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In low-pressure discharges, where the electron mean free path is larger or comparable with the
discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy
distribution function(EEDF deviates considerably from a Maxwellian. Therefore, an accurate
kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity
operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of
simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a
self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly
collisionless plasmas of low-pressure discharges is reported. It consists of the nonlocal conductivity
operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. This
system was applied to the calculation of collisionless heating in capacitively and inductively
coupled plasmas. In particular, the importance of accounting for the nonuniform plasma density
profile for computing the current density profile and the EEDF is demonstrated. The enhancement
of collisionless heating due to the bounce resonance between the electron motion in the potential
well and the external rf electric field is investigated. It is shown that a nonlinear and self-consistent
treatment is necessary for the correct description of collisionless heating200@ American
Institute of Physics.[DOI: 10.1063/1.1688792

I. INTRODUCTION plasmage.g., see revie®s®. Recent resurgence of interest
in the subject was invoked by applications of low-pressure
Two basic phenomena: Landau damping and anomalougischarges for plasma processing and lighfifig increase
skin effect attract much interest in the plasma physics comfluxes of ions and radicals on a substrate, the semiconductor
munity. Both phenomena represent striking examples whefhdustry tends to use low-pressure gas discharges, typically
the collisionless electron dynamics is considerably differentvith gas pressure of a few milliTorrs. For these low pres-
from the collisional electron dynamics. The collisional elec-sures, it is easier to maintain plasma uniformity. Under these
tron dynamics is well described by Ohm’s law—the electronconditions the electron mean free path is large compared
current is proportional to the local electric field. If the elec- with the characteristic inhomogeneity scale of the electric
tron mean free path is larger than the characteristic inhomdfield and the electron dynamics is collisionless. If one needs
geneity scale of the electric field, an electron traverses sigto understand power dissipation in such plasmas, the Landau
nificant distance between collisions and samples differeniamping and the anomalous skin effect have to be revisited
values of electric field along its way. As a result, the electrorfor the conditions of low-pressure discharges.
current is determined not by the local rf electric field, but  Two major recent breakthroughs stimulated considerable
rather is a function of the entire profile of the rf electric field advancement in the subject. Significant progress in refining
(anomalous skin effegt Also for inhomogeneous electric the probe diagnostics of rf discharges has been achieved in
fields another mechanism of heating or power dissipationthe past decadeThat enabled experimentalists to measure
strikingly different from the collisional one, is possible—the detailed profiles of rf electric and magnetic fields, as well as
collisionless heating, that is determined by the wave—particléhe plasma potential and the electron energy distribution
resonance and in most cases does not depend on the collisifuhction (EEDP).
frequency(Landau damping Significant progress has also been achieved in the simu-
The anomalous skin efféctand Landau dampirfgvere  |ation of rf discharges. The capabilities of modern computers
theoretically described in the late 1940s. Further investigaallow to perform two- and three-dimensional simulations of
tions were stimulated by fusion studies in late 1960s andjas discharges. Typically, they are particle-in-cell simula-
early 1970s, when a large number of theoretical and expertions with self-consistent electric and magnetic fields ob-
mental papers elaborated on the details of both effects fagined from Maxwell’s equations akin to Ref. 9.
With experimental data and simulation results at hand,

apaper QI1 2, Bull. Am. Phys. S0é8, 244 (2003. rgseqrchers may take on prqgressively more complica’Fed
Pnvited speaker. situations. Research is advancing from one-dimensional, lin-
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ear, non-self-consistent studies of uniform plasmas towards
two- or three-dimensional, nonlinear kinetic self-consistent
studies of nonuniform plasmas. This paper represents a com-
pendium of recent results on the nonlinear kinetic and
plasma self-organization.

