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In low-pressure discharges, where the electron mean free path is larger or comparable with the
discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy
distribution function~EEDF! deviates considerably from a Maxwellian. Therefore, an accurate
kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity
operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of
simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a
self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly
collisionless plasmas of low-pressure discharges is reported. It consists of the nonlocal conductivity
operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. This
system was applied to the calculation of collisionless heating in capacitively and inductively
coupled plasmas. In particular, the importance of accounting for the nonuniform plasma density
profile for computing the current density profile and the EEDF is demonstrated. The enhancement
of collisionless heating due to the bounce resonance between the electron motion in the potential
well and the external rf electric field is investigated. It is shown that a nonlinear and self-consistent
treatment is necessary for the correct description of collisionless heating. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1688792#

I. INTRODUCTION

Two basic phenomena: Landau damping and anomalous
skin effect attract much interest in the plasma physics com-
munity. Both phenomena represent striking examples when
the collisionless electron dynamics is considerably different
from the collisional electron dynamics. The collisional elec-
tron dynamics is well described by Ohm’s law—the electron
current is proportional to the local electric field. If the elec-
tron mean free path is larger than the characteristic inhomo-
geneity scale of the electric field, an electron traverses sig-
nificant distance between collisions and samples different
values of electric field along its way. As a result, the electron
current is determined not by the local rf electric field, but
rather is a function of the entire profile of the rf electric field
~anomalous skin effect!. Also for inhomogeneous electric
fields another mechanism of heating or power dissipation,
strikingly different from the collisional one, is possible—the
collisionless heating, that is determined by the wave–particle
resonance and in most cases does not depend on the collision
frequency~Landau damping!.

The anomalous skin effect1,2 and Landau damping3 were
theoretically described in the late 1940s. Further investiga-
tions were stimulated by fusion studies in late 1960s and
early 1970s, when a large number of theoretical and experi-
mental papers elaborated on the details of both effects for

plasmas~e.g., see reviews4–6!. Recent resurgence of interest
in the subject was invoked by applications of low-pressure
discharges for plasma processing and lighting.7 To increase
fluxes of ions and radicals on a substrate, the semiconductor
industry tends to use low-pressure gas discharges, typically
with gas pressure of a few milliTorrs. For these low pres-
sures, it is easier to maintain plasma uniformity. Under these
conditions the electron mean free path is large compared
with the characteristic inhomogeneity scale of the electric
field and the electron dynamics is collisionless. If one needs
to understand power dissipation in such plasmas, the Landau
damping and the anomalous skin effect have to be revisited
for the conditions of low-pressure discharges.

Two major recent breakthroughs stimulated considerable
advancement in the subject. Significant progress in refining
the probe diagnostics of rf discharges has been achieved in
the past decade.8 That enabled experimentalists to measure
detailed profiles of rf electric and magnetic fields, as well as
the plasma potential and the electron energy distribution
function ~EEDF!.

Significant progress has also been achieved in the simu-
lation of rf discharges. The capabilities of modern computers
allow to perform two- and three-dimensional simulations of
gas discharges. Typically, they are particle-in-cell simula-
tions with self-consistent electric and magnetic fields ob-
tained from Maxwell’s equations akin to Ref. 9.

With experimental data and simulation results at hand,
researchers may take on progressively more complicated
situations. Research is advancing from one-dimensional, lin-

a!Paper QI1 2, Bull. Am. Phys. Soc.48, 244 ~2003!.
b!Invited speaker.
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ear, non-self-consistent studies of uniform plasmas towards
two- or three-dimensional, nonlinear kinetic self-consistent
studies of nonuniform plasmas. This paper represents a com-
pendium of recent results on the nonlinear kinetic and
plasma self-organization.

II. NONLINEAR LANDAU DAMPING

In the rf electric fieldE, an electron oscillates back and
forth with the rf velocityṽ, according to

m
dṽ

dt
52eE, ~1!

wherem ande are the electron mass and charge, respectively.
There is no heating on a long time scale in a steady-state
operation. However, there is initial rf heating during switch-
ing on of the rf power.11 The time-averaged electron kinetic
energy increases due to oscillations because the kinetic en-
ergy is a nonlinear function of the velocity
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2 L >
mv2

2
.

There is collisionless heating also for the case of the local-
ized rf field, when plasma electrons increase their kinetic
energy on average due to resonant electron–wave interaction
at the expense of the rf wave energy and dissipate then the
acquired energy in the bulk of the plasma. Inhomogeneity of
the electric field is a key condition for collisionless heating.12

This scenario may well describe the collisionless heating in
rf discharges when the plasma size is much larger than the
width of the wave penetration into the plasma. In the oppo-
site case, the finite dimensions of the discharge have to be
accounted for.

The collisionless electron heating by rf waves can be
described by making use of the quasilinear theory.10 In this
theory the rf electric field is decomposed into a series of
plane waves and the total heating is calculated as a sum of
the electron heating by individual plane waves. Therefore,
first it is important to thoroughly understand how collision-
less heating occurs by a single plane wave. Here, we assume
that the external electric field penetrates into the plasma and
the wave amplitude is constant in time, and continues opera-
tion of the discharge.

First, we analyze the electron heating in a non-self-
consistent longitudinal rf wave with the rf electric field given
by E5E0 cos(kx2vt1f) in an infinite plasma. The electron
oscillation velocity of an electron moving with velocityvx

calculated in the linear approximation (vx@ ṽx) is given by

ṽx52
eE0 sin~kx2vt1f!

m~v2kvx!
. ~2!

In the linear approximationvx5vx0 is determined by the
initial electron velocity on the right-hand side of Eq.~2!.
Equation~2! has a singularity if the electron velocity equals
the wave phase velocityvx05v/k. To resolve the singularity
problem, the further analysis of the resonant electrons has to
account for the nonlinear effect; breaking the resonance con-
dition v5kvx for the electrons moving with initial velocity
vx0 due to the oscillatory velocityvx5vx01 ṽx .

