
INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY

Plasma Sources Sci. Technol. 12 (2003) 302–312 PII: S0963-0252(03)62087-6

Effect of electron energy distribution
function on power deposition and plasma
density in an inductively coupled
discharge at very low pressures
Badri Ramamurthi1, Demetre J Economou1 and
Igor D Kaganovich2

1 Plasma Processing Laboratory, Department of Chemical Engineering, University of
Houston, Houston, TX 77204-4004, USA
2 Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA

E-mail: economou@uh.edu and ikaganov@pppl.gov

Received 8 October 2002, in final form 30 March 2003
Published 9 May 2003
Online at stacks.iop.org/PSST/12/302

Abstract
A self-consistent one-dimensional model was developed to study the effect
of the electron energy distribution function (EEDF) on power deposition and
plasma density profiles in a planar inductively coupled plasma (ICP) in the
non-local regime (pressure �10 mTorr). The model consisted of three
modules: (1) an EEDF module to compute the non-Maxwellian EEDF,
(2) a non-local electron kinetics module to predict the non-local electron
conductivity, radio frequency (RF) current, electric field and power
deposition profiles in the non-uniform plasma, and (3) a heavy species
transport module to solve for the ion density and velocity profiles as well as
the metastable density. Results using the non-Maxwellian EEDF model
were compared with predictions using a Maxwellian EEDF, under otherwise
identical conditions. The RF electric field, current and power deposition
profiles were different, especially at 1 mTorr, for which the electron effective
mean-free-path was larger than the skin depth. The plasma density predicted
by the Maxwellian EEDF was up to 93% larger for the conditions examined.
Thus, the non-Maxwellian EEDF must be accounted for in modelling ICPs
at very low pressures.

1. Introduction

Inductively coupled plasma (ICP) sources are used extensively
for etching and deposition of thin films in microelectronics
manufacturing. Such sources can produce a high-density,
uniform plasma in a low pressure gas without the need for
external magnetic fields [1–5].

At relatively high pressures (above ≈20 mTorr), electrons
in an ICP discharge are heated by collisional dissipation of
wave energy. Power deposition in lower pressure discharges,
however, involves a collisionless electron heating mechanism
[6,7]. It has been suggested that this is due to a ‘warm plasma’
effect analogous to the anomalous skin effect in metals [4, 8].

The anomalous skin effect in one-dimensional gas
discharges has been studied theoretically for both semi-
infinite and infinite systems [9–11]. Early experimental
investigation of the skin effect was performed by Demirkhanov
et al [12]. The anomalous skin effect in one-dimensional
bounded plasmas has also been studied both theoretically and
experimentally [13–16]. An interesting effect associated with
bounded plasmas is the possible resonance between the wave
frequency and the motion of electrons bouncing between the
walls. This can lead to enhanced (resonant) heating [15,17,18].
Most theoretical results reported thus far for a bounded plasma
assume a uniform plasma density, where the electrostatic
potential well is flat in the plasma and infinite at the wall (to
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simulate the existence of sheaths). In this square potential
well, electrons are reflected back into the plasma only at the
discharge walls. In a realistic non-uniform plasma, however,
the electron turning points will depend on the electron total
(kinetic plus potential) energy and the actual shape of the
potential well, i.e. low total energy electrons bounce back at
locations within the plasma. Although theoretical treatments
of non-uniform slab plasmas have been reported [10, 27],
results related to such plasmas are lacking. A review of
classical and recent works on the anomalous skin effect in
plasmas was made in [19, 20].

At low pressures, when the electron mean-free-path is
comparable to the discharge size, kinetic effects come into
play, and the electron distribution function can be substantially
non-Maxwellian [21].

Kinetic effects can be modelled using Monte Carlo
or particle-in-cell (PIC) approaches, but these tend to be
computationally intensive [22]. Besides, the direct use of
conventional PIC-MCC for modelling of high-density ICP can
be problematic due to the statistical noise in the charge and
current density. In [23], the traditional PIC approach was
modified to reduced noise based on correlations in electron
motion with and without radio frequency (RF) electric and
magnetic fields. Additional reduction of the statistical noise
was achieved using the condition of plasma quasineutrality.

Alternative ‘fast modelling’ techniques [24–26] make use
of analytical theory, and employ a number of simplifications,
which can offer considerable improvement in computational
time. This method has been successfully employed in the study
of non-Maxwellian electron energy distribution functions
(EEDFs) in low-pressure RF capacitive discharges as well
[24, 25]. These approaches use the so-called quasi-linear
theory [27, 28], applied when the electron drift velocity is
smaller than their thermal velocity, which is typical for low
temperature discharges. However, non-linear effects which
arise due to interaction of electrons with transverse magnetic
fields [29] near the boundary of the discharge can dampen
electron heating, especially at the limit of electron–neutral
collision frequency ν → 0 [30]. Such non-linear effects
were not treated in this paper. The effect of the non-linear
ponderomotive force in low pressure low frequency ICPs was
considered recently by Godyak et al [39]. Finally, Vasenkov
and Kushner presented a two-dimensional computational study
of non-local effects in low pressure ICPs [40].

