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Enhanced collisionless heating in a nonuniform plasma
at the bounce resonance condition
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The importance of accounting for a nonuniform density profile for modeling of collisionless electron
heating in a bounded low-pressure plasma is demonstrated. A drastic enhancement of the power
transfer into an inductive plasma under the condition of a bounce resonance is observed if the
nonuniformity of the plasma density profile is accounted for. This enhanced plasma heating is
attributed to the increase of the number of resonant electrons, for which the bounce frequency of
electrons confined inside the plasma potential is equal to the rf field frequency. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1986163�
At low pressures �millitorr region�, inductive plasmas
exhibit a number of peculiar physical effects typical for
warm plasmas, such as a resonant wave-particle interaction
and an anomalous skin penetration.1–3 An interesting effect
that can lead to enhanced heating for bounded low-pressure
plasmas is a bounce resonance between the frequency � of
the driving rf field and the frequency �b of the bounce mo-
tion of the plasma electrons confined into the potential well
by an electrostatic ambipolar potential ��x� and the sheath
electric fields near the plasma edges.4–8 Most earlier theoret-
ical and numerical studies on this subject assumed for sim-
plicity a uniform plasma density and the absence of an elec-
trostatic potential. As a result, the electrons bounced inside a
potential that is flat inside the plasma and infinite at the
walls.7,9,10 Although these suppositions can result in a quali-
tative description of the plasma behavior under nonresonant
conditions, the plasma parameters under resonant conditions
can be greatly altered by accounting for the presence of the
electrostatic potential, which always exists in real-life
bounded plasmas.

Note that though we consider inductively coupled plas-
mas, the formalism developed in this Letter, can be applied
to other problems for the description of the wave-particle
interaction in nonuniform plasmas, i.e., in semiconductor
physics, laser-plasma interaction, collective phenomena in
intensive beams, rf heating of plasmas in discharges and to-
kamaks, and so forth.

It is a well-known result of the quasilinear theory that
the electron heating of low-collisional, warm plasmas essen-
tially depends on the resonant electrons or electrons with
velocities equal to the phase velocities of the plane waves
constituting the rf field �=v ·k.5,6 For bounded plasmas the k
spectrum is discrete, and the above condition transforms into
the requirement that the rf field frequency must be equal to
or be an integer �n� multiple of the bounce electron fre-
quency �=n�b. If the electron mean free path is much larger
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than the discharge gap L, the resonant electrons �with �b

=� /n� accumulate velocity changes in successive interac-
tions with the rf electric field, which lead to a very effective
electron heating.4,11,12 The electron bounce frequency is very
sensitive to the actual shape of the electrostatic potential,
especially for low-energy electrons. Accounting for the elec-
trostatic potential can bring the plasma electrons into a reso-
nant region, even if they were not there in the absence of the
potential. The increase of the number of the resonant elec-
trons results into a drastic enhancement of the plasma heat-
ing.

In this Letter, we present the results of a full, self-
consistent numerical modeling of the low-pressure plasma on
the specific example of an inductively coupled �ICP� dis-
charge and demonstrate the pronounced influence of the elec-
trostatic potential on the plasma parameters at the bounce
resonance condition. However, the phenomenon described
above is of importance for a wide range of problems related
to penetration of electromagnetic waves into bounded low-
pressure warm plasmas, and the developed formalism can be
applied to other cases.13

Our model assumes a one-dimensional, slab geometry,
ICP discharge of a plasma bounded on both sides by parallel
walls with a gap length L. The surface currents, produced by
an external rf source, flow in opposite directions. The in-
duced rf electric field Ey is directed along the walls. The
static electric field Ex=−d� /dx, directed towards the dis-
charge walls, keeps electrons confined and the plasma
quasineutral, i.e., ne�x�=ni�x�. In the present treatment of
plasmas with density ne�108–1012 cm−3, the sheath width is
neglected, because it is of the order of a few hundreds of
microns, which is small compared with the discharge dimen-
sion L. Furthermore, it is assumed that the plasma electrons
experience specular reflection either at the discharge walls
xw=0, L by the sheath electric field, if the electron energy
�x=m�x