II. NONLINEAR LANDAU DAMPING

In the rf electric fieldE, an electron oscillates back and

forth with the rf velocityv, according to AN
W . - 2ty
Ma ® T T w s

wherem ande are the electron mass and charge, respectivel\eIG. 1. The bottom figure shows phase portrait of the trapisetid line)
There is no heating on a |ong time scale in a steady-stat@’ld untrappec(dottgd '|in9 electrons. The separatrix line is shown as
operation. However, there is initial rf heating during switch- 9ashed- The potential is shown on top.
ing on of the rf powet! The time-averaged electron kinetic
energy increases due to oscillations because the kinetic en- The nonlinear analysis is readily done in the reference
ergy is a nonlinear function of the velocity frame of the wave. In this frame, electrons move in the elec-
m B mv? | mo2 Mo 2 trostatic p(_)tentiakp(x) =—ed, coskx,_ w_here Do=Eq/k.
<—(v+v)2> - < > > = The evolution of the electron velocity is governed by the
Hamiltonian
There is collisionless heating also for the case of the local- m w2
ized rf field, when plasma electrons increase the_lr klnetl_c H(UX,X)=§<UX— F) —ed, coskx. ®)
energy on average due to resonant electron—wave interaction
at the expense of the rf wave energy and dissipate then thglectrons with total energid <ed, are trapped within the
acquired energy in the bulk of the plasma. Inhomogeneity ofvave, as shown in Fig. @the upper plot is drawn in dimen-
the electric field is a key condition for collisionless heattAg. sionless units They perform nonlinear bouncing in the po-
This scenario may well describe the collisionless heating inential well with velocitys of order Au=(e®,/m)¥2 The
rf discharges when the plasma size is much larger than thgnear theory of collisionless damping breaks down for times
width of the wave penetration into the plasma. In the oppoionger than the bounce time=1/kAu=(m/ed,k?)? of
site case, the finite dimensions of the discharge have to besonant electrons trapped in the potential well. In a steady
accounted for. state, the electron oscillatory velocitylags in phase behind
The collisionless electron heating by rf waves can behe rf electric field byr/2 and the heating, being proportional
described by making use of the quasilinear théBiiyi this  to the time averagéuE), vanishes exactly. To break the
theory the rf electric field is decomposed into a series oktrict correlation between andE, some additional dynamic
plane waves and the total heating is calculated as a sum @focesses have to be accounted for. There can be, for ex-
the electron heating by individual plane waves. Thereforeample, collisions with walls or atoms. Collisions with walls
first it is important to thoroughly understand how collision- may result in a dynamic chaos due to electron trajectory
less heating occurs by a single plane wave. Here, we assunigstability. The electron heating via dynamic chaos is de-
that the external electric field penetrates into the plasma anekribed in the book$Refs. 13 and 14 Dynamic chaos re-
the wave amplitude is constant in time, and continues operayuires special conditions on the amplitude and frequency of
tion of the discharge. the wave. Here, we consider the opposite case where the
First, we analyze the electron heating in a non-self-gynamic chaos does not develop and collisions with atoms
consistent longitudinal rf wave with the rf electric field given are responsible for the electron heating. To describe the col-
by E=E, coskx—wt+¢) in an infinite plasma. The electron |isionless heating we add rare collisions with gas atoms with
oscillation velocity of an electron moving with velocity,  frequencyr<w. From simulations and experimental data we
calculated in the linear approximation,£>v,) is given by  know that the resulting collisionless heating does not depend
eE, sin(kx— wt+ ¢) on the electron collision fr'eq.uency. Hoyvgver, as we dis-
- 2 cussed above, in the exact limit=0 the collisionless heating
vanishes. That begs the questiotishow is it possible, and
In the linear approximation,=v,q is determined by the (ii) whether there exist conditions where collisionless heating
initial electron velocity on the right-hand side of E@). does depend on the collision frequency. To answer these
Equation(2) has a singularity if the electron velocity equals questions we analyze the electron dynamics in the wave ac-
the wave phase velocity,o= w/k. To resolve the singularity counting for rare collisions.
problem, the further analysis of the resonant electrons has to Once again, for a single wave there is no heating without
account for the nonlinear effect; breaking the resonance corcollisions because electrons acquire the energy from the
dition w=kuv, for the electrons moving with initial velocity wave during one half of the wave period and then return it
vyo due to the oscillatory velocity ,=v o+ - during the other half. It sounds paradoxical, but it is neces-

Ux= mM(w—kvy)
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The diffusion coefficient in energy spad2(e) is the
product of the squared energy chanye per step and the
frequency of this step, averaged over an electron ensemble
with a given energye. In the linear approximatiom e
=mv,v, Wherev is given by Eq.(2) and the diffusion co-
efficient in energy space is

D(e)=v{(mv-v)?), (4)

Frosemmnemm e N e where the angular brackets denote averaging over the elec-
tron ensemble with a given energy
Under typical discharge conditions, the elastic collision
¢ frequency is large compared to the inelastic collision fre-
FIG. 2. lllustration of the difference between electron—small anglgand ~ quency. Therefore, an electron experiences a lot of collisions
electron—atonflarge anglg collisions. The top right figure shows the dif- prior to losing energy due to ionization or excitation. Elastic
ferential scattering cross section. The bottom figure shows the electron vesq|lisions scatter the electron velocity on a large pitch angle
locity as function of time during several collisions. L . . . -
and make the electron energy distribution function isotropic.
This means that in Ed4) the averaging has to be performed
over all velocity directions.

sary to account for rare collisions<w to obtain net colli- Substitutingv, from Eq. (2) into Eq. (4) gives
sionless electron heating. In a partially ionized plasma, elec- 5 2

trons collide mainly with neutral atoms. The differential :lf du, v(eBy) v 5)
cross section of electron—atom scattering is close to isotropic 2) 2v (w—v4k)? '

in the range of electron energies up to about 3¢%¥ This
means that during one collision the electron velocity rotate X .
by a large angle and, changes considerably. As a result, ing over velocity directions, and 1./2 accoynts for. averaging
electrons leave the resonance regjon— (w/k)|~Au dur- over the phase of the wave. The integral in Es).diverges

ing one collision. This case is very different from the case oft the resonance =wv,k; therefore, a more accurate descrip-

fully ionized plasmas where Coulomb scattering dominatestion IS necessary in the resonance region. The reason for

In Coulomb collisions, the small angle scattering contributesd'\/(:"né’ence is the long time k(-v,k) during which the

most to the cross section. Therefore, for the case of fu"flectron stays in resonance with the electric field. There are

ionized plasmas, electrons slowly diffuse out of the reso- VO physical mechanisms which limit this time and destroy

nance region during many collisions, in contrast to the cas%he res?rr:ance. One is CO”,'S'OSSW;(%_UX?’ an elegtiﬁn
of partially ionized plasmas, as it schematically shown in eaves the resonance region due fo the cofiision and the am-

Fig. 2 plitude of the velocity variation in Eg(2) diminishes. The
— collisions are easy to account for by introducing an addi-
jonal friction force into the electron motion equatigh).