In a previous paper, a self-consistent model of non-
local electron kinetics (NLEK) and heavy species transport
(HST) in a slab (bounded) plasma was presented [31]. An
argon discharge was studied incorporating both electron impact
reactions and metastable chemistry. This model is used
here to examine the effect of EEDF on power deposition
profiles and plasma density. Special attention was paid
to the effects of collisionless heating on the EEDF. In
these simulation models, plasma electrodynamics, the non-
local/non-Maxwellian EEDF, and plasma density profiles are
computed self-consistently.

2. Model description

A schematic of a one-dimensional parallel plate symmetric
discharge (plate separation L) is shown in figure 1. Current

x=0 x=L

y

x
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Ey
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Figure 1. Schematic of a one-dimensional plasma slab of length L
powered by a symmetric inductively coupled source. The RF
current source (not shown) results in an RF field in the transverse
direction, Ey . The value of the field at the edges, E0, is determined
by the desired power deposition in the plasma. A space charge field
Esc develops in the x-direction to confine electrons.

x

Figure 2. Schematic of electron potential energy profile ϕ(x) in the
plasma slab, due to the electrostatic field. An electron with total
(x-kinetic plus potential) energy εx will reflect back at points x∗

1 and
x∗

2 (turning points).

sheets (not shown) on either side of the plasma, driven by a RF
source, generate a transverse RF field Ey heating the plasma
electrons. The RF field amplitude at the plasma edges is E0;
this value is set by the magnitude of the RF current and directly
affects the total power deposited in the plasma. The RF field
is attenuated by power transfer to the plasma electrons. Most
of the power is deposited near the edge in what is called the
‘skin layer’.

An electrostatic (space charge) field Esc(x) in the
x-direction develops to confine electrons in the plasma and
equalize the electron and ion current to the walls. The
electron potential energy corresponding to this field is shown
schematically in figure 2. Electrons with sufficiently low
total (x-kinetic plus potential) energy will be reflected by this
potential well. The reflection points x∗

1 and x∗
2 for an electron

with total (x-kinetic plus potential) energy ε are shown in
figure 2. Thus, low energy electrons are confined near the

303



B Ramamurthi et al

discharge centre, but higher energy electrons can reach further
towards the walls. The sheath near the physical boundaries
was not accounted for explicitly. Because of the high plasma
density the sheath is only hundreds of microns thick. Thus,
the location of the sheath edge is essentially at the physical
boundary, and the plasma approximation ni = ne was applied
to the whole domain. An infinite potential barrier was assumed
for the sheath. Electrons with total energy higher than the
potential at the sheath edge ϕsh were assumed to reflect at the
physical boundary, the underlying assumption being that the
electron current to the wall was considered to be negligible.

Since non-local behaviour is a warm plasma effect, kinetic
treatment of electron transport is necessary. When electrons
are warm enough to be transported out of the ‘skin layer’ during
an RF cycle, power is said to be deposited non-locally. In a
sense, the current at a given location is influenced by the field
at all other locations. In contrast, in the local case, the current
at a given location only depends on the field at that particular
point (Ohm’s law). Non-locality is typically characterized by
the parameter l/δ0, where l = VT/

√
ω2 + ν2 is an ‘effective’

electron mean-free-path, and δ0 is derived from the classical
skin depth,

δ0 = c

ωp

(
1 +

ν2

ω2

)1/4

. (1)

Here, VT = √
2eTe/m is the most probable electron speed,

ωp is the electron plasma frequency (ωp =
√

e2ne/mε0),
ω is the RF frequency, c is the speed of light in vacuum,
ν (assumed constant) is the electron momentum-transfer
collision frequency, Te is the electron temperature (in V),
assuming a Maxwellian distribution function, and m is the
electron mass. By this definition, non-local behaviour
becomes significant when (l/δ0)

2 � 1.
For pressures typically smaller than 10 mTorr for argon,

the EEDF can be non-Maxwellian [21]. Hence, for accurate
calculation of power deposition and species density at low
pressures, the EEDF needs to be computed. The following
section describes a model for computing the EEDF for a low
pressure argon plasma in which collisionless electron heating
can be dominant [27, 32].

2.1. EEDF module

The Boltzmann equation for the EEDF f (assuming a spatial
dependence only in the x-direction) can be written as:

∂f

∂t
+ vx

∂f

∂x
− eEsc(x)

m

∂f

∂vx

− eEyeiωt

m

∂f

∂vy

= S(f ), (2)

where Esc(x) is the electrostatic field and S(f ) represents
the sum of electron–atom (elastic and inelastic) and electron–
electron collisions. For small deviations from the stationary
EEDF f0, one can write

f = f0(x, vx, vy, vz) + f1(x, vx, vy, vz, t),

assuming that the relaxation time of the stationary EEDF f0

is large compared to the RF period. Substituting for f in
equation (2) and integrating over the RF period, equations for
f0 and f1 [27] are obtained,

vx

∂f0

∂x

∣∣∣∣
εx

=
〈
eEy(x, t)

m

∂f1

∂vy

〉
+ S(f0) (3)

and

−iωf1 + vx

∂f1

∂x

∣∣∣∣
εx

= eEy(x, t)vy

m

∂f0

∂ε
− νf1, (4)

where a harmonic dependence of the form e−iωt has been
assumed for f1. A new variable εx (total energy in x-direction)
is defined as εx = mv2

x/2e + ϕ(x). The brackets on the right-
hand side of equation (3) indicate averaging over the RF period.

