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I. ABSTRACT

Complex structures on a material surface can signifi-
cantly reduce total secondary electron emission from that
surface. A velvet is a surface that consists of an array of
vertically standing whiskers. The reduction occurs due
to the capture of low-energy, true secondary electrons
emitted at the bottom of the structure and on the sides
of the velvet whiskers. We performed numerical simu-
lations and developed an approximate analytical model
that calculates the net secondary electron emission yield
from a velvet surface as a function of the velvet whisker
length and packing density, and the angle of incidence of
primary electrons. We found that to suppress secondary
electrons, the following condition on dimensionless pa-
rameters must be met: (π/2)DA tan θ ≫ 1, where θ is
the angle of incidence of the primary electron from the
normal, D is the fraction of surface area taken up by the
velvet whisker bases, and A is the aspect ratio, A ≡ h/r,
the ratio of height to radius of the velvet whiskers. We
find that velvets available today can reduce the secondary
electron yield by 90% from the value of a flat surface.
The values of optimal velvet whisker packing density that
maximally suppresses secondary electron emission yield
are determined as a function of velvet aspect ratio and
electron angle of incidence.
PACS: 52.59.Bi, 52.59.Fn, 52.77.-j

II. INTRODUCTION

Secondary electron emission (SEE) from dielectric and
metal surfaces under bombardment of incident electron
flux is important for many applications where incident
electron energy can reach tens or hundreds of electron
volts. Under these conditions secondary electron emis-
sion yield can exceed unity and therefore strongly modify
wall charging or cause multiplication of secondary elec-
tron populations. The multipactor effect causes accumu-
lation of SEE population in RF amplifiers and limits the
maximum electric field in these devices1. Clouds of sec-
ondary electrons have been also found to affect particle
beam transport in accelerators. As a result, researchers
at SLAC and CERN have studied effective ways to sup-
press Secondary Elecron Yield (SEY, γ) for example by
cutting grooves into the accelerator walls2–5. SEE pro-
cesses are also known to affect Hall thruster operation
due to contribution to so-called near-wall conductivity or
due to reducing wall potential and increasing plasma en-

ergy losses6. Wall conditions can also affect instabilities
in plasmas and electron energy distribution functions7,8.
Therefore, researchers investigate the possibility of using
complex surface structures to minimize SEY for electric
propulsion devices9,10.
The surface geometry of a material can affect its SEY

just as much as its chemical composition. Ruzic et al.

are among those who experimentally found that surface
treatments can affect SEY11. Alguilera et al. studied
experimentally and theoretically velvet-covered surfaces
for use in RF amplifiers to mitigate the effect of SEY12.
Cimino et al. installed copper foam to produce dramatic
SEY reductions13. Ye et al. investigated theoretically
SEY reduction in walls with micro-pores, finding a strong
dependence on geometry and predicting as much as 45%
suppression of SEY14. Note that there is a significant dif-
ference in micro-pores configuration as opposed to velvet;
in micro-pores configuration electrons cannot penetrate
arbitrary far along perpendicular distances into the pore
array, unlike in velvet. As an important consequence, we
show that velvets can give much higher reduction in SEY
as compared to micro-pores configuration.
In this paper we study reduction in SEY by velvet sur-

faces both analytically and numerically. A velvet surface
is a flat substrate onto which long, vertical whiskers are
grown. The reduction of SEY comes from the fact that
low-energy true secondary electrons produced deep inside
the velvet have a large probability of hitting a whisker
and getting absorbed by the surface before exiting the
velvet, therefore not contributing to net SEY from the
surface.
Baglin et al. experimentally characterized the sec-

ondary electron emission of dendritic copper, which has
features very much like the whiskers of velvet15. They
found reductions in the SEY of > 65%. While we ex-
amine the effect of geometry for graphitic material, our
results do produce a similar reduction for the same velvet
parameters as in Ref.15.
More recently, Huerta and Wirz have performed Monte