yere,ez mv?/2, [ dv,/2v = [ d cosadBl/4m denotes averag-

The electron dynamics is a combination of bouncing in
or near a potential well, then scattering out of the resonanc . . . . T
region during a time of the order of the collision timevl/ he resulting calculation requires the following substitution
after which electrons experience many “fruitless” collisions in Eq. (5
during a time much longer than duntil they accidently 1 1
return back to the resonance region and so forth. Because of 5~ L
the relative simplicity of this collision process, it has been (0—v,k) (0—v,k)"+w
possible to solve analytically the Vlasov equation retainingrhe other mechanism is nonlinear effects of the electron mo-
both the nonlinear electron dynamics in the potential welltion in the potential well. The linear estimate farin Eq. (2)
and collisions accordingly, and to obtain the rate of collision-preaks down if 1/p—vk)>r,, i.e., for times longer than
less electron heating. The qualitative discussion of such a the bounce time of the trapped resonance electrpnhen
solution is given below. the velocity variatiorv, is limited by Au=eEy/mr, . Tak-
Electron collisions with atoms are a random process. INng into account the nonlinear effects yields cumbersome cal-
between collisions electrons gain or loose energy from theyations. However, the result is qualitatively similar to Eq.

wave as shown in Fig. 2. As a result of the combined actiong) with » being replaced by.rfl_ As a result of regulariza-
of many collisions and many interactions with the wave,tjon of the resonance, E¢5) modifies to

electrons experiencediffusion in the energy spaam time

scales longer than the collision time and the wave period. ) 1 Jv de(eE0)2 )
. . . . . . 6 = — v .

The d|ffu3|on coefficient in energy §p§EE(§) descrlpes the 2)_,2v X(C!)_ka)2+ V24 Tr—z

formation of the electron energy distribution functibg( €) o . _

(EEDP and the collisionless heating. Indeed, when electrondn the limit v7,.>1, the last factor on the right-hand side of

diffuse in energy space, the average electron energy irEd. (7) can be simplified to

creases which corresponds to heating. Therefore, for the full

des.cr.iption of the collisionless heating knowledgddf) is v — S (w—v.K), (8

sufficient. (w—vyk)“tv

6

)
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FIG. 3. Resonance function in Ef) in the limits v7,>1 andvr,<1.

where § is the Dirac delta-functiof® Indeed, the maximum
of the resonance function in E@8) is » !, whereas the
width of the function is proportional te. The integral does
not depend onv. In this limit, D(e€) is identical to the result
of the quasilinear theor{d =D, and can be written as

w

m (eEy)? [ w\?
177 ok F) ®(U_F

where ® is the Heaviside function. Electrons with velocity

: 9
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FIG. 4. Dimensionless functioH(v).

collisionless dissipation to tend to zero mapproaches zero
and to actually vanish in the limit=0. The formula derived
above gives the nonlinear wave damping for any value of the
collision frequency. In the limiv7,>1, tanh¢7,)—1 and the
obtained result coincides with the quasilinear theory. In the
opposite case 7, <1, tanhfpr,)—0, and collisionless heating

small compared to the wave phase velocity do not participaténd corresponding wave damping vanishes, in accordance

in the collisionless heating. Note that the diffusion coeffi-
cient is of the order of the square of the energy s&p )

multiplied by the frequencyw and does not contain any de-
pendence on the collision frequency. In reality, diffusion in

with the O’Neil theory!® Therefore, the result is a natural
generalization of both theories, and gives the collisionless
heating for any value of the collision frequency.

As can be seen from Fig. 4, the main contribution to

energy cannot occur without collisions, but because théeating atvr,>1 is due to electrons not trapped in the po-

width of the wave—particle resonance is proportionalvto
the collision frequency disappears after integration of (£q.
in the limit v7,>1.

The role of the collision frequency is recovered by non-

linear analysis. In the opposite limitr, <1, the last factor in
Eq. (7) can be simplified to

14
(w_vxk)2

Indeed, the maximum of the resonance function in @)
is »72 while the width of the function is proportional tg *,
see Fig. 3. The integral diminishes in?- 7, '=v7 times

(10

" — 7T 8(0—v,K).
7-I'

tential well of the wave. Fowr <1, [I(v7,)=2v7, and
collisionless heating is proportional to the collision fre-
quency, similar to the result of Ref. 19. Note that in contrast
to Ref. 19, where only the limit of rare collisions was con-
sidered, Eq(12) is valid for arbitrary values of 7, . At small

v7, the main contribution to the power dissipation is due to
trapped-in-the-wave electrons; the contribution of untrapped
electrons is only about 25% compared with that of trapped
electrons. Note, that the obtained result is also very different
from that of Ref. 19, where the nonlinear Landau damping
with account for Coulomb collisions was explored. The main
contribution to wave damping in that case is due to the nar-
row boundary layers around the separatrices between trapped

compared to the previous case. As a result the diffusion cospq untrapped electrons, see Fig. 1.

efficient in energy space igr times smaller than the quasi-
linear estimate in E(9), D=v7Dg.

So far, we have considered electron heating by a mono-
chromatic longitudinal wave. The theory can be applied to

The exact analytical integration of the Vlasov equationy,e cajculation of collisionless heating in any bounded

accounting for nonlinear electron dynamics in a potential

well and for collisions yield¥
D(e)=Dqyll(v,). (11

The functionlI(v7,) is given in Ref. 17 and plotted in Fig.
4. Surprisingly, this complicated function can be approx
mated within an error 0&5% by tanh(27). We can then

deduce that the diffusion coefficient in energy space is re

lated to the quasilinear result by
D(e)=DgXtanh2vr,). (12

The above theory can be applied to the calculation o

collisionless heating in a plasma. In the traditional theory

plasma for an arbitrary electric field. In many rf discharges,
the electron plasma frequency is large compared to the dis-
charge frequency. Therefore, the applied external rf electric
field is screened near antennas or electrodes. An electron
after passing the region of the rf electric field acquires a
velocity kick, which consequently lead to electron heating.
In the next section we consider collisionless heating with
prescribed velocity kicks.