2 /2−e��x� is larger than −e��xw�, or at the turning
points x±��x�, where −e��x±�=�x, by the static electric field
in the plasma. The above one-dimensional �1D� scheme is a

good approximation for a cylindrical ICP discharge, if the rf
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field penetration depth or skin depth � into the plasma is less
than the plasma cylinder radius R.14

A self-consistent study of the discharge properties in-
volves calculation of the electron energy distribution func-
tion �EEDF� f0���, the rf electric field Ey�x�, and the ambi-
polar potential ��x�. The detailed description of the
mathematical formalism is given in Refs. 13 and 15.

The EEDF f0��� is obtained from the temporal-spatial-
averaged Boltzmann equation,

−
d

d�
�D� + Dee�

df0

d�
−

d

d�
�Vee + Vel�f0 = Stinel. �1�

Here, the upper bar denotes spatial averaging according to
Ref. 15, Stinel is the inelastic collision integral, and the coef-
ficients Vel, Dee, and Vee stem from the elastic and electron-
electron collision integrals, respectively, and are given in
Ref. 16.

The energy diffusion coefficient, responsible for electron
heating, is given by

D���� =
�

4 �
n=−�

� �
0

�

d�x

	 �
�y��x��2
� − �x

�b��x�
�

��b��x�n − ��2 + �2 , �2�

where � is the collision frequency and �b��x�=2� /Tb��x�,
where Tb��x�=2	x−

x+
dx /
2��x+e��x� /m� is the half of the

bounce period of electron motion in the potential well, and

�y��x�=e /m	0

Tb��x�Ey�x�t��ei�tdt is the velocity kick ac-
quired by an electron with energy �x during one bounce
period.15

Electric field is obtained from a single scalar equation,

d2Ey

dx2 +
�2

c2 Ey = −
4�i�

c2 �j�x� + I��x� − I��x − L�� , �3�

where I is the surface �coil� current. j�x� is the plasma elec-
tron current density calculated from the anisotropic part f1 of
the EEDF, obtained from the linearized Boltzmann
equation.15

The electrostatic potential ��x� is obtained using the
quasineutrality condition ne�x�=ni�x�, where ne�x�
=	��x�

� f0���
�−��x�d� is the electron-density profile and
ni�x� is the ion density profile, obtained from a set of the
fluid conservation equations for ion density and
momentum.17

The total power P, deposited into the plasma per unit
square of a side surface, is related to the electron energy
diffusion coefficient D���� as15

P = − 
2m�
0

�

d�D����
df0���

d�
. �4�

The dependence of plasma heating on resonant electrons is
especially pronounced for ��, �b,13 because in this case
the last factor on the right-hand side of Eq. �2� tends to the
Dirac delta function. As a result, the electron heating does
not depend on the collision frequency and accounts explicitly

for the bounce resonance,

ownloaded 12 Aug 2005 to 128.83.179.106. Redistribution subject to 
�b��x�n = � . �5�

However, if nonlinear effects are taken into account the col-
lisionless heating may depend explicitly on the collision
frequency.18 Note that if L→�, the summation in Eq. �2� can
be replaced by integration over the corresponding wave vec-
tors k, and the bounce resonance condition �b��x�n=� trans-
forms into the wave-particle resonance condition kx�x=� for
a continuous-wave spectrum. The presence of ambipolar po-
tential can greatly affect the electron heating due to the fact
that the number of resonant electrons is generally larger for a
nonuniform plasma than for a uniform plasma.13 Equation
�2� shows that for �� �when the effect of a bounce reso-
nance is important� only resonant electrons, i.e., electrons in
the energy range corresponding to ��b��x�n−���� or
�b��x�n� ��−� ,�+��, give essential contributions to the
energy diffusion coefficient. As is evident from Fig. 1, which
shows the dependence of the electron bounce frequency
�b��x� on the electron energy �x for different potential wells,
the number of resonant electrons increases if the ambipolar
potential is taken into account. In the limit of a parabolic
potential, the bounce frequency is the same for all electrons
and all electrons can be resonant simultaneously. The realis-
tic potential is close to parabolic in the discharge center and
changes faster at the plasma periphery. As a result, the num-
ber of resonant electrons in nonuniform plasma is much
larger than in uniform plasma, see Fig. 1.