The nonlinear analysis is readily done in the reference
frame of the wave. In this frame, electrons move in the elec-
trostatic potentialw(x)52eF0 coskx, where F05E0 /k.
The evolution of the electron velocity is governed by the
Hamiltonian

H~vx ,x!5
m

2 S vx2
v

k D 2

2eF0 coskx. ~3!

Electrons with total energyH,eF0 are trapped within the
wave, as shown in Fig. 1~the upper plot is drawn in dimen-
sionless units!. They perform nonlinear bouncing in the po-
tential well with velocity ṽ of order Du5(eF0 /m)1/2. The
linear theory of collisionless damping breaks down for times
longer than the bounce timet r[1/kDu5(m/eF0k2)1/2 of
resonant electrons trapped in the potential well. In a steady
state, the electron oscillatory velocityṽ lags in phase behind
the rf electric field byp/2 and the heating, being proportional
to the time averagêṽE&, vanishes exactly. To break the
strict correlation betweenṽ andE, some additional dynamic
processes have to be accounted for. There can be, for ex-
ample, collisions with walls or atoms. Collisions with walls
may result in a dynamic chaos due to electron trajectory
instability. The electron heating via dynamic chaos is de-
scribed in the books~Refs. 13 and 14!. Dynamic chaos re-
quires special conditions on the amplitude and frequency of
the wave. Here, we consider the opposite case where the
dynamic chaos does not develop and collisions with atoms
are responsible for the electron heating. To describe the col-
lisionless heating we add rare collisions with gas atoms with
frequencyn!v. From simulations and experimental data we
know that the resulting collisionless heating does not depend
on the electron collision frequency. However, as we dis-
cussed above, in the exact limitn50 the collisionless heating
vanishes. That begs the questions:~i! how is it possible, and
~ii ! whether there exist conditions where collisionless heating
does depend on the collision frequency. To answer these
questions we analyze the electron dynamics in the wave ac-
counting for rare collisions.

Once again, for a single wave there is no heating without
collisions because electrons acquire the energy from the
wave during one half of the wave period and then return it
during the other half. It sounds paradoxical, but it is neces-

FIG. 1. The bottom figure shows phase portrait of the trapped~solid line!
and untrapped~dotted line! electrons. The separatrix line is shown as
dashed. The potential is shown on top.
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sary to account for rare collisionsn!v to obtain net colli-
sionless electron heating. In a partially ionized plasma, elec-
trons collide mainly with neutral atoms. The differential
cross section of electron–atom scattering is close to isotropic
in the range of electron energies up to about 30 eV.15,16This
means that during one collision the electron velocity rotates
by a large angle andvx changes considerably. As a result,
electrons leave the resonance regionuvx2(v/k)u;Du dur-
ing one collision. This case is very different from the case of
fully ionized plasmas where Coulomb scattering dominates.
In Coulomb collisions, the small angle scattering contributes
most to the cross section. Therefore, for the case of fully
ionized plasmas, electrons slowly diffuse out of the reso-
nance region during many collisions, in contrast to the case
of partially ionized plasmas, as it schematically shown in
Fig. 2.

The electron dynamics is a combination of bouncing in
or near a potential well, then scattering out of the resonance
region during a time of the order of the collision time 1/n,
after which electrons experience many ‘‘fruitless’’ collisions
during a time much longer than 1/n until they accidently
return back to the resonance region and so forth. Because of
the relative simplicity of this collision process, it has been
possible to solve analytically the Vlasov equation retaining
both the nonlinear electron dynamics in the potential well
and collisions accordingly, and to obtain the rate of collision-
less electron heating.17 The qualitative discussion of such a
solution is given below.

Electron collisions with atoms are a random process. In
between collisions electrons gain or loose energy from the
wave as shown in Fig. 2. As a result of the combined action
of many collisions and many interactions with the wave,
electrons experience adiffusion in the energy spaceon time
scales longer than the collision time and the wave period.
The diffusion coefficient in energy spaceD(e) describes the
formation of the electron energy distribution functionf 0(e)
~EEDF! and the collisionless heating. Indeed, when electrons
diffuse in energy space, the average electron energy in-
creases which corresponds to heating. Therefore, for the full
description of the collisionless heating knowledge ofD(e) is
sufficient.

The diffusion coefficient in energy spaceD(e) is the
product of the squared energy changeDe per step and the
frequency of this stepn, averaged over an electron ensemble
with a given energye. In the linear approximationDe
5mvxṽ, whereṽ is given by Eq.~2! and the diffusion co-
efficient in energy space is

D~e!5n^~mṽ"v!2&, ~4!

where the angular brackets denote averaging over the elec-
tron ensemble with a given energye.

Under typical discharge conditions, the elastic collision
frequency is large compared to the inelastic collision fre-
quency. Therefore, an electron experiences a lot of collisions
prior to losing energy due to ionization or excitation. Elastic
collisions scatter the electron velocity on a large pitch angle
and make the electron energy distribution function isotropic.
This means that in Eq.~4! the averaging has to be performed
over all velocity directions.

Substitutingṽx from Eq. ~2! into Eq. ~4! gives

D~e!5
1

2 E dvx

2v

n~eE0!2vx
2

~v2vxk!2
. ~5!

Here,e5mv2/2, * dvx/2v5* d cosadb/4p denotes averag-
ing over velocity directions, and 1/2 accounts for averaging
over the phase of the wave. The integral in Eq.~5! diverges
at the resonancev5vxk; therefore, a more accurate descrip-
tion is necessary in the resonance region. The reason for
divergence is the long time 1/(v2vxk) during which the
electron stays in resonance with the electric field. There are
two physical mechanisms which limit this time and destroy
the resonance: One is collisions; ifn;(v2vxk), an electron
leaves the resonance region due to the collision and the am-
plitude of the velocity variation in Eq.~2! diminishes. The
collisions are easy to account for by introducing an addi-
tional friction force into the electron motion equation~1!.
The resulting calculation requires the following substitution
in Eq. ~5!:

1

~v2vxk!2
→ 1

~v2vxk!21n2
. ~6!