Equation (4) can be solved for f1 by introducing a new
variable θ [32] such that,

θ = �b(εx)

∫ x

x∗
1

dx

|vx | , vx > 0 (5)

and

θ = −�b(εx)

∫ x

x∗
1

dx

|vx | , vx < 0, (6)

where �b(εx) is the bounce frequency of an electron with
energy εx , given by

�b(εx) = π∫ x∗
2

x∗
1

(dx/|vx |)
, (7)

x∗
1 and x∗

2 being the turning points corresponding to energy εx .
Applying the above transformation to equation (4) yields,

−iωf1 + �b(εx)
∂f1

∂θ
= Ey(x, t)vy

∂f0

∂ε
− νf1. (8)

Introducing the Fourier transform

f1n = 1

2π

∫ π

−π

f1einθ dθ (9)

and solving for f1 in equation (8),

f1n = Eynvy

(�b(εx)ni − iω + ν)

∂f0

∂ε
, (10)

where

Eyn(εx) = �b(εx)

π

∫ π

0

Ey(x) cos(nθ(x))

|vx | dx. (11)

Equation (3) can be averaged over the bounce time Tb(εx)

and the ‘perpendicular velocities’ vy and vz to yield

∂

∂ε

(
Dε(ε)

∂f0

∂ε

)
= S(f0), (12)

where Dε(ε) is the energy diffusion coefficient given by [32]

Dε(ε) = π

8

(
2e

m

)3/2 ∞∑
n=−∞

∫ ε

0
dεx |Eyn(εx)|2(ε − εx)

× ν

�b(εx)([�b(εx)n − ω]2 + ν2)
. (13)

In the limit of ν � �b, which corresponds to the case
of collisional heating, equation (13) can be shown [33] to
reduce to

Dε(ε) = 1

6

(
2e

m

) ∫ x∗
2 (ε)

x∗
1 (ε)

|Ey(x)|2(ε − ϕ(x))3/2 ν

ν2 + ω2
dx,

(14)
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where x∗
1 and x∗

2 are the turning points for an electron with
energy ε.

The right-hand side of equation (12) denotes the space and
bounce time-average of electron–atom and electron–electron
collisions [33]. The collisions considered in this model
were elastic electron–atom collisions, inelastic electron–atom
collisions (ground-state ionization and excitation, metastable
ionization) and electron–electron collisions. Consequently,
S(f0) was written as

S(f0) = Sel(f0) + Siz(f0) + Sex(f0) + Smi(f0) + See(f0)

(15)

where subscripts ‘el’, ‘iz’, ‘ex’, ‘mi’ and ‘ee’ on the
right-hand side stand for elastic, ground-state ionization,
excitation, metastable ionization and electron–electron
collisions, respectively.

Each of the above spatially averaged terms can be written
as [33]

Sel(f0) = d

dε
(V̄ (ε)f0), (16)

Siz(f0) =
√

2e

m

(
2u1/2ν∗

iz(u)f0(ε)

−2(u + εiz)1/2ν∗
iz(u + εiz)f0(ε + εiz)

)
, (17)

Sex(f0) =
√

2e

m

(
u1/2ν∗

ex(u)f0(ε)

−(u + εex)1/2ν∗
ex(u + εex)f0(ε + εex)

)
, (18)

Smi(f0) =
√

2e

m

(
u1/2ν∗

mi(u)f0(ε)

−(u + εmi)1/2ν∗
mi(u + εmi)f0(ε + εmi)

)
, (19)

See(f0) = 

d

dε

(
H̄ (ε)f0 +

2

3
Ḡ(ε)

df0

dε

)
, (20)

where the coefficients V̄ (ε), H̄ (ε) and Ḡ(ε) are given by [33]

V̄ (ε) = κ

√
2e

m

∫ x∗
2 (ε)

x∗
1 (ε)

u3/2νm(u) dx, (21)

H̄ (ε) =
∫ x∗

2 (ε)

x∗
1 (ε)

dx ′
∫ u

0

√
u′f0(u

′) du′, (22)

Ḡ(ε) =
∫ x∗

2 (ε)

x∗
1 (ε)

dx ′
( ∫ u

0
u′3/2f0(u

′) du′ + u3/2

×
∫ ∞

u

f0(u
′) du′

)
. (23)

The factor ‘2’ was used in the first term in parenthesis on
the right-hand side of equation (17) to model the loss of
electrons to the walls, i.e. for every electron produced due to an
ionization event, one electron is lost to the walls. Variable u in
equations (21)–(23) represents the kinetic energy of electrons,
u = ε − ϕ(x), and should not be confused with the ion fluid
velocity introduced later.