To explicitly show the importance of accounting for am-
bipolar potential on the calculation of plasma heating, we
performed numerical simulations of the plasma resistance for
uniform and nonuniform plasmas �with and without ambipo-
lar potential� for a given Maxwellian EEDF. Specifically, we
obtained results for the plasma surface resistance, or the real
part of the surface impedance Z=4� /c	E0 /B0, as a func-
tion of the plasma length. E0 and B0 are the electric and
magnetic fields at the wall.3 The plasma surface resistance is
related to the power deposition as P= I2 Re Z, where I is the
effective amplitude of the driving current. From Fig. 2 it is

FIG. 1. �Color online�. The electron bounce frequency �b��x�, as a function
of the electron energy �x=m�x

2 /2−e��x� for different potential wells, con-
sisting of the reflecting walls and different ambipolar potentials ��x�. The
solid line corresponds to a uniform plasma with ��x�=0, dashed line—
quadratic potential ��x�=5	 �2x /L−1�2 eV and dotted line—the realistic
potential obtained from the ion fluid model with Te=5 eV. The discharge
length is L=3 cm. The box of height 2� shows the resonance region, corre-
sponding to �=8.52	107 s−1. The arrows show electron energies in the
resonance region.
evident that the presence of ambipolar potential significantly
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enhances plasma resistance under the bounce resonance con-
dition �L�2.6 cm�, comparing to the case of a uniform
plasma. The most profound change in resistance is observed
for a quadratic potential, because in this case all trapped
electrons have the same bounce frequency, and, thus, all of
them are resonant. The maximum of plasma surface resis-
tance in Fig. 2 occurs due to the first bounce resonance n
=1 in Eq. �5�. At larger L a smaller maximum exists due to
the second resonance n=2 in Eq. �5�. The obtained results
explicitly show that neglecting the ambipolar potential, as is
often done for simplicity, can lead to large discrepancies,
especially for conditions close to the bounce resonance.

The bounce frequency increases with decreasing of the
gap size for both uniform and nonuniform plasmas, but in the
nonuniform plasma the bounce frequency for low-energy
electrons does not tend to zero, as shown in Figs. 1 and 4�c�.
As a result, ���b can be satisfied for all electrons, which
leads to complete disappearance of the collisionless heating
for small gaps in the nonuniform plasma �see Figs. 2 and
4�a�� in contrast to the limit of uniform plasma.

The aforementioned phenomena have been observed in a
fully self-consistent simulation of the EEDF, rf electric field,
and ambipolar potential for a given coil current which have
been performed for 13.56-MHz rf driving frequency. Figure
3 shows the dependence of the plasma surface resistance on
the discharge dimension. The simulations have been per-
formed for discharge gaps in the range of 3–10 cm �dis-
charge cannot be sustained for L�3 cm�. The calculated
plasma surface resistance has a sharp maximum for the reso-
nant condition �=�b��x�, which corresponds to the dis-
charge gap of 3 cm. Note that the plasma density is not a
constant as in Fig. 2; it is approximately proportional to the
plasma surface resistance, as more power �P= I2 Re Z� is de-
posited for larger Re Z. Additional simulations have been
performed for the twice lower discharge frequency
−6.78 MHz. Figure 4�a� shows the result of self-consistent
simulation of the plasma surface resistance for two coil cur-