The other mechanism is nonlinear effects of the electron mo-
tion in the potential well. The linear estimate forṽx in Eq. ~2!
breaks down if 1/(v2vxk).t r , i.e., for times longer than
the bounce time of the trapped resonance electronst r . Then
the velocity variationṽx is limited by Du5eE0 /mt r . Tak-
ing into account the nonlinear effects yields cumbersome cal-
culations. However, the result is qualitatively similar to Eq.
~6! with n being replaced byt r

21. As a result of regulariza-
tion of the resonance, Eq.~5! modifies to

D~e!5
1

2 E2v

v dvx

2v
~eE0!2vx

2 n

~v2vxk!21n21t r
22

. ~7!

In the limit nt r@1, the last factor on the right-hand side of
Eq. ~7! can be simplified to

n

~v2vxk!21n2
→pd~v2vxk!, ~8!

FIG. 2. Illustration of the difference between electron–ion~small angle! and
electron–atom~large angle! collisions. The top right figure shows the dif-
ferential scattering cross section. The bottom figure shows the electron ve-
locity as function of time during several collisions.
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whered is the Dirac delta-function.10 Indeed, the maximum
of the resonance function in Eq.~8! is n21, whereas the
width of the function is proportional ton. The integral does
not depend onn. In this limit, D(e) is identical to the result
of the quasilinear theoryD5Dql and can be written as

Dql5
p

4

~eE0!2

vk S v

k D 2

QS v2
v

k D , ~9!

whereQ is the Heaviside function. Electrons with velocity
small compared to the wave phase velocity do not participate
in the collisionless heating. Note that the diffusion coeffi-
cient is of the order of the square of the energy step (eF0)2

multiplied by the frequencyv and does not contain any de-
pendence on the collision frequency. In reality, diffusion in
energy cannot occur without collisions, but because the
width of the wave–particle resonance is proportional ton,
the collision frequency disappears after integration of Eq.~7!
in the limit nt r@1.

The role of the collision frequency is recovered by non-
linear analysis. In the opposite limitnt r!1, the last factor in
Eq. ~7! can be simplified to

n

~v2vxk!21t r
22

→pnt rd~v2vxk!. ~10!

Indeed, the maximum of the resonance function in Eq.~10!
is nt r

2 while the width of the function is proportional tot r
21,

see Fig. 3. The integral diminishes innt r
2
•t r

215nt times
compared to the previous case. As a result the diffusion co-
efficient in energy space isnt times smaller than the quasi-
linear estimate in Eq.~9!, D5ntDql .

The exact analytical integration of the Vlasov equation
accounting for nonlinear electron dynamics in a potential
well and for collisions yields17

D~e!>DqlP~nt r !. ~11!

The functionP(nt r) is given in Ref. 17 and plotted in Fig.
4. Surprisingly, this complicated function can be approxi-
mated within an error of,5% by tanh(2ntr). We can then
deduce that the diffusion coefficient in energy space is re-
lated to the quasilinear result by

D~e!>Dql3tanh~2nt r !. ~12!

The above theory can be applied to the calculation of
collisionless heating in a plasma. In the traditional theory
collisionless heating is constant when the collision frequency
tends to zero. In contrast to this, nonlinear effects cause the

collisionless dissipation to tend to zero asn approaches zero
and to actually vanish in the limitn50. The formula derived
above gives the nonlinear wave damping for any value of the
collision frequency. In the limitnt r@1, tanh(ntr)→1 and the
obtained result coincides with the quasilinear theory. In the
opposite casent r!1, tanh(ntr)→0, and collisionless heating
and corresponding wave damping vanishes, in accordance
with the O’Neil theory.18 Therefore, the result is a natural
generalization of both theories, and gives the collisionless
heating for any value of the collision frequency.

As can be seen from Fig. 4, the main contribution to
heating atnt r@1 is due to electrons not trapped in the po-
tential well of the wave. Fornt r!1, P(nt r)>2nt r and
collisionless heating is proportional to the collision fre-
quency, similar to the result of Ref. 19. Note that in contrast
to Ref. 19, where only the limit of rare collisions was con-
sidered, Eq.~12! is valid for arbitrary values ofnt r . At small
nt r the main contribution to the power dissipation is due to
trapped-in-the-wave electrons; the contribution of untrapped
electrons is only about 25% compared with that of trapped
electrons. Note, that the obtained result is also very different
from that of Ref. 19, where the nonlinear Landau damping
with account for Coulomb collisions was explored. The main
contribution to wave damping in that case is due to the nar-
row boundary layers around the separatrices between trapped
and untrapped electrons, see Fig. 1.

So far, we have considered electron heating by a mono-
chromatic longitudinal wave. The theory can be applied to
the calculation of collisionless heating in any bounded
plasma for an arbitrary electric field. In many rf discharges,
the electron plasma frequency is large compared to the dis-
charge frequency. Therefore, the applied external rf electric
field is screened near antennas or electrodes. An electron
after passing the region of the rf electric field acquires a
velocity kick, which consequently lead to electron heating.
In the next section we consider collisionless heating with
prescribed velocity kicks.

III. COLLISIONLESS HEATING IN BOUNDED
PLASMAS

To demonstrate this concept we consider the simple ex-
ample where the electron acquires a prescribed velocity kick
DV cos(vt1f0) near one wall and oscillates between two

FIG. 3. Resonance function in Eq.~7! in the limits nt r@1 andnt r!1.

FIG. 4. Dimensionless functionP~n!.
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walls with separationL. Electrons experience collisions with
frequencyn as in the previous section. A schematic of the
electron dynamics is shown in Fig. 5.