The pre-factor 
 in equation (20) depends on the Coulomb
logarithm �


 = 2e

m

e2

8πε0
ln(�). (24)

Substituting equations (15)–(23) in equation (12), one obtains
the final form of the equation for the stationary EEDF f0(ε)

− ∂

∂ε

([
Dε(ε) +

2


3
Ḡ(ε)

]
∂f0(ε)

∂ε
+

[
V̄ (ε) + 
H̄(ε)

]
f0(ε)

)
= Siz(f0) + Sex(f0) + Smi(f0). (25)

Boundary conditions for equation (25) were specified for large
energies, assuming that both f0 and ∂f0/∂ε are ‘small’ (note
that both cannot be zero as the integration of the discretized
form of equation (25) would not proceed). The exact values
for f0 and ∂f0/∂ε are not important as the distribution function
was normalized such that∫ ∞

0

√
εf0(ε)dε = 1. (26)

Equation (25) was solved as an initial value problem, starting
with an initial condition at ε = 75 V and marching backwards
to ε = 0.01 V, using a fourth order Runge–Kutta scheme
(backward prolongation). Because of the electron–electron
collision operator, an iterative solution was necessary.

2.2. NLEK module

This module solves for the RF electric field, current and power
deposition profiles in a non-uniform plasma. In the non-local
regime, the current at any point in the plasma depends on the
electric field at all other points. Maxwell’s equations can be
reduced to a single scalar equation for the transverse electric
field Ey [31],

d2Ey

dx2
= i

(ωp0

c

)2 ω

2
√

2e/m

( ∫ x

0
G(x, x ′)Ey(x

′) dx ′

+
∫ L

x

G(x ′, x)Ey(x
′) dx ′

)
, (27)

where ωp0 = (e2ne0/mε0)
1/2 is the electron plasma frequency

evaluated using the peak electron density ne0. The boundary
conditions are Ey(0) = Ey(L) = E0. The time-average power
deposition profile can be computed as

P(x) = 1
2 Re

(
Jy(x)E∗

y (x)
)
, (28)

where E∗
y (x) is the complex conjugate of Ey(x), and Re is the

real part of the quantity in parenthesis. The conductivity kernel
G(x, x ′) depends on the profile of the potential well confining
electrons in the plasma [31] which has to be computed self-
consistently as part of the simulation. The expression for the
RF current Jy(x) was also given in [31].

2.3. HST module

The HST module solves for the ion density and velocity profiles
as well as the metastable species density. Since the extremely
thin sheaths were not included in the simulation, the quasi-
neutrality constraint was imposed, and the location of the
plasma-sheath boundary was taken to be the wall. Since
the drift–diffusion approximation for ions is questionable at
pressures below about 10 mTorr, a momentum equation was
solved to compute the Ar+ velocity. The metastable Ar∗ species
density is quite uniform at pressures below about 10 mTorr.
Hence, a spatially average (zero-dimensional) model was used
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Table 1. Reactions used in the argon discharge simulation [38].

Hj is electron energy loss (positive value) or gain (negative value)
upon collision.


Hj

No Process Symbol Reaction (eV)

R1 Ground state Rex Ar + e → Ar∗ + e 11.6
excitation

R2 Ground state Ri Ar + e → Ar+ + 2e 15.8
ionization

R3 Step-wise Rmi Ar∗ + e → Ar+ + 2e 4.2
ionization

R4 Superelastic Rsc Ar∗ + e → Ar + e −11.6
collisions

R5 Metastable Rmq Ar∗ + e → Arr + e
quenching

R6 Metastable Rmp Ar∗ + Ar∗ → Ar+ + Ar + e
pooling

R7 Two-body R2q Ar∗ + Ar → 2Ar
quenching

R8 Three-body R3q Ar∗ + 2Ar → Ar2 + Ar
quenching

to determine Ar∗. Due to symmetry, only half the domain
(0 � x � L/2) was considered. Metastable quenching to
the resonant state (reaction R5 in table 1) was included in the
chemistry model.

The HST module uses the mass continuity equation for
Ar+ and the ion momentum equation written in terms of ion
velocity,
∂u+

∂t
+ u+

∂u+

∂x
= −eTeff(x)

m+

∂(ln n+)

∂x
− eT+

m+

∂(ln n+)

∂x

−ν+(u+)u+ − (Ri + Rmi + Rmp)

n+
u+. (29)

Here, u+, n+ and m+ are ion velocity, density and mass,
respectively. Teff(x) is the ‘screening temperature.’ Reaction
rates Ri, Rmi and Rmp correspond to ground state ionization,
metastable ionization and metastable pooling, respectively
(table 1). The second term on the right-hand side of
equation (29) can be neglected compared with the first term
since T+ � Te. For the collisional drag (third) term on
the right-hand side, a constant mean-free-path was employed,
whereby the ion–neutral collision frequency as a function of
ion velocity ν+(u+) was written as ν+(u+) = ν+0|u+|/u+,th; ν+0

is a reference collision frequency (table 2) at which the ion drift
velocity equals the ion thermal velocity u+,th = √

eT+/m+.
The fourth term on the right-hand side represents a ‘drag’ in
the sense that the ions that are being produced by ionization
have negligible drift velocities, and have to be brought up to
the local drift velocity. The ionization rate Ri in equation (29)
was calculated through the EEDF

Ri(x) = N0

√
2e

m

∫ ∞

ϕ(x)

σi(u)(ε − ϕ(x))f0(ε) dε, (30)

where N0 is the gas density and σi(u) is the ionization cross-
section as a function of electron kinetic energy u = ε − ϕ(x).
A corresponding expression was used for Rmi.