[Il. COLLISIONLESS HEATING IN BOUNDED

FLASMAS

To demonstrate this concept we consider the simple ex-

collisionless heating is constant when the collision frequencyample where the electron acquires a prescribed velocity kick
tends to zero. In contrast to this, nonlinear effects cause th&V cost+ ¢y) near one wall and oscillates between two
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1
’U/L Nb:w/Qb—ZTrn (19
? is the number of bounces an electron experiences before the
Av v phase¢ changes to 1 and the kicks received by the electron
v L have considerably different phase. Substituﬁ'@gfrom Eq.
(14) into Eq. (4) gives the diffusion coefficient in energy
Mo space
? m?AV; & (=dcosadB ,
D(e)= > f vy
L 2 =0 Jo 4
FIG. 5. A schematic of the electron dynamics in a bounded plasma. v

X . 16
(w—2mnQy) 2+ 12 (18

) ) ) o ~In the last factor of Eq(16) we accounted for the fact that

frequencyv as in the previous section. A schematic of theconsequently, the amplitude of velocity variation in Ebg)

electron dynamics is shown in Fig. 5. diminishes due to collisions. The rigorous derivation of the
A. Influence of nonlinear effects on the diffusion diffusion coefficient in energy space was performed in Ref.
coefficient in velocity space in bounded plasmas 10 making use of the quasilinear theory. The result of the

quasilinear theory coincides with the euristic one-particle

Ceinalysis of Ref. 20 discussed above.

If the effective width @v,) of the resonant factor in Eq.
is much smaller than the thermal velocitydu

~vL/mn<Vy), the last factor of Eq(16) can be replaced

by a delta function:

We consider a transverse to the plasma boundary velo
ity kick AV, cost+¢) corresponding to a model induc-
tively coupled plasmaICP) in a slab geometr§.Collisions 6
lead to a diffusion in the energy space. Similar to the case o(f1
collisionless heating by a single wave, the diffusion coeffi-
cient is the product of the squared energy chahgand the

collision frequencyv, averaged over the electron ensemble mZAv§ “. (7dcosadB s

with a given energye. In the linear approximatiom e Dle)=— 2 )y am (vy) "0

= mvyﬂy, Where}}y is the electron velocity change between "

collisions. The velocity variation§y have an extreme maxi- X S(w—2mNn0y). (17)

mum for resonant particles, which after bouncing between o o

the walls during the time /v, arrive at the left wall to As a result, the diffusion coefficient does not depend on the
acquire the same velocity kick, see Fig. 5. That requires th&ollision frequency. . .

phase shift of the velocity kick to be equal tar@, wheren T_he previous anal.y3|s,. however, pertains to the non-self-
is an integer number. It is important to note, that only resoconsistent problem with given velocity kicks. In a real ICP
nant particles g, ,=wL/m7n) contribute to collisionless Plasma, the velocity kicks are directed along hexis, not-
heating, similar to the case of longitudinal waves in the preWithstanding the fact that the rf electric fieldl, (x)cost
vious chapter, where only resonant particles< wk) con- +¢o—7l2) is dlr_ected along the plasma boundary. It appears
tribute to heating for unbounded plasmas. In the resonand®at the magnetic forcevx B/c completely cancels the ac-

region (,~v, ), the evolution of the velocity is described tion of the electric field in thg-direction?! It can be readily

by the system of equatioffs explained invoking conservation of the canonical momentum
~ A, due to symmetry in thg-direction. The total canonical
Avy , Ap o At 1 momentumeA, /c+muv, is conservedA, vanishes outside
a CAWsing, 5= Q, 2m, {7 Q' (13 the skin layer where the rf field does not penetrate. Consider

) ) ) an electron starting the motion from the plasma bulk where
whereA denotes the change in a variable during one bouncey =0 and returning backa

a - Ay is unchanged after one pass
¢=owt—2an8yt+ o~ /2 is the phase of the wave rela- y,q,,gh the skin layer. As a resuit, is unchanged also due
tive to the electron bounce motion,is a bounce number,

. X ) to the conservation of the total momentum. This means that
Qp=v,/2L is the bounce frequency, anV, is the ampli-

; the action of the rf electric field and the rf magnetic field on
tude of the kick. Near the resonanae=2mn{, and the 0 glectron totaly compensate each other inytiirection.
change ing is small. Therefore, we can substitute the varia-tha force ev,B,/c generates the velocity kicks in the

tionsA in Eq. (13)_by differentials. Combining the two first ,_Jirection. The Lorentz forc@(E+vx Blc) produces the
equations in13) gives velocity kicks AV, only in the direction transverse to the

do, AV,Q, _ boundary’* It is a consequence of the momentum

T T T T 5 Sing. (14)  conservation—the momentum of the rf wayehotons is

do (w—2mNnQy) ) o

imparted to electrons. The rf magnetic field rotates the ve-

From Eq.(14) it follows that'z?y oscillates near the resonance locity kick from the y- to the x-direction, conserving the
with amplitudeAV,Q, /(o —2mn();,). Note that kinetic energy, i.e.,
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V,AV,=V AV, , (18) 107 1

whereAV, is the velocity kick calculated taking into account
the electric field only

1 E=0.1,1,5 V/m, no Brf
2, 3,4 with account of Brf, E=
0.1,1,5V/m

«eee MC, —e— analyt.

1,2,3,4 L=4/x8

e
AVy=— | Ey[x(7)]cod wr+ do— m/2)dr.