A. Influence of nonlinear effects on the diffusion
coefficient in velocity space in bounded plasmas

We consider a transverse to the plasma boundary veloc-
ity kick DVy cos(vt1f0) corresponding to a model induc-
tively coupled plasma~ICP! in a slab geometry.6 Collisions
lead to a diffusion in the energy space. Similar to the case of
collisionless heating by a single wave, the diffusion coeffi-
cient is the product of the squared energy changeDe and the
collision frequencyn, averaged over the electron ensemble
with a given energye. In the linear approximationDe
5mvyṽy , whereṽy is the electron velocity change between
collisions. The velocity variationsṽy have an extreme maxi-
mum for resonant particles, which after bouncing between
the walls during the time 2L/vx arrive at the left wall to
acquire the same velocity kick, see Fig. 5. That requires the
phase shift of the velocity kick to be equal to 2pn, wheren
is an integer number. It is important to note, that only reso-
nant particles (vx,n5vL/pn) contribute to collisionless
heating, similar to the case of longitudinal waves in the pre-
vious chapter, where only resonant particles (vx5vk) con-
tribute to heating for unbounded plasmas. In the resonance
region (vx'vx,n), the evolution of the velocity is described
by the system of equations20

D ṽy

D i
5DVy sinf,

Df

D i
5

v

Vb
22pn,

Dt

D i
5

1

Vb
, ~13!

whereD denotes the change in a variable during one bounce,
f5vt22pnVbt1f02p/2 is the phase of the wave rela-
tive to the electron bounce motion,i is a bounce number,
Vb5vx/2L is the bounce frequency, andDVy is the ampli-
tude of the kick. Near the resonancev'2pnVb and the
change inf is small. Therefore, we can substitute the varia-
tions D in Eq. ~13! by differentials. Combining the two first
equations in~13! gives

dṽy

df
52

DVyVb

~v22pnVb!
sinf. ~14!

From Eq.~14! it follows that ṽy oscillates near the resonance
with amplitudeDVyVb /(v22pnVb). Note that

Nb5
1

v/Vb22pn
~15!

is the number of bounces an electron experiences before the
phasef changes to 1 and the kicks received by the electron
have considerably different phase. Substitutingṽy from Eq.
~14! into Eq. ~4! gives the diffusion coefficient in energy
space

D~e!5
m2DVy

2

2 (
n50

` E
0

p d cosadb

4p
vy

2Vb
2

3
n

~v22pnVb!21n2
. ~16!

In the last factor of Eq.~16! we accounted for the fact that
electrons leave the resonance region due to collisions and,
consequently, the amplitude of velocity variation in Eq.~14!
diminishes due to collisions. The rigorous derivation of the
diffusion coefficient in energy space was performed in Ref.
10 making use of the quasilinear theory. The result of the
quasilinear theory coincides with the euristic one-particle
analysis of Ref. 20 discussed above.

If the effective width (dvx) of the resonant factor in Eq.
~16! is much smaller than the thermal velocity (dvx

;nL/pn!VT), the last factor of Eq.~16! can be replaced
by a delta function:

D~e!5
m2DVy

2

2 (
n50

` E
0

p d cosadb

4p
~vy!2Vb

2

3d~v22pnVb!. ~17!

As a result, the diffusion coefficient does not depend on the
collision frequency.

The previous analysis, however, pertains to the non-self-
consistent problem with given velocity kicks. In a real ICP
plasma, the velocity kicks are directed along thex-axis, not-
withstanding the fact that the rf electric fieldEy(x)cos(vt
1f02p/2) is directed along the plasma boundary. It appears
that the magnetic forceev3B/c completely cancels the ac-
tion of the electric field in they-direction.21 It can be readily
explained invoking conservation of the canonical momentum
Ay due to symmetry in they-direction. The total canonical
momentumeAy /c1mvy is conserved.Ay vanishes outside
the skin layer where the rf field does not penetrate. Consider
an electron starting the motion from the plasma bulk where
Ay50 and returning back.Ay is unchanged after one pass
through the skin layer. As a result,vy is unchanged also due
to the conservation of the total momentum. This means that
the action of the rf electric field and the rf magnetic field on
the electron totaly compensate each other in they-direction.
The force evyBz /c generates the velocity kicks in the
x-direction. The Lorentz forcee(E1v3B/c) produces the
velocity kicks DVx only in the direction transverse to the
boundary.21 It is a consequence of the momentum
conservation—the momentum of the rf wave~photons! is
imparted to electrons. The rf magnetic field rotates the ve-
locity kick from the y- to the x-direction, conserving the
kinetic energy, i.e.,

FIG. 5. A schematic of the electron dynamics in a bounded plasma.
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VxDVx5VyDVy , ~18!

whereDVy is the velocity kick calculated taking into account
the electric field only

DVy5
e

m E Ey@x~t!#cos~vt1f02p/2!dt.

Here, the integral is taken along the electron trajectory.
The fact that velocity kicks in ICP plasmas are directed

in the x-direction instead of they-direction have a profound
impact on the collisionless heating at low collision frequen-
cies. We saw in the previous section that nonlinear effects
diminish the collisionless heating by a single longitudinal
wave. In ICP, nonlinear effects are introduced by the fact that
the bounce frequency itself depends onvx . The velocity
kicks change the bounce frequency and ‘‘kick’’ resonant
electrons out of resonance.

This problem becomes similar to the nonlinear Landau
damping problem, where nonlinear effects also destroy the
resonance conditionv5vxk. In the resonance region, the
evolution of velocity is described by a system of equations
similar to Eq.~13!, but whereVb is not constant and changes
with vx ,

dvx

di
5DVx sinf,

df

di
5

v

Vb
22pn. ~19!

Combining the two equations in Eq.~19! and using a Taylor
series expansion nearvx,n gives

v

Vb~vx!
22pn'2

v

Vb

vx2vx,n

vx,n
~20!

and

dvx

df
52

DVyVbvx,n

v~vx2vx,n!
sinf. ~21!

Integrating Eq.~21! yields

~vx2vx,n!22
Vbvx,n

v
DVx cosf5const. ~22!