The boundary condition for ion velocity was set at the
wall as

u+ = −ub = −
√

eTeff(0)

m+
, x = 0, (31)

Table 2. Parameter values used in the simulation.

Parameter Value

Plasma length, L 5 cm
Ion temperature, T+ 0.026 V
Plate area, A 64π cm2

Reference ion collision frequency,
ν+0 (@3.2 × 1014 cm−3) 1.66 × 105 s−1

Electron momentum-exchange
collision frequency,
ν (@3.2 × 1014 cm−3) 3 × 107 s−1

Gas temperature 300 K
Excitation frequency 13.56 MHz

where the Bohm velocity is ub. Due to symmetry, there was no
ion flux at the discharge centre (x = L/2) (see [31] for more
details on the HST module).

2.4. Maxwellian EEDF calculation

The model described in the previous sections can be used for
the self-consistent calculation of RF discharge properties in
the non-local regime including a non-Maxwellian EEDF. In
order to compare this model with one employing a Maxwellian
EEDF, the following modifications were made.

(a) The non-local conductivity G(x, x ′) was written for
a (normalized) Maxwellian distribution f0(ε) =
2π/(πTe)

3/2e−ε/Te .
(b) An electron energy equation (based on electron

temperature) was added to the HST module

∂

∂t

(
3

2
neTe

)
= −∂qe

∂x
+ P(x) − 3

m

mn

neν(Te − Tg)

−
∑

j

Rje
Hje, (32)

where the electron energy flux qe = −Ke∂Te/∂x +
5/2
eTe, and the electron mass flux 
e = 
i = n+u+.
P(x) is the power density profile obtained from the NLEK
module (equation (28)). The third term on the right-hand
side of equation (32) is electron energy loss in elastic
collisions; mn is the heavy species (Ar) mass, and Tg is
the neutral gas temperature. The last (summation) term
accounts for energy loss (or gain) in inelastic collision
j with rate Rje and energy exchange 
Hje (table 1).
Boundary conditions were:

qe = 5
2
eTe, x = 0,

qe = 0, x = L

2
.

(33)

(c) The reaction rates for electron–neutral collisions were
obtained using expressions of the form of equation (30),
f0(ε) = 2π/(πTe)

3/2e−ε/Te .

3. Method of solution

The simulation consisted of three modules: an EEDF module,
a NLEK module and a HST module (figure 3). The NLEK
module computed the non-local conductivity kernel G(x, x ′)
and solved for the RF electric field and current profiles. The
RF electric field at the wall E0 was adjusted to match the
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Non-local Electron
Kinetics (NLEK)
Module

Electron Energy
Distribution Function
(EEDF) Module

Heavy Species
Transport (HST)
Module

Convergence?

Initial density,
Potential,
EEDF

Start

End

No

Yes

RF
Field

Reaction rates,
Effective temperature,
Potential

Ion density,
Potential

Figure 3. Flow diagram used for numerical simulation. Simulation
cycled between the three modules until the potential and plasma
density profiles converged.

target total power. The RF field profiles were used in the
EEDF module to compute the energy diffusion coefficient
Dε(ε) (equation (13)) and solve for the distribution function
f0(ε). The latter was used to compute the electron-impact
reaction rate coefficients via equation (30) (e.g. ionization and
excitation rates), and the effective electron temperature (Teff)

profile. The effective electron temperature was used in the ion
momentum equation (equation (29)), and also in the boundary
condition for ion velocity at the wall (equation (31)). The
ionization and excitation rates were used as source terms in
the continuity equations for ions and metastables. The HST
module provided, among other quantities, the ion (electron)
density and electrostatic potential ϕ as a function of position.
These were fed back to the NLEK module to calculate a new RF
field profile. The calculation was repeated until convergence
to a self-consistent solution. When using a Maxwellian EEDF,
iterations were performed between the NLEK and HST module
only (the EEDF module was not used). In this case, the HST
module included an electron energy balance (equation (32)) to
compute the electron temperature profile.

The initial electron density profile was assumed to be a sine
function peaking at the centre. The corresponding potential
was computed assuming a uniform Maxwellian temperature
of 2.5 V. Convergence was declared when the potential profile
changed by less than 0.1% (in the L2 norm), which typically
took about 30 iterations around the modules. At convergence,
the ion density profile predicted by the HST module and the
electron density profile predicted by the EEDF module differed
by less than 0.1% (in the L2 norm). The computation time
on a 933 MHz Intel Pentium 3 Windows NT was ∼10 h for
a run with non-Maxwellian EEDF, and ∼1 h for a run with
Maxwellian EEDF.

4. Results and discussion

Base-case parameter values and constants used in the
simulation are shown in table 2. Results in figures 4–8
are for a pressure of 1 mTorr and discharge frequency of

Figure 4. (a) Self-consistently predicted non-Maxwellian (——)
and Maxwellian (- - - -) EEDF as a function of total energy for
1 mTorr. (b) Energy diffusion coefficient (equation (13)) Dε(ε)
(——) and energy diffusivity (see text) related to electron–electron
collisions (- - - -) as a function of total energy for 1 mTorr. Inset
shows an expanded scale for Dε(ε). Other conditions as in table 2.