G(v)

Here, the integral is taken along the electron trajectory.
The fact that velocity kicks in ICP plasmas are directed
in the x-direction instead of thg-direction have a profound

1,2 L=253%
impact on the collisionless heating at low collision frequen- 10°4
. - . . . L A L} L] v 1 L]
cies. We saw in the previous section that nonlinear effects 10° 107 10" 10° 10'
diminish the collisionless heating by a single longitudinal vie

wave. In ICP, nonlinear ?ﬁeCtS are introduced by the fa.Ct thaIt:IG. 6. Influence of the second boundary on collisionless heating. Dimen-
the bounce frequency itself depends op. Th_e velocity sionless diffusion coefficient in velocity spaGe=D,2m?wL/e?E34 for an
kicks change the bounce frequency and “kick” resonantejectric fieldE,=E, exp(—x/é) as a function ofi/w for two different slab
electrons out of resonance. widths L=46/7 andL=256. Solid curves with circles correspond to the
This problem becomes similar to the nonlinear Landaugnalytical formulag17), (24), dashed lines are Monte Carlo simulations.
damping problem, where nonlinear effects also destroy the
resonance conditiom=uv,k. In the resonance region, the
evolution of velocity is described by a system of equation

ﬂonlinear Landau damping, E¢L2), where timer, should
similar to Eq.(13), but where(), is not constant and changes

e replaced by time,,. Therefore, the diffusion coefficient
accounting for nonlinear effects reads

with v,
2 2 *
dv, . dé o _m AVY decos,adﬂ 22
WZAVXSIH(ﬁ, WIQ—b—ZWn. (19) D(e) 2 =0 Jo A (Uy) Qba(w
Combining the two equations in EGL9) and using a Taylor —2mnQy)tanh2vr,). (24
SEries expansion neak » gives From Eq.(24) one can see that nonlinear effects are impor-
® ® Uy~ Uxn tant at smallv. In the limit v7,,<1, the diffusion coefficient
Qb(vx)_ZTm% - Q_b Uen (20) is proportional tov andD (€) —0 asv—0. This is in contrast
’ to the linear theory Eq17), whereD(€) remains a constant
and asv—0.
doy AV, Quuyn A numerical example is shown in Fig. 6 for a model
d6 msm @. (21)  profile of the rf electric fieldE,(x) = E, exp(—x/d). Figure 6
_ e is a plot of the diffusion coefficient for a fixed velocity (
Integrating Eq(21) yields =5wd) as a function ofv/w, for two gap lengthd. =46/
Qo and 255. The diffusion coefficient was calculated by a Monte
(vy— Um)z_ = AV, cos¢=const. (22 Carlo (MC) method, as the ensemble averaged
. . o 1 (Av)?
Equation(22) shows that even if the electron velocity ini- D,=(= , (25)
tially satisfies the resonance conditiop=v, , exactly, the 2 At

velocity perturbation v,=vi—vy, is limited by where Av=v(t+At)—u(t) is the change in the absolute
VQuuy nAVy/w. This is in contrast to Eq14). The number  value of the velocity in a given period of timat. The
of bounces before the phase of the kick changes to 1 is giveRonte Carlo simulation was compared with analytical results
by Eq. (15). Substituting results of Eq$20) and (22) into  of the linear theory Eq(16), and the nonlinear theory Eq.
Eq. (15) gives the typical time of changing af, near the  (24). The results presented in Fig. 6 correspond to three val-
resonance due to nonlinear effects ues of the electric field. For small fields the velocity kicks
1 are also small £V,<v,) and theory agrees well with the
P MC simulation. For larger values of the electric field the
VoQAV, vy kicks are not small4V,~v,) and the theory presented here
is not applicable. The nonlinear effects wittVv,~v, are

The system of equationd.9) can be formally described by also discussed in Ref. 23

the Hamiltonian

m mQ v :
— (0 _ 2_ x,n B. Influence of nonlinear effects on the surface
H(vx0) 2 (U3~ Vxred 2w AVycose. (23 impedance in bounded plasmas

This Hamiltonian coincides with the one in E(R) of the In Refs. 22 and 24 the anomalous skin effect was con-
electron trapped in a potential well. Thus, one can use hersidered ignoring the induced rf magnetic field. To show the
the results of the calculation of the diffusion coefficient for importance of nonlinear effects discussed above, the real part
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10°3 but rather is a function of the whole profile of the rf electric
field over distances of ordex (anomalous skin effegt
Therefore, a rather complicated nonlocal conductivity opera-
tor has to be determined for the calculation of the rf electric

field penetration into the plasma. Moreover, the electron en-
104 —— Conr. of resonances ergy distribution function (EEDF is typically non-
g *+o- Simulation Ret.0 Maxwellian in these discharg8sThe EEDF, nonlocal con-
s = = =Linear theory Ret.() .. . . .
. Nonlinear theory: ductivity, and plasma density profiles are all non!mear and
—.——— —— nonlocally coupled. Hence, for accurate calculation of the
E= 5, 50, 500 V/m discharge characteristics at low pressures, the EEDF needs to
10 . r . ; —— be computed self-consistently.
10" 10° 10° 10" One of the ways to describe low-pressure discharge uti-

lizes the so-called “nonlocal” approach. In the past, the non-
FIG. 7. The real part of the surface impedance I]I:] OﬂIS'I'B,S a function of local approach was based on the assumption that the electron
Z/‘Z' The plasma parameters are: densMy-10"cm™® Te=5eV, L 1oan free path is small compared with the discharge dimen-
—hem sion. Recently we have updated this approach to include the

collisionless phenomena like anomalous skin effect and Lan-
of the surface impedanc@with and without taking nonlin- dau damping into the description of nonlocal kinefitghe
ear effects into account was calculated. The real part of theonlocal approach relies on the direct semianalytic solution
surface impedance is related to the power absorgeidsy ~ ©f the Boltzmann equation in thelllmltmg regime where thg
Re@)=2P|Z|]#E2. The power deposition into a unit volume electron engrgz]%/ relaxation length is much larger than the dis-
of plasma,P, can be expressed in terms bf, [Eq. (17) or _charge_gaﬁ.‘ Under these conditions the EVDF is almost
Eq. (24)] and the electron energy distribution function iSOtropic and can be well approximated as a sum of the main

f(e),1° isotropic part of EVDF; and a small anisotropic part of the
q EVDF f;. Importantly, the main part of EVDF is a function
_ - f the total energy only fo(€), where e=muv?/2—eg(r),
P=4 D(e) —f(v)de. 26) °© . o . .
WJO vD(e) de (v)de 26 and ¢(x) is the electrostatic potentialinstead of being a