Equation~22! shows that even if the electron velocity ini-
tially satisfies the resonance conditionvx5vx,n exactly, the
velocity perturbation ṽx5vx2vx,n is limited by
AVbvx,nDVx /v. This is in contrast to Eq.~14!. The number
of bounces before the phase of the kick changes to 1 is given
by Eq. ~15!. Substituting results of Eqs.~20! and ~22! into
Eq. ~15! gives the typical time of changing ofṽx near the
resonance due to nonlinear effects

tnl5
1

AvVDVx /vx,n

.

The system of equations~19! can be formally described by
the Hamiltonian

H~vx ,w!5
m

2
~vx2vx,res!

22
mVbvx,n

2v
DVx cosw. ~23!

This Hamiltonian coincides with the one in Eq.~3! of the
electron trapped in a potential well. Thus, one can use here
the results of the calculation of the diffusion coefficient for

nonlinear Landau damping, Eq.~12!, where timet r should
be replaced by timetnl . Therefore, the diffusion coefficient
accounting for nonlinear effects reads

D~e!5
m2DVy

2

2 (
n50

` E
0

p d cosadb

4p
~vy!2Vb

2d~v

22pnVb!tanh~2ntnl!. ~24!

From Eq.~24! one can see that nonlinear effects are impor-
tant at smalln. In the limit ntnl!1, the diffusion coefficient
is proportional ton andD(e)→0 asn→0. This is in contrast
to the linear theory Eq.~17!, whereD(e) remains a constant
asn→0.

A numerical example is shown in Fig. 6 for a model
profile of the rf electric fieldEy(x)5E0 exp(2x/d). Figure 6
is a plot of the diffusion coefficient for a fixed velocity (v
55vd) as a function ofn/v, for two gap lengthsL54d/p
and 25d. The diffusion coefficient was calculated by a Monte
Carlo ~MC! method, as the ensemble averaged

Dv5 K 1

2

~Dv !2

Dt L , ~25!

where Dv5v(t1Dt)2v(t) is the change in the absolute
value of the velocity in a given period of timeDt. The
Monte Carlo simulation was compared with analytical results
of the linear theory Eq.~16!, and the nonlinear theory Eq.
~24!. The results presented in Fig. 6 correspond to three val-
ues of the electric field. For small fields the velocity kicks
are also small (DVx!vx) and theory agrees well with the
MC simulation. For larger values of the electric field the
kicks are not small (DVx;vx) and the theory presented here
is not applicable. The nonlinear effects withDVx;vx are
also discussed in Ref. 23.

B. Influence of nonlinear effects on the surface
impedance in bounded plasmas

In Refs. 22 and 24 the anomalous skin effect was con-
sidered ignoring the induced rf magnetic field. To show the
importance of nonlinear effects discussed above, the real part

FIG. 6. Influence of the second boundary on collisionless heating. Dimen-
sionless diffusion coefficient in velocity spaceG5Dv2m2vL/e2E0

2d for an
electric fieldEy5E0 exp(2x/d) as a function ofn/v for two different slab
widths L54d/p and L525d. Solid curves with circles correspond to the
analytical formulas~17!, ~24!, dashed lines are Monte Carlo simulations.
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of the surface impedanceZ with and without taking nonlin-
ear effects into account was calculated. The real part of the
surface impedance is related to the power absorptionP by
Re(Z)52PuZu2/E0

2. The power deposition into a unit volume
of plasma,P, can be expressed in terms ofDv @Eq. ~17! or
Eq. ~24!# and the electron energy distribution function
f (e),10

P54pE
0

`

vD~e!
d

de
f ~v !de. ~26!

Figure 7 depicts the real part of the surface impedance as
a function of n/v. The profile of the electric field and the
imaginary part of the surface impedance were taken in ana-
lytical form from Ref. 22. This figure shows that the value of
the real part of the surface impedance decreases considerably
at ntnl,1 due to the influence of nonlinear effects. For typi-
cal values of electric field amplitudes in self-sustained ICP
@about several V/cm~Ref. 52!#, the nonlinear effects start to
be important forn;0.3v and the difference with the linear
theory can be as large as three orders of magnitude.

Until now, the collisionless heating was described only
for a very simple case of a uniform plasma with a prescribed
electric field, but for real discharges the electric field has to
be determined self-consistently with EEDF and the ambipo-
lar potential~or the density profile!. This requirement signifi-
cantly entangles the task of the correct description of plasma
heating. The way of handling it is described in the next sec-
tion.

IV. SELF-CONSISTENT SYSTEM OF EQUATIONS FOR
A KINETIC DESCRIPTION OF THE LOW-
PRESSURE DISCHARGES ACCOUNTING FOR THE
NONLOCAL AND COLLISIONLESS ELECTRON
DYNAMICS

We apply the developed theory of collisionless heating
to low pressure radio-frequency discharges. These discharges
are extensively utilized for plasma processing and lighting.7

Simulation of discharge properties is a common engineering
tool for optimization of the plasma devices. Due to the large
value of the electron mean free path~l! the electron current
is determined not by the local rf electric field~Ohm’s law!,

but rather is a function of the whole profile of the rf electric
field over distances of orderl ~anomalous skin effect!.
Therefore, a rather complicated nonlocal conductivity opera-
tor has to be determined for the calculation of the rf electric
field penetration into the plasma. Moreover, the electron en-
ergy distribution function ~EEDF! is typically non-
Maxwellian in these discharges.8 The EEDF, nonlocal con-
ductivity, and plasma density profiles are all nonlinear and
nonlocally coupled. Hence, for accurate calculation of the
discharge characteristics at low pressures, the EEDF needs to
be computed self-consistently.