13.56 MHz. Under these conditions the electron collision
frequency is small compared to the applied field frequency.
Results in figures 9–13 are for a pressure of 10 mTorr and
discharge frequency of 13.56 MHz. Under these conditions,
the electron collision frequency is comparable to the applied
field frequency. In each case, profiles calculated using the
non-Maxwellian EEDF module (solid lines) are compared with
profiles (dashed lines) obtained using the Maxwellian EEDF
approximation under the same discharge conditions and for the
same (integrated) total power. Values of power correspond to
a plate cross sectional area of 64π cm2.

4.1. Pressure = 1 mTorr

Figure 4(a) shows the EEDF as a function of total energy for
non-Maxwellian (solid lines) and Maxwellian (dashed lines)
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cases. The non-Maxwellian EEDF has a higher fraction of
electrons just beyond the ionization threshold, predicting a
higher ionization rate. For a pressure of 1 mTorr, the electron
collision frequency ν ∼ 3 × 106 s−1 and ν/�b ∼ 0.1. The
energy diffusion coefficient Dε(ε) (equation (13)), exhibits a
‘knee’ at ∼1 V (figure 4(b)), indicating that the ‘temperature’
of electrons with energies less than 1 V is lower than that
of electrons with energies greater than 1 V. The ‘knee’ in
figure 4(b) arises due to a phenomenon called ‘bounce heating’
or ‘resonant heating’. For ν/�b ∼ 0.1, the energy diffusion
coefficient in equation (13) can be approximated as

Dε(ε) ≈ π

8

(
2e

m

)3/2 ∞∑
n=1

∫ ε

0
dεx |Eyn(εx)|2(ε − εx)

δ(�b(εx)n − ω)

�b(εx)
, (34)

where δ(�b(εx)n − ω) represents the Dirac–delta function.
It can be seen from equation (34) that for energy ε < ε1

(where ε1 is obtained from �b(ε1) = ω), Dε(ε) ≈ 0. For
ε1 < ε < ε2 (where �b(ε2) = ω/2), Dε(ε) ∝ (ε − ε1),
i.e. the energy diffusion coefficient increases linearly with
total energy. This behaviour leads to the ‘knee’ observed
in figure 4(b), and implies that electrons with energy ∼ε1

(in this case is ∼1 V) are in resonance with the field and are
thus heated more efficiently. Higher order resonant modes
(n = 2, 3, 4, . . .) contribute less as the Fourier coefficients
Eyn decrease as n increases. Resonant heating has been
demonstrated for capacitively coupled plasmas [26], where
the electron density is relatively smaller and so the resonance
effect can be more pronounced. The dashed line in figure 4(b)
shows the dependence on total energy of the electron–electron
collision diffusivity term (given by Dee(ε) = 2/3
Ḡ(ε) in
equation (25)).

Figure 5 shows the effective temperature profiles for the
Maxwellian and non-Maxwellian EEDFs. For the Maxwellian
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Figure 5. Effective temperature profiles for a non-Maxwellian
EEDF (——) and a Maxwellian EEDF (- - - -) for 1 mTorr. Other
conditions as in table 2.

case, the electron temperature is independent of power while
for the non-Maxwellian case, significant differences are
observed with power. The large difference between the
temperatures at the edge and the centre may be explained by
examining figure 4(a) (solid lines). The EEDF shows that
electrons with total energies less than ∼1 V are not effectively
heated. Electrons with such low energies are essentially
trapped near the discharge centre (where the heating field
is weak) as they cannot overcome the electrostatic potential
barrier. Hence, the effective temperature at the centre is low. In
contrast, electrons with relatively high energies can overcome
the potential barrier and reach the edge where the field is
strong, and the effective temperature at the periphery (and
larger total energies) is high. Note that the electron–electron
and collisionless energy diffusion coefficients are comparable
at very low energy, ∼1 eV, see figure 4. As a result, low
energy electrons form a Maxwellian distribution with very
low temperature, ∼1 eV [34]. Note that the part of the EEDF
corresponding to such cold electrons is difficult to measure
experimentally.

The effective temperature profile becomes less non-
uniform as power is increased, because of higher electron
density resulting in more ‘thermalization’ of the distribution
by electron–electron collisions. The discrepancy between the
Maxwellian temperature and the effective temperature near the
edge induces a difference in the effective electron mean-free-
path, which leads to considerably different field and current
density profiles as discussed.