. . . function of velocities and spatial coordinates as in a general
Figure 7 depicts the real part of the surface impedance Lasef (r,v). This assumption allows significant simplifica-
a function of v/w. The profile of the electric field and the o P 9 P

) : . . tions of the Boltzmann equation, which effectively reduces
imaginary part of the surface impedance were taken in ang-

lytical form from Ref. 22. This figure shows that the value of fom a six-dimensional (3D3V) problem in phase space to a

the real part of the surface impedance decreases consideral§1D problem for g(¢) as a function of onl. The final 1D

. . . e&uatlon for the electron energy distribution function is the
2;:/%;;:31? e;[;)eg:r?clrgleﬂsn;ri OI];tEgggni?]a;eell;fiigst.a'i:noer(;yl%Ptemporal_Spat'al averaged Boltzmann equation over phase
P : space available for the electron with a given total energy
[about several V/cniRef. 52], the nonlinear effects start to « » . ) . ,
) . . . The “nonlocal” approach is the opposite case to the “local
be important forvr~0.3w and the difference with the linear -~
. description of a plasma, whefg(r,v) can be assumed to be
theory can be as large as three orders of magnitude. . N .
; - ) . a function of only the kinetic energy and the local rf electric
Until now, the collisionless heating was described only

. 2 . _
for a very simple case of a uniform plasma with a prescribec{Ield folmo®/2.E(r)], whereas gradients of the local If elec

L . L ric field and the influence of the ambipolar electric field are
electric field, but for real discharges the electric field has to
be determined self-consistently with EEDF and the ambi O_neglected. The nonlocal approach has been successfully ap-
: . y . . ambip plied to the self-consistent kinetic modelling of various low-
lar potential(or the density profile This requirement signifi- ressure discharges: capacitively coupled plagiidd,in-
cantly entangles the task of the correct description of plasmg ’ ’

. e Lo uctively coupled plasma$;®® dc discharged®®’ the
Egstmg. The way of handling it is described in the next Secéfterglovv?s and surface-wave discharg8sidditional refer-

ences can be found in revie#s.*?
If the gas pressure is less than 10 mTorr, the electron
IV. SELF-CONSISTENT SYSTEM OF EQUATIONS FOR mean free path becomes comparable or even larger than the

A KINETIC DESCRIPTION OF THE LOW- discharge dimension and numerous collisionless phenomena
PRESSURE DISCHARGES ACCOUNTING FOR THE dominate the discharge characterisfidgherefore, wide uti-

NONLOCAL AND COLLISIONLESS ELECTRON lization of low pressure discharges calls for “upgrading” of

DYNAMICS . . o
the nonlocal approach by taking into account collisionless

We apply the developed theory of collisionless heatingphenomena. References 10 and 61 generalized the nonlocal
to low pressure radio-frequency discharges. These dischargapproach for the low-pressure discharges to incorporate the
are extensively utilized for plasma processing and lighfing. collisionless heating and transit-tinfelectron temporal and
Simulation of discharge properties is a common engineeringpatial inertia effects on the plasma conductivity in the dis-
tool for optimization of the plasma devices. Due to the largecharge description. Here, we present the nonlocal approach
value of the electron mean free pdd) the electron current with a rigorous, self-consistent treatment of collisionless
is determined not by the local rf electric fie{@hm's law), phenomena in inhomogeneous plasmas. Similar approaches
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fect has been studied experimentally in cylindéaind pla-
nar discharge® Additional references can be found in the
reviews of classic and recent works on the anomalous skin
effect in gas discharge plasnia®. The theoretical studies in
a cylindrical geometry are much more cumbersome, and
have been done for uniform plasmas in Refs. 54—-56 and for
a parabolic potential well in Ref. 57. Qualitative results in
the cylindrical geometry are similar to the results in the plane
geometry; therefore, in the present study only the one-
dimensional slab geometry is considered.
FIG. 8. Schematic of an inductively coupled plasma. The antenna on the left ~ For the case of a bounded uniform plasma, the electro-
produces inductive rf electric fielishown by a dashed linewhich pen-  static potential well is taken to be flat in the plasma and
etrates into the plasma over a distance of the order of the skin depth. Elegafinite at the wall(to simulate the existence of sheathis
trons are confined by the stationary electrostatic potegtfa). Electrons . . .
with different total energy are confined in different regions of the plasma. this square potential well, electrons are reflected back into
the plasma only at the discharge walls. In a realistic nonuni-
form plasma, however, the position of the turning points will
have been developed for calculation of the rf heating independ on the totakinetic plus potential electron energy
tokamaké® and for the analysis of kinetic instabilities in in- and the actual shape of the potential well, i.e., low total en-
tense beam¥’ ergy electrons bounce back at locations within the plasma