One of the ways to describe low-pressure discharge uti-
lizes the so-called ‘‘nonlocal’’ approach. In the past, the non-
local approach was based on the assumption that the electron
mean free path is small compared with the discharge dimen-
sion. Recently we have updated this approach to include the
collisionless phenomena like anomalous skin effect and Lan-
dau damping into the description of nonlocal kinetics.61 The
nonlocal approach relies on the direct semianalytic solution
of the Boltzmann equation in the limiting regime where the
electron energy relaxation length is much larger than the dis-
charge gap.25–27 Under these conditions the EVDF is almost
isotropic and can be well approximated as a sum of the main
isotropic part of EVDFf 0 and a small anisotropic part of the
EVDF f 1 . Importantly, the main part of EVDF is a function
of the total energy only@ f 0(e), wheree5mv2/22ef(r ),
and f(x) is the electrostatic potential#, instead of being a
function of velocities and spatial coordinates as in a general
casef 0(r ,v). This assumption allows significant simplifica-
tions of the Boltzmann equation, which effectively reduces
from a six-dimensional (3D3V) problem in phase space to a
1D problem for f0(e) as a function of onlye. The final 1D
equation for the electron energy distribution function is the
temporal-spatial averaged Boltzmann equation over phase
space available for the electron with a given total energye.
The ‘‘nonlocal’’ approach is the opposite case to the ‘‘local’’
description of a plasma, wheref 0(r ,v) can be assumed to be
a function of only the kinetic energy and the local rf electric
field f 0@mv2/2,E(r )#, whereas gradients of the local rf elec-
tric field and the influence of the ambipolar electric field are
neglected. The nonlocal approach has been successfully ap-
plied to the self-consistent kinetic modelling of various low-
pressure discharges: capacitively coupled plasmas,28–31 in-
ductively coupled plasmas,32–35 dc discharges,36,37 the
afterglow,38 and surface-wave discharges.39 Additional refer-
ences can be found in reviews.40–42

If the gas pressure is less than 10 mTorr, the electron
mean free path becomes comparable or even larger than the
discharge dimension and numerous collisionless phenomena
dominate the discharge characteristics.6 Therefore, wide uti-
lization of low pressure discharges calls for ‘‘upgrading’’ of
the nonlocal approach by taking into account collisionless
phenomena. References 10 and 61 generalized the nonlocal
approach for the low-pressure discharges to incorporate the
collisionless heating and transit-time~electron temporal and
spatial inertia! effects on the plasma conductivity in the dis-
charge description. Here, we present the nonlocal approach
with a rigorous, self-consistent treatment of collisionless
phenomena in inhomogeneous plasmas. Similar approaches

FIG. 7. The real part of the surface impedance in Ohm,z, as a function of
n/v. The plasma parameters are: densityN51011 cm23, Te55 eV, L
54 cm.
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have been developed for calculation of the rf heating in
tokamaks46 and for the analysis of kinetic instabilities in in-
tense beams.47

The key assumption of the nonlocal approach is that the
EEDF is isotropic and is a function of the total energy only.
This assumption is based on the basic fact of atomic physics
that for a typical electron energy of few eV the elastic colli-
sion frequency is large compared to the inelastic collision
frequency, which includes ionization and excitation of the
background gas. An electron collides elastically many times
with atoms before it loses energy due to ionization or exci-
tation. Elastic collisions scatter the electron velocity on a
large pitch angle and make the EEDF isotropic. In between
inelastic collisions, an electron acquires many velocity kicks
from the rf electric field. This means that the electron ther-
mal velocity is large compared with the single velocity kick
and the quasilinear theory~diffusion in the energy space! can
be utilized.

The derivations are lengthy. Therefore, and to be spe-
cific, the present analysis considers only the case of an in-
ductively coupled plasma~ICP!; the schematic of an ICP is
shown in Fig. 8. Nevertheless, the approach has been de-
signed in the most generalized way, so that derivations can
be readily performed for other discharges. For example, in
Ref. 31 the capacitive discharge, in Ref. 43 the electron-
cyclotron-resonance discharge, and in Ref. 44 the surface-
wave discharge were considered with self-consistent account
for collisionless heating.

Most of the previously reported theoretical studies as-
sume a uniform plasma, in a semi-infinite45 or a slab
geometry.48 In this case the analytical treatment simplifies
considerably, because the electron trajectories are straight. In
the semi-infinite geometry, electrons traverse the region of
the rf electric field~skin layer! and are reflected back into the
plasma at the discharge walls. An acquired velocity kick then
dissipates in the plasma over distances of the order of the
electron mean free path and subsequent kicks can be as-
sumed independent. If the plasma dimension is small or
comparable tol, the subsequent kicks are correlated. The
resonance between the wave frequency and the bounce fre-
quency of the electron motion between walls may result in a
modification of the nonlocal conductivity49,50 and may yield
an enhanced electron heating.10,20,51The anomalous skin ef-

fect has been studied experimentally in cylindrical49 and pla-
nar discharges.52 Additional references can be found in the
reviews of classic and recent works on the anomalous skin
effect in gas discharge plasmas.5,53 The theoretical studies in
a cylindrical geometry are much more cumbersome, and
have been done for uniform plasmas in Refs. 54–56 and for
a parabolic potential well in Ref. 57. Qualitative results in
the cylindrical geometry are similar to the results in the plane
geometry; therefore, in the present study only the one-
dimensional slab geometry is considered.