Figure 6 shows the profiles of the normalized amplitude
of the RF field. The field profile is monotonic for low power.
However, for high power, the behaviour becomes progressively
non-monotonic due to increasing non-locality. Specifically,
the skin depth decreases with power, and the more energetic
electrons can escape from the skin layer during a RF cycle,
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Figure 6. Normalized amplitude of the RF field for 1 mTorr.
Results using non-Maxwellian EEDF (——) are compared with
results using Maxwellian EEDF (- - - -), under otherwise identical
conditions. Other conditions as in table 2.
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Figure 7. Power density profiles for 1 mTorr. Results using
non-Maxwellian EEDF (——) are compared with results using
Maxwellian EEDF (- - - -), under otherwise identical conditions.
Other conditions as in table 2.

resulting in non-local behaviour and non-monotonic RF field
profiles. The effect of non-locality is more pronounced for the
non-Maxwellian EEDF, especially for higher powers for which
the RF field at the discharge centre is more than 50% of the
value at the edge. This is a direct consequence of the higher
effective temperature predicted by the non-Maxwellian EEDF
near the edge compared to the Maxwellian case. Warmer
electrons can reach further in the discharge core.

The corresponding power deposition profiles are shown
in figure 7. The peak of power deposition in the Maxwellian
case is seen to occur closer to the boundary, when compared
to that of the non-Maxwellian case. This is because of the
higher effective temperature of electrons in the skin layer for
the non-Maxwellian case, which causes them to travel a greater
distance during an RF cycle. Both cases exhibit negative power
deposition near the discharge centre. This can be explained
by the phase difference between the current and the RF field;
electrons can pick up energy from the field within the skin
layer and lose energy back to the field outside the skin layer.
Negative power deposition has been observed experimentally
for low-pressure inductively coupled discharges [35].

The corresponding positive ion density profiles are shown
in figure 8. The positive ion density is determined by
two factors: (1) the effective electron temperature at the
boundary, which controls the loss rate of ions to the wall
(equation (31)) and (2) the rate of ionization (ground-state
and metastable). The latter depends on the tail of the EEDF
beyond the ionization threshold of 15.76 V (ground state
ionization dominates under these conditions). The ionization
rate was found to be marginally higher for the non-Maxwellian
EEDF. However, the effective temperature at the wall for the
non-Maxwellian case (∼6.5 V) is larger than the Maxwellian
temperature of 4.4 V (figure 5), leading to larger losses for the
non-Maxwellian EEDF. This results in lower density for the
non-Maxwellian case. The differences in the peak densities
are 32.4, 38.8 and 44.4%, respectively, for 50, 100 and 200 W.
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Figure 8. Variation of positive ion density for 1 mTorr. Results
using non-Maxwellian EEDF (——) are compared with results
using Maxwellian EEDF (- - - -), under otherwise identical
conditions. Other conditions as in table 2.
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Figure 9. Self-consistently predicted non-Maxwellian (——) and
Maxwellian (- - - -) EEDF as a function of total energy for
10 mTorr. Other conditions as in table 2.

4.2. Pressure = 10 mTorr

For a pressure of 10 mTorr, the electron collision frequency
is ν = 3 × 107 s−1 which is comparable to the discharge
frequency of ω = 8.52 × 107 s−1. Figure 9 shows the EEDF
as a function of total energy for the non-Maxwellian (solid
lines) and Maxwellian (dashed lines) cases. The collision
frequency ν � �b, where �b is the electron bounce frequency.
Consequently, in contrast to 1 mTorr, there is no resonant
(bounce) heating of low energy electrons. Furthermore,
since the electron density at 10 mTorr is sufficiently high,
electron–electron collisions tend to thermalize the bulk of
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Figure 10. Effective temperature profiles are shown for
non-Maxwellian (——) and Maxwellian (- - - -) EEDF for
10 mTorr. Other conditions as in table 2.

the distribution. This results in a bi-Maxwellian EEDF
with bulk electrons having an effective temperature of ∼3 V,
and electrons at the edge having a temperature of ∼3.5 V
(figure 10). Figure 10 also suggests that the distribution
function is more Maxwellian-like at higher powers (higher
electron density), leading to a less non-uniform effective
temperature profile. This effect is more pronounced at higher
pressures (compare to figure 5), again due to higher electron
density. An important difference between Maxwellian and
non-Maxwellian EEDFs in figure 9 is the depletion of high
energy electrons in the non-Maxwellian case.

Figure 11 shows the normalized profile of the amplitude
of the RF field as a function of position for total power of
50, 100 and 200 W. Solid and dashed lines correspond to
the non-Maxwellian and Maxwellian EEDFs, respectively.
Interestingly, the Maxwellian case predicts more ‘non-locality’
at 10 mTorr compared to 1 mTorr (figure 6), where the opposite
was true. This is due to the considerably higher electron
density (figure 13) predicted by the Maxwellian EEDF, leading
to smaller skin depth and more non-locality.

The corresponding power deposition profiles are shown
in figure 12. The profiles for the Maxwellian and non-
Maxwellian cases are similar, with the power deposition
reaching a maximum within the skin layer, and decaying
towards the centre of the discharge. The peak in power density
for the Maxwellian case occurs ∼0.4 cm from the wall, while
the peak location is seen to vary for the non-Maxwellian EEDF.
This is because the temperature of the Maxwellian EEDF does
not change with power, but the effective temperature of the
non-Maxwellian EEDF does vary with power (figure 10).