The key assumption of the nonlocal approach is that thend may not reach regions of high electric field at all. As a
EEDEF is isotropic and is a function of the total energy only.result, the current density profiles in a nonuniform plasma
This assumption is based on the basic fact of atomic physicsay differ considerably from the profiles in a uniform
that for a typical electron energy of few eV the elastic colli- plasma. The theory of the anomalous skin effect for an arbi-
sion frequency is large compared to the inelastic collisiortrary electrostatic potential profile and a Maxwellian EEDF
frequency, which includes ionization and excitation of thewas developed by Meierovich and coworkers in Refs. 58—-60
background gas. An electron collides elastically many timegor the slab geometry. Although some rigorous analytical re-
with atoms before it loses energy due to ionization or exci-sults of nonuniform plasmas have been reported, the detailed
tation. Elastic collisions scatter the electron velocity on aself-consistent, nonlocal simulations related to such plasmas
large pitch angle and make the EEDF isotropic. In betweerand comparison with experimental data are still lacking.
inelastic collisions, an electron acquires many velocity kicksSelf-consistent, nonlocal simulations based on the approach
from the rf electric field. This means that the electron ther-developed in this paper were completed recently and pre-
mal velocity is large compared with the single velocity kick sented in our separate publicatiéh® and will be addition-
and the quasilinear theofdiffusion in the energy spatean ally reported in Ref. 64. The alternative to the nonlocal ap-
be utilized. proaches are based on particle-in-cell simulations, and only

The derivations are lengthy. Therefore, and to be sperecently were capable of the detailed self-consistent, nonlo-
cific, the present analysis considers only the case of an inzal kinetic simulations of low pressure discharges.
ductively coupled plasmédCP); the schematic of an ICP is The kinetic description of the anomalous skin effect is
shown in Fig. 8. Nevertheless, the approach has been dsimilar to a well known mechanism of collisionless power
signed in the most generalized way, so that derivations cadissipation—the Landau dampifidn an infinite plasma, the
be readily performed for other discharges. For example, imesonance particles that are moving with a velogitfose to
Ref. 31 the capacitive discharge, in Ref. 43 the electronthe wave phase velocity, so that=v-k, interact intensively
cyclotron-resonance discharge, and in Ref. 44 the surfacevith wave fields. Therefore, the collisionless electron heating
wave discharge were considered with self-consistent accouitand the real part of the surface impedandepends on the
for collisionless heating. magnitude of a Fourier harmonic of the electric fi&dk)

Most of the previously reported theoretical studies as-and the number of the resonant particf¢s ,= w/k), with
sume a uniform plasma, in a semi-infifteor a slab  xlk. If the interaction with the skin layer is repeated in a
geometry’® In this case the analytical treatment simplifies resonant manner the momentum changes mount up. There-
considerably, because the electron trajectories are straight. fore, the main contribution to the electron heating and the
the semi-infinite geometry, electrons traverse the region ofesistive part of the surface impedance comes from these
the rf electric field(skin layep and are reflected back into the near-resonant electrons. In a bounded plasma, the resonance
plasma at the discharge walls. An acquired velocity kick thercondition requires that the bounce peribglbe equal to one
dissipates in the plasma over distances of the order of ther several rf electric field periods:,=2mn/w, wheren is
electron mean free path and subsequent kicks can be aan integer number. Because the bounce frequency depends
sumed independent. If the plasma dimension is small oon the electrostatic potential, accounting for the plasma non-
comparable ta\, the subsequent kicks are correlated. Theuniformity is important for a correct calculation of the effi-
resonance between the wave frequency and the bounce frelent power coupling.
qguency of the electron motion between walls may resultina The first unambiguous measurements of a bounce-
modification of the nonlocal conductivity®®and may yield resonance effect were performed in a non-neutral plasma. In
an enhanced electron heatif%f®>' The anomalous skin ef- Ref. 66 it was shown that the heating rate increases by a

N
DO
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factor of 1¢ as the oscillation frequency of the externally wherev,, is the Coulomb collision frequency an,, is the
applied rf field is increased by a factor of 10 near the thermaCoulomb logarithm. Note that at large electron energies

electron bounce frequency. >To, Vee~2Wrge, and Dgg~2WT.vee, Where T,
As discussed above, the collisionless heating is deter=2/3fydww*?f/n; D. is given by°
mined by the number of resonant particles, and, hence, is
dependent on the EEDF. The EEDF, in turn, is controlled by e’ €
the collisionless heating. Only the particles which are in DE(G):_z 2 f dfx|Eyn(‘5x)|2
: 4dm<n=-= Jo
resonance with a wave are heated by the waeodisionless
heating. It means that in the regime of the collisionless dis- €— €, v
;lpatlor),. the form of the electron energy distribution funcpon XQb(fx) [Qu(e)n— ]+ 12 ) (34
is sensitive to the wave spectrum. Therefore, a plateau in the
EEDF can be formed in the regions of intensive collisionless,nere
heating, if the wave phase velocities are confined in some
interval®® The evidence of a plateau formation for the ca- w
pacitive discharge plasma were obtained in Ref. 51. The cold  Eyn(€J=— fo Ey( 0)cos{n0)d0}. (39

electrons, which are trapped in the discharge center, do not

reach periphery plasma regions where an intensive rf electrigote that the above expression Br.(e) accounts for the
field is located and, as a result, these electrons are not heatggunce resonanc@,(e,)n=w and the transit time reso-
by the rf electric field. The COUpling between the EEDFnanCew:U/é‘, which Correspond to maxima (Eyn(ex).
shape and collisionless heating may result in a new nonlinea\ote also that if the discharge gap is increased to infinity the
phenomenon: an explosive generation of the cold electbns.sym overn can be replaced by integral and bounce reso-
The experimental evidence of the influence of collisionlessyances will be transformed into wave—patrticle resonances
phenomena on the EEDF shape were obtained in Refs. 52,=k,. The expression fob () in Eq. (34) has the extra
67-70. factorv compared withD(€) in Eq. (16). Thev was incor-
Self-consistent system of equatiofifie self-consistent porated into the expression BY.(¢) for the correct account
system of equations for the kinetic description of low- of the phase space volume on the right-hand side of the av-
pressure discharges accounting for nonlocal and collisionlessraged kinetic equation, see E@8).
electron dynamics contains the averaged kinetic equation for (2) The rf electric field is determined from the Maxwell
fo(€), the Maxwell equation for the rf electric field, the equations
quasineutrality condition for the electrostatic potential, and
the ion density profile given by the fluid conservation equa- dzEy w? Amiw
tions for ion density and ion momentum. >t 5 Ey=— 5 [1(X)+16(X) = Sanil (x—L)].
(1) The averaged kinetic equation fég reads ax ¢ ¢ (36)