For the case of a bounded uniform plasma, the electro-
static potential well is taken to be flat in the plasma and
infinite at the wall~to simulate the existence of sheaths!. In
this square potential well, electrons are reflected back into
the plasma only at the discharge walls. In a realistic nonuni-
form plasma, however, the position of the turning points will
depend on the total~kinetic plus potential! electron energy
and the actual shape of the potential well, i.e., low total en-
ergy electrons bounce back at locations within the plasma
and may not reach regions of high electric field at all. As a
result, the current density profiles in a nonuniform plasma
may differ considerably from the profiles in a uniform
plasma. The theory of the anomalous skin effect for an arbi-
trary electrostatic potential profile and a Maxwellian EEDF
was developed by Meierovich and coworkers in Refs. 58–60
for the slab geometry. Although some rigorous analytical re-
sults of nonuniform plasmas have been reported, the detailed
self-consistent, nonlocal simulations related to such plasmas
and comparison with experimental data are still lacking.
Self-consistent, nonlocal simulations based on the approach
developed in this paper were completed recently and pre-
sented in our separate publications62,63 and will be addition-
ally reported in Ref. 64. The alternative to the nonlocal ap-
proaches are based on particle-in-cell simulations, and only
recently were capable of the detailed self-consistent, nonlo-
cal kinetic simulations of low pressure discharges.9

The kinetic description of the anomalous skin effect is
similar to a well known mechanism of collisionless power
dissipation—the Landau damping.3 In an infinite plasma, the
resonance particles that are moving with a velocityv close to
the wave phase velocity, so thatv5v"k, interact intensively
with wave fields. Therefore, the collisionless electron heating
~and the real part of the surface impedance! depends on the
magnitude of a Fourier harmonic of the electric fieldE(k)
and the number of the resonant particlesf (vx5v/k), with
xik. If the interaction with the skin layer is repeated in a
resonant manner the momentum changes mount up. There-
fore, the main contribution to the electron heating and the
resistive part of the surface impedance comes from these
near-resonant electrons. In a bounded plasma, the resonance
condition requires that the bounce periodTb be equal to one
or several rf electric field periods:Tb52pn/v, wheren is
an integer number. Because the bounce frequency depends
on the electrostatic potential, accounting for the plasma non-
uniformity is important for a correct calculation of the effi-
cient power coupling.

The first unambiguous measurements of a bounce-
resonance effect were performed in a non-neutral plasma. In
Ref. 66 it was shown that the heating rate increases by a

FIG. 8. Schematic of an inductively coupled plasma. The antenna on the left
produces inductive rf electric field~shown by a dashed line!, which pen-
etrates into the plasma over a distance of the order of the skin depth. Elec-
trons are confined by the stationary electrostatic potentialw(x). Electrons
with different total energye are confined in different regions of the plasma.
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factor of 104 as the oscillation frequency of the externally
applied rf field is increased by a factor of 10 near the thermal
electron bounce frequency.

As discussed above, the collisionless heating is deter-
mined by the number of resonant particles, and, hence, is
dependent on the EEDF. The EEDF, in turn, is controlled by
the collisionless heating. Only the particles which are in
resonance with a wave are heated by the wave~collisionless
heating!. It means that in the regime of the collisionless dis-
sipation, the form of the electron energy distribution function
is sensitive to the wave spectrum. Therefore, a plateau in the
EEDF can be formed in the regions of intensive collisionless
heating, if the wave phase velocities are confined in some
interval.65 The evidence of a plateau formation for the ca-
pacitive discharge plasma were obtained in Ref. 51. The cold
electrons, which are trapped in the discharge center, do not
reach periphery plasma regions where an intensive rf electric
field is located and, as a result, these electrons are not heated
by the rf electric field. The coupling between the EEDF
shape and collisionless heating may result in a new nonlinear
phenomenon: an explosive generation of the cold electrons.28

The experimental evidence of the influence of collisionless
phenomena on the EEDF shape were obtained in Refs. 52,
67–70.

Self-consistent system of equations: The self-consistent
system of equations for the kinetic description of low-
pressure discharges accounting for nonlocal and collisionless
electron dynamics contains the averaged kinetic equation for
f 0(e), the Maxwell equation for the rf electric field, the
quasineutrality condition for the electrostatic potential, and
the ion density profile given by the fluid conservation equa-
tions for ion density and ion momentum.

~1! The averaged kinetic equation forf 0 reads

2
d

de
~De1Dee!

d f0

de
2

d

de
@Vee1Vel# f 0

5(
k

F nk* ~w1ek* !
A~w1ek* !

Aw
f 0~e1ek* !2nk* f 0G , ~27!

where the upper bar denotes averaging according to

L~x,v!~e!5E
x2

x1

dxv~x,e!L@x,v~x,e!#, ~28!

v~x,e!5A2@e2w~x!#/m, ~29!

and the coefficientsVel , Vee, Dee are given by71–73

Vel5
2m

M
wn, ~30!

Vee5
2wnee

n S E
0

w

dwAw f D , ~31!

Dee5
4

3

wnee

n S E
0

w

dww3/2f 1w3/2E
w

`

dw fD , ~32!

nee5
4pLeee

4n

m2v3
, ~33!

wherenee is the Coulomb collision frequency andLee is the
Coulomb logarithm. Note that at large electron energiese
@Te , Vee'2wnee, and Dee'2wTenee, where Te

52/3*0
wdww3/2f /n; De is given by10

De~e!5
pe2

4m2 (
n52`

` E
0

e

dexuEyn~ex!u2

3
e2ex

Vb~ex!

n

@Vb~ex!n2v#21n2
, ~34!

where

Eyn~ex!5
1

p F E
0

p

Ey~u!cos~nu!duG . ~35!

Note that the above expression forDe(e) accounts for the
bounce resonanceVb(ex)n5v and the transit time reso-
nancev5v/d, which correspond to maxima ofEyn(ex).
Note also that if the discharge gap is increased to infinity the
sum overn can be replaced by integral and bounce reso-
nances will be transformed into wave–particle resonances
v5kv. The expression forDe(e) in Eq. ~34! has the extra
factor v compared withD(e) in Eq. ~16!. The v was incor-
porated into the expression ofDe(e) for the correct account
of the phase space volume on the right-hand side of the av-
eraged kinetic equation, see Eq.~28!.

~2! The rf electric field is determined from the Maxwell
equations

d2Ey

dx2
1

v2

c2
Ey52

4p iv

c2
@ j ~x!1Id~x!2dantiId~x2L !#.

~36!