The corresponding positive ion density profiles are shown
in figure 13. Significant differences are observed with the
Maxwellian EEDF predicting higher densities. The deviation
in peak density for 50 W, 100 W and 200 W is 70.5%, 88.2%
and 92.8%, respectively. The reason for the discrepancy is
twofold: (a) the Maxwellian EEDF predicts more ionization
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Figure 11. Normalized amplitude of the RF field for 10 mTorr.
Results using non-Maxwellian EEDF (——) are compared with
results using Maxwellian EEDF (- - - -), under otherwise identical
conditions. Other conditions as in table 2.
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Figure 12. Power density profiles for 10 mTorr. Results using
non-Maxwellian EEDF (——) are compared with results using
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Other conditions as in table 2.

(tail extending to higher energies, figure 9) and (b) the effective
electron temperature at the edge is lower for the Maxwellian
EEDF (figure 10), leading to lower ion losses (equation (31)).

4.3. Comparison with experiments

Figures 14 and 15 show comparisons between simulated
and experimental EEDFs for an asymmetric two-dimensional
inductively coupled Ar discharge [36]. The chamber ID
was 19.8 cm and the inter-electrode spacing was 10.5 cm.
The driving frequency of the coil current was 13.56 MHz.
Similar experimental results were obtained in [37]. Because
experimental data were taken in a reactor which is at least
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Figure 14. Comparison between simulated (lines) and experimental
(symbols) EEDF for 1 mTorr. Data from [36].

two-dimensional, while the model presented in this work is
only one-dimensional, the EEDF module was tested separately,
using the fact that the EEDF is determined mostly by the total
power deposition. A uniform electron density was assumed
(square potential well) corresponding to the peak density
(at the discharge centre), obtained experimentally [36]. Other
parameters were the electron–neutral collision frequency and
the RMS value of the RF field E0 at the wall [36]. An RF field
corresponding to the local approximation (Ohm’s law) was
used for this comparison. These values were used to compute
the energy diffusion coefficient (see equation (13)) and then
obtain the EEDF (equation (25)).

Figure 15. Comparison between simulated (lines) and experimental
(symbols) EEDF for 10 mTorr. Data from [36].

Figure 14 shows the comparison between experimental
(open symbols) and simulated (lines) EEDFs for a pressure
of 1 mTorr. The experimental profiles are clearly non-
Maxwellian and this fact is reflected in the simulated profiles.
The agreement between theory and experiment is very good for
200 W where the experimental behaviour is captured for almost
the entire energy range. This is not the case for 12 and 50 W
where theory predicts a longer high-energy tail. However,
the temperature of the tail agrees well with the experimental
temperature. Similar trends are observed in figure 15, which
is for 10 mTorr.

It should be once more noted that the model presented
in this paper is one-dimensional while the experiments were
performed in a system which is at least two-dimensional.
Hence, a self-consistent simulation of the experiment is not
possible. For this reason, comparisons were made using
the experimentally measured plasma density. The measured
skin depths were also used for the RF field with the local
approximation. The goal of the exercise was to test the
theoretical EEDF model as a stand-alone module. The
discrepancies between theory and experiment might well be
due to the multi-dimensional nature of the experiment, which
is not captured by the model.

5. Conclusions

A self-consistent one-dimensional model was developed to
study the effect of EEDF on power absorption and plasma
density profiles in a planar inductively coupled argon discharge
in the non-local regime (pressures �10 mTorr). The model
consisted of three modules: (1) an EEDF module to compute
the non-Maxwellian EEDF, (2) a NLEK module to predict
the non-local electron conductivity, RF current, electric field
and power deposition profiles in the non-uniform plasma
and (3) a HST module to solve for the ion density and
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velocity profiles as well as the metastable density. The self-
consistent simulation predicted the RF electric field, power
deposition, EEDF and ion density profiles. Results using the
non-Maxwellian EEDF were compared with those predicted
by assuming a Maxwellian EEDF under otherwise identical
conditions.

The self-consistently determined EEDFs for the non-
Maxwellian and Maxwellian cases were quite different for both
1 and 10 mTorr. At a pressure of 1 mTorr, the non-Maxwellian
EEDF showed a ‘resonant heating’ mechanism, where
electrons with energies greater than 1 V were heated more
efficiently, compared to the Maxwellian case. This suggests
that ‘resonant heating’ can be important in determining the
EEDF at very low pressures. At 10 mTorr, the non-Maxwellian
EEDF assumed a bi-Maxwellian structure, with ‘temperatures’
of ∼3.5 V and ∼3 V, respectively, for the low energy and high-
energy parts of the distribution. A depletion of the high-energy
tail was observed in the non-Maxwellian EEDF due to electron
energy losses in inelastic collisions. The power deposition
profile for the non-Maxwellian and Maxwellian cases were
different for the pressures and powers investigated. This was
attributed to different temperatures predicted by the two EEDF
models. In both cases, negative power deposition was observed
near the centre of the discharge, due to NLEK. The ion
(electron) density predicted by the Maxwellian EEDF was up to
93% larger than that predicted by the non-Maxwellian EEDF.
This was mainly due to a larger effective electron temperature
at the wall predicted by the non-Maxwellian EEDF, leading to
higher ion losses. Thus, accounting for the non-Maxwellian
EEDF is important for modelling ICPs operating at very low
pressures.
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