FIG. 2. �Color online�. The plasma resistance Re Z as a function of the
discharge gap L for a uniform plasma �without any ambipolar potential—the
solid line� and nonuniform plasma �quadratic potential—the dashed line,
and the realistic potential obtained from the ion fluid model—the dotted
line� with a given Maxwellian EEDF. The plasma parameters are electron
temperature Te=5 eV, peak electron density at the discharge center ne=5
	1011 cm−3, rf field frequency � /2�=13.56 MHz, and the electron colli-
sion frequency �=107 s−1.
rents, 1 and 5 A/cm. For lower discharge frequencies, the
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first bounce resonance corresponds to larger L. Correspond-
ingly the maximum of plasma surface resistance shifts to-
ward larger L, compare Figs. 4�a� and 3. However, the posi-
tions of the surface resistance maxima are different for
different coil currents. This is due to the different plasma
density and correspondingly skin depth in the two cases. The
larger coil current transfers a larger power into the plasma,
which results in a higher plasma density.19 The higher
plasma density, in turn, leads to the smaller skin depth. Fur-
ther, it follows from Eqs. �4� and �2� that the electron heating
is maximal if two conditions are met: the electron velocity
kick 
�y��x� is large for electron energies corresponding to
the first bounce resonance �=�b��x�, and the fraction of the

FIG. 3. Self-consistent simulations of the plasma surface resistance Re Z
and the electron temperature Te �defined as 2/3 of the average electron
energy� at the discharge center as functions of the discharge gap. The dis-
charge parameters are the coil current I=5 A/cm, the rf field frequency
� /2�=13.56 MHz, and argon pressure P=3 mTorr.

FIG. 4. Self-consistent simulations for coil currents I=1 A/cm and I
=5 A/cm and the given discharge parameters P=3 mTorr and � /2�
=6.78 MHz. Shown are �a� the plasma surface resistance, �b� the electron
temperature in the discharge center vs the discharge gap, and �c� the electron

bounce frequency.
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resonant electrons satisfying the bounce resonance condition
is not small. The velocity kick amplitude 
�y is maximal if
the transit time through the skin layer � /�x is approximately
equal to 1/�, i.e., ���x /� �transit resonance�. Combining
the transit resonance condition with the first bounce reso-
nance condition ���x� /L estimated in uniform plasmas
yields L���. As it is shown in Figs. 1 and 4�c�, the fraction
of the resonant electrons is not small if ���VT, where VT is
the thermal velocity. Thus, the resulting rate of the electron
heating depends on both transit and bounce resonances and is
maximal when both resonances are satisfied simultaneously,
which occur at L���. Correspondingly, for larger discharge
currents, the skin layer length is smaller and the position of
the surface resistance maximum shifts into the region of
smaller discharge gaps, as evident from Fig. 4�a�. Similar
results have been obtained in the numerical simulations in
Ref. 20 �see Fig. 2 of that paper�.

Figure 4�b� shows the electron temperature versus the
discharge gap. Note, that our calculations show that the elec-
tron temperature grows with the increase of the discharge
gap for small L. It differs from the predictions of the global
model21–23 based on the Maxwellian EEDF and particle bal-
ance �ion�Te�=�loss�Te�, where �ion is the ionization frequency
and �loss is the loss frequency. The difference is due to non-
Maxwellian shape of the EEDF for the conditions of Fig. 4.

In conclusion, enhanced electron heating and larger
plasma densities �for a given current in the coil� can be
achieved if low-pressure ICP discharges are operated under
the bounce resonance conditions. Self-consistent simulations
of the discharge plasma surface resistance and the electron
energy distribution function demonstrate the significance of
explicit accounting for the nonuniform plasma density profile
and the correct form of ambipolar electrostatic potential. The
formalism developed in this Letter can be applied to many
different problems for the description of wave-particle inter-

action in nonuniform plasmas.
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