Here,I is the current in the coil atx50; danti50, if there is
a grounded electrode and no coil with current located atx
5L as in Fig. 8, anddanti51, if there is a coil with the
current 2I at x5L. The electron current density is given
by61

j y~x!5E
0

x

G~x,x8!Ey~x8!dx81E
x

L

G~x8,x!Ey~x8!dx8,

~37!

where

G~x,x8!5
1

2

e2

A2m
E

max~w,w8!

` coshF cosh~F12F8!

sinhF1

3
G~e!

Ae2w~x!Ae2w~x8!
de, ~38!

where we introduced a new functionG(e),

G~e![E
e

`

f 0~e!de. ~39!

The 1D slab system of two currents flowing in opposite di-
rections describes very well a cylindrical configuration with
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radiusR, where a coil produces rf currents at both plasma
boundariesx50 andx52R, R5L/2.48,49Equations~36! and
~37! can be solved numerically using a finite difference
scheme. There is a major difficulty with such an approach:
straightforward computing of the complex Green’s function
in Eq. ~38! is slow and time consuming.62 A better approach
is to solve the integrodifferential Eq.~36! making use of a
spectral method, where the electric field is represented as a
sum of harmonic functions. A robust procedure to solve this
equation by FFT method is described in Ref. 61.

~3! The electrostatic potential is obtained using the
quasineutrality condition

ni~x!5E
w~x!

`

f 0~e!Ae2w~x!de, ~40!

whereni(x) is the ion density profile given by a set of fluid
conservation equations for ion density and ion momentum.62

Equation ~40! is solved in the form of a differential
equation29

dw

dx
52Te

scr~x!
d ln@ni~x!#

dx
, ~41!

whereTe
scr(x) is the electron screening temperature

Te
scr~x!5F 1

2n~x!
E

w~x!

`

f 0~e!
de

Ae2w~x!
G21

. ~42!

~4! The power deposition can be computed as

P~x!5 1
2 Re@Ey* ~x! j ~x!#. ~43!

Integrating over the discharge length, Eq.~43! becomes

P52A2mE
0

`

De~e!
d f0~e!

de
de. ~44!

This equation can be used as a consistency check.
Figure 9 shows the rf electric field profiles calculated for

a bounded plasma in a slab geometry with and without the
ambipolar potentialw524(x/R21)2 ~in Volts! for two
cases:~1! the electron density at the electroden(0) is equal
to the electron density of the uniform plasman0 , n(0)
5n0 , ~2! the electron density in the centern(R) is equal to
n0 , n(R)5n0 , respectively. From Fig. 9 it can be seen that
taking into account an ambipolar potential greatly alters the
rf electric field profile.

Figure 10 shows comparisons between experimental
data52 and simulation predictions using the nonlocal model.62

The Ar ICP chamber was 19.8 cm in~inside! diameter and
10.5 cm in length. The coil current driving frequency was
6.78 MHz. The EEDF was assumed a Maxwellian, with an
electron temperature obtained experimentally.52 The plasma
density was set to the value measured experimentally.52 The
normalization factorE0 for the rf field at the wall on the
coil-side was obtained by matching the simulated integrated
power deposition with the experimental value for the power.

Figures 10~a! and 10~b! show reasonable agreement be-
tween the predicted~using the nonlocal 1D model! and mea-
sured rf field and the current density profiles. The field de-
creases to a minimum and then goes through a hump. The
qualitative features are captured with the model, although the
precise location of the minimum is not predicted well. This is

FIG. 9. The profile of the normalized amplitude of the rf electric field
calculated for the case of cylindrical-like geometry~slab geometry and two
antisymmetric currents atx50 andx52R) as a function of the normalized
coordinatex/R. The electron temperature isTe52.5 eV and the uniform
spatial electron density isn051012 cm23, which corresponds tov/VbT

51.5, n/VbT50.3, andRvp /c54.5. The solid line shows the profile for a
uniform plasma. Symbols correspond to a nonuniform plasman(x) with a
Boltzmann distribution and the ambipolar potentialf524(x/R21)2 ~in
Volts! for two cases:~1! the electron density at the electroden(0) is equal to
the electron density of the uniform plasman0 , and in the rest of the plasma
n(x).n0 , and~2! the electron densityn(R) at the center is equal ton0 , and
in the rest of the plasman(x),n0 .

FIG. 10. Comparison between experimental data~Ref. 52! and simulation
predictions using a nonlocal model:~a! RF electric field and~b! current
density profiles, for a pressure of 1 mTorr.
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due to the fact that the actual discharge is 2D, while the
model is only 1D.

Many previous works considered the anomalous skin ef-
fect for uniform plasmas without taking into account the
electrostatic potential. We performed numerical simulations
with and without taking into account an ambipolar potential.
The presence of an ambipolar electrostatic potential greatly
affects the electron heating in several ways: First, the elec-
trostatic potential confines low energy electrons to the center
of the discharge plasma and these electrons cannot reach the
region of the strong field near the walls. Second, the number
of resonant electrons is larger if an electrostatic potential is
taken into account. For example, in the case of a parabolic
potential, the bounce frequency is the same for all trapped
electrons. That means ifv5Vb , all trapped electrons are in
resonance with the wave and effectively absorb wave energy.
Figure 11 shows the plasma resistivity, or the real part of
impedanceZ(V). The calculations were performed for the
following discharge parameters: electron temperatureTe

55 eV, peak electron density at the center of the discharge
ne5531011cm23, the rf field frequency v58.52
3107 s21, and the electron transport frequencyn5107 s21.
In Fig. 11 it is clearly seen that the presence of the ambipolar
potential enhances the resistivity of the plasma. The most
profound changes in resistivity are for the quadratic potential
for a specific value of L, which satisfies v5Vb

5(40 eV/m)1/2/L. The obtained results show explicitly that
not taking into account the ambipolar potential—as it is often
done for simplicity—can lead to large discrepancies~more
than 100%!, especially for the conditions corresponding to
the bounce resonance. Further results of the fully self-
consistent calculations are presented in Ref. 64.
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