Here,l is the current in the coil at=0; §,,;=0, if there is

d — dfy d — —
__(De+DeQE_&[Vee+Vel]f0 ) ;
a grounded electrode and no coil with current located at

de

Wt €y ) —
- (—\/Wekfo(eJre’k‘)—v’k‘fo @7

where the upper bar denotes averaging according to

v (W €f)

=L as in Fig. 8, andd,=1, if there is a coil with the
current—1 at x=L. The electron current density is given

by®!

X L
jy(x)=jOG(x,x’)Ey(x’)dxH—f G(x",x)Ey(x")dx’,

X
L(x,v)(e):J' +dXU(x,e)L[x,u(x,e)], (28) g (37)
X_
v(x,€)=\2[e— o(x)T/m, (29 ~\Where
and the coefficient¥,|, Vee, Dec are given by~ 1 e (= cosh® cosi{®, —d')
G(x,x")== -
om 2 J2m Jmaxe.e") sinhd .
Ve|szv, (30)
I'(e)
2 =P %9
Wy w —p(X)Ve— (X’
veGZTeeU dw\/Wf), (31) N
0 where we introduced a new functidi(e),
_ A Wree[ (W /2 3/2]“ %
Dec=3 (L dww??f +w def , (32 F(e)zf fo(e)de. (39)
4
Vee:47TAeee n (33 The 1D slab system of two currents flowing in opposite di-
m?y3 rections describes very well a cylindrical configuration with
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FIG. 9. The profile of the normalized amplitude of the rf electric field
calculated for the case of cylindrical-like geometsjab geometry and two
antisymmetric currents at=0 andx=2R) as a function of the normalized
coordinatex/R. The electron temperature |B,=2.5eV and the uniform
spatial electron density is,=10"%cm™3, which corresponds taw/Q,r
=1.5,v/Q,1=0.3, andRw, /c=4.5. The solid line shows the profile for a
uniform plasma. Symbols correspond to a nonuniform plasfd with a
Boltzmann distribution and the ambipolar potentig= —4(x/R—1)? (in
Volts) for two cases(1) the electron density at the electrod®) is equal to
the electron density of the uniform plasmg, and in the rest of the plasma
n(x)>ng, and(2) the electron density(R) at the center is equal t,, and

in the rest of the plasma(x)<ng.

radius R, where a coil produces rf currents at both plasma

boundariesx=0 andx= 2R, R=L/2.*349Equationg36) and
(37) can be solved numerically using a finite difference

scheme. There is a major difficulty with such an approach:

straightforward computing of the complex Green’s function
in Eq. (38) is slow and time consumint}.A better approach
is to solve the integrodifferential E436) making use of a
spectral method, where the electric field is represented as

Kaganovich, Polomarov, and Theodosiou
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If’?G. 10. Comparison between experimental d&®ef. 52 and simulation

sum of harmonic functions. A robust procedure to solve thispredictions using a nonlocal modek) RF electric field andb) current

equation by FFT method is described in Ref. 61.

(3) The electrostatic potential is obtained using the

quasineutrality condition

o]

ni(X):J ( )fo(f)\/f—@(x)de,
o(x

wheren;(x) is the ion density profile given by a set of fluid
conservation equations for ion density and ion momerfttim.
Equation (40) is solved in the form of a differential
equatior®

(40)

((jj_i _ TSy d In[dn)i((x)] ’ 1)
whereT$%(x) is the electron screening temperature
T = . J ’ fole) g l (42)
2n(X) J o(x) Je—o(x)
(4) The power deposition can be computed as
P(x)=zREEy (x)j(x)]. (43

Integrating over the discharge length, E43) becomes

P=—ﬁwae(e)df0( )
0

€
de
This equation can be used as a consistency check.
Figure 9 shows the rf electric field profiles calculated for

de.

(44)
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density profiles, for a pressure of 1 mTorr.

a bounded plasma in a slab geometry with and without the
ambipolar potentialp=—4(x/R—1)? (in Volts) for two
cases{(1) the electron density at the electrod€)) is equal

to the electron density of the uniform plasnmg, n(0)
=ng, (2) the electron density in the cente(R) is equal to

Ny, N(R)=ng, respectively. From Fig. 9 it can be seen that
taking into account an ambipolar potential greatly alters the
rf electric field profile.

Figure 10 shows comparisons between experimental
dat&? and simulation predictions using the nonlocal mdtel.
The Ar ICP chamber was 19.8 cm (mside diameter and
10.5 cm in length. The coil current driving frequency was
6.78 MHz. The EEDF was assumed a Maxwellian, with an
electron temperature obtained experimentfllyhe plasma
density was set to the value measured experimenaliye
normalization factorE, for the rf field at the wall on the
coil-side was obtained by matching the simulated integrated
power deposition with the experimental value for the power.

Figures 10a) and 1@b) show reasonable agreement be-
tween the predicte¢using the nonlocal 1D modeand mea-
sured rf field and the current density profiles. The field de-
creases to a minimum and then goes through a hump. The
qualitative features are captured with the model, although the
precise location of the minimum is not predicted well. This is
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