutions
Poisson equatiort4) and substituting the ion and electron in Refs. 5, 6, and 13. Note that it is necessary to account for

density derivatives from Eq$1)—(3), which readily gives  the ionization ternjlast term in Eqs(18) and(16)] in order
to obtain a smooth matching of the plasma and sheath

d?’_‘f:)\az d—¢(e¢— ﬁ) n 2ze ? _ (17) solutions!® The functionF(£=x/x,) is obtained from the
dx o dx u? csU equation
Equation(17) is exact and describes both plasma and  §2f

sheath regions. In the limkpy<cs/Z, the electric field can d_.§2:F2+ é. (21)

be determined by setting the right-hand side of @4) is to

zero. This procedure fails at certaip= 5, where N; The boundary condition corresponds to the quasineutral

=U2e~%. At this point (x=X), the ion velocity is close to region até<0 F=—\— &, dF/dé=1/2\/— &, where— &,

the ion sound velocityU~1, because the quasineutrality >1 is any large number.

conditionN;=e" ¢ holds in the nearest vicinity of this point. A plot of the functionF(£) is shown in Fig. 3.

In the neighborhood o = ¢4, the left-hand side of Eq17) In Fig. 3, one can see that the functib(¢) breaks from
must be also accounted for. Performing Taylor expansionthe quasineutral squtioﬂFp,(g)=—\/—_§ at £&—1. The
near¢=s: € ?—N;/U?=(U%e ¢—N;)/U?~1/4U?(¢)  sonic point corresponds tB(y)=0 [see Eq.(14), second
—1]=(¢d— ¢s), Eq.(17) becomes term on the right-hand side is small compared to the first
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term]. At this point,dF/d£=0.962 and the value of electric where the electron density at the wall, is to be determined
field is thereforeEg=0.9625 ¢,/ X, . Substituting scales for from the Boltzmann relationn,,=ngexde(Vs—Vy)/Tel-

S¢y and 8x,, from Egs.(20) give Therefore, equating the ion and electron fluxes at the wall
£.—0.962 e [ 2hoZ| ™ 22 "
s eAps Cs . 22 V.—V, :Eln M (A3)
S W 2e \2mm,)’

Substituting Z=(w/2—1)cs/L for a collisionless plasma
gives the same variation for the electric field at the sonicEquation(A3) is correct for a collisionless sheath and either
point as Eq.(7) but with a factor 0.96Q/2(7—2)1%%v2 collisional or collisionless plasmas. For the case of a colli-
=0.907. As can be seen from Table. I, the value of electricsionless plasmays=—T./eln 2.
field in Eq. (7) reduced by a factor 0.907 agrees better with  Though in the present paper only the Boltzmann relation
the numerical simulation results at small Debye lendgtie®  is used, it is necessary to note that the Boltzmann relation is
the last two columns not accurate for electrons leaving the plasma and being lost
To summarize, the transition region is a distinct region,at the wall (so-called loss cone The Boltzmann relation
which cannot be attributed to either the sheath or plasmeequires a Maxwellian EVDF and that the electrons are
regions. Indeed, though in this region the quasineutralittrapped in a potential well. Because of fast losses to the wall,
condition approximately hold¢see Fig. 1x~0.90+0.94), the EVDF is non-Maxwellian in the loss cone. Therefore, it
the electric field cannot be determined from the quasineutralis necessary to solve the kinetic equation for fast electrons to
ity condition[see Eq(16)]. From the other side, even though obtain a correct EVDF in the loss cone, and, subsequently, to
Poisson’s equation is used to determine the properties of theredict the wall potential. Examples of such a calculation are
transition region, this region is not a sheath if the Bohmgiven in Ref. 16. The analytical solution of the EVDF in the
concept of the sheath is used: eegjion, characterized by loss cone is given in Ref. 17.
negligible electron density 14

APPENDIX B: IONIZATION IN THE SHEATH REGION

V. CONCLUSION o o . ,
lonization in the sheath region is determined by the in-

An approximate procedure to patch sheath and plasma iggral
proposed. The sheath and plasma are patched at the point .
where the value of the electric field Eg Ish:Zf Wne(x)dx. (B1)
=0.962T/eNps(2\psZ/cs)®®, the transition layer is ac- Xs
counted simply by shifting the sheath solution from the
patching point by a distancéx,=\ps/(2\psZ/cs)*® and
the potential by V= —(2Z\ps/cs)?°T./(2€). For most
practical purposes, the value 6¥<T, is very small com- e’

Changing the variable of integration fromto the normal-
ized potentialp=e(V—V,)/T., the integral(B1) becomes

pared to the sheath potential and can be neglected. lsn=2ZNs\ps 0 dr;/dyd”’ (B2)
where the normalized electric fieldly/dy is given by Eg.
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APPENDIX A: NOTE ON WALL POTENTIAL in the wide rangee E;\ps/T.=0.01-0.3. Substituting this

o ) _ estimate for the integral E4B3) into Eq. (B2), one obtains
_ The wall potential is to b_e determlrled by equating theyp, equation for y=2I¢/n,cs, where TI'=nycd2
ion and electron fluxes. The ion flux I§=n4c,, from Eq. +Znyd%,/2+ 4. Finally, we obtain

(13). The electron flux is given by an integral over the elec-

tron velocity distribution functiofEVDF) for all electrons 1+ Z Sx it 1.3\ps B4)
. . . ’y: - tr y——
with velocity directed toward the wall Cs ,—)\DSeES T,
me 112 o mevi
Iew=New T o UxeXp — T dvy. (A1) M. A. Lieberman and A. J. Lichtenber@rinciples of Plasma Discharges
€ € and Material ProcessingWiley, New York, 1994.
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