Carlo modeling to characterize the SEY from copper vel-
vet and fuzz surfaces16. They, like we do, find reductions
of SEY which have strong dependencies on the dimen-
sionless packing densities and aspect ratios, though they
do not explore this dependence analytically and do not
cover the dynamic range of aspect ratios that we do.
We have developed an analytical model of SEE of a

velvet surface and determined an analytical expression
for the SEY, γ, of such a surface as a function of the vel-
vet parameters. We also simulated the SEE process nu-
merically and benchmarked the analytical model against
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the simulation results. Based on the analytical model,
we calculated approximate values of the optimal packing
density and aspect ratio of the whiskers to achieve mini-
mum SEY as a function of a primary angle of incidence.
Carbon velvet surfaces as available today have char-

acteristic diameters of a few microns, and characteristic
lengths of a few millimeters9. The following analysis as-
sumes that secondary electron emission takes place only
at a material surface, with no volume effects. Because of
this, our analysis holds for whisker radius r larger than
the scale of primary electron penetration in carbon, tens
of nanometers,

r ≫ 10nm. (1)

Our analysis assumes the whiskers are grown onto a
flat substrate, and that electrons come from far away.
Because of this, both the inter-whisker spacing, s, and
the whisker length h should be much smaller than the
characteristic scale length of the device, L:

s ≪ L, (2)

h ≪ L. (3)

Furthermore, our analysis assumes that velvet fibers
are perfectly normally oriented. In actuality, velvet fibers
are observed to lie at angles to the normal, and even to
curve and change their angles, to “flop” over near their
tops9. This effect is not considered by our model.

III. DESCRIPTION OF NUMERICAL SIMULATIONS OF

SEE PROCESS IN VELVET SURFACES

In principle, it is possible to simulate electron prop-
agation in the vacuum and inside the material, see e.g.
Ref.17. However, the full simulation is beyond necessity
for our problem. Instead, we assume the SEY of a flat
surface to be known and only propagate electrons in vac-
uum. We also assume that plasma does not penetrate
into the whisker region because the Debye radius is large
compared with the distance between whiskers. The op-
posite limit when sheath forms near two walls/surfaces
and strongly affect combined SEY of two surfaces is stud-
ied in Refs.19,20. When an electron impacts the surface,
SEE is produced according to known SEY of that surface
and incident angle. For a velvet surface, we have to take
into account contributions from the secondary electrons
emitted by the whisker side, top, and bottom surfaces.
The electron velocity distribution function (EVDF) is de-
scribed by velocity, υ, spherical angles, θ, φ, and electron
position x, y, z as shown in Fig. 1. Geometrical quanti-
ties of the whiskers are the whisker radius, r, whisker
height h, and spacing between whiskers, 2s. We intro-
duce the notation of aspect ratio,

A = h/r

and packing density,

D =
πr2

(2s)2
,

which is the proportion of surface area of the bottom
taken up by the base of the whiskers, see Fig. 1. In
the numerical simulations, we studied a regular lattice
of whiskers and therefore used only one segment around
one whisker with a periodic boundary condition; particles
exiting the simulation domain were re-introduced into the
opposing side with identical velocity, as if the whiskers
are arranged on a regular square grid.
We numerically simulated the emission of secondary

electrons by using the Monte Carlo method, initializ-
ing many particles and allowing them to follow ballistic,
straight-line trajectories until they interact with surface
geometry. A flowchart of the algorithm is in Fig. 2. In
the results presented here, we used 105 particles. Each
particle object keeps track of seven quantities: its three
spatial positions x, y, z, its energy, E, and velocity an-
gles θ, φ, and its “weight,” meaning how many particles
it stands for. All weights start at a value of 1. Weights
are changed upon interaction with a surface.
An alternate approach would be to start with fewer

particles and have them stand for a fixed number of par-
ticles, all with weight 1. When SEY occurs, in this ap-
proach one would instantiate more particles until one tal-
lies 105. Starting with 105 and instead changing the
weights upon SEY produces identical counting statis-
tics, with error associated with counting statistics being
N−1/2 = 0.3%.
The surface geometry and initial distribution of inci-

dent particles are the simulation’s main input parame-
ters. The velvet surface geometry is represented as cylin-
drical whiskers implemented as an isosurface of a func-
tion of space, as collisions with an isosurface are trivially
detectable by a particle object which stores its spatial lo-
cation. We used an isosurface function for which Fiso = 0
defines a flat-topped cylinder with height h and radius r
with a flat floor at z = 0, with Fiso < 0 being inside the
cylinder and Fiso > 0 being outside the surface.
At every time step, we checked to see whether parti-

cles had passed into the surface. If they had, their local
normal angle was determined relative to the gradient of
Fiso, and the SEY of their energy and local normal angle
was computed. Their weight was multiplied by the SEY.
Emitted particles were given a new velocity angle. Sec-

ondary electrons were emitted with probability linearly
weighted by the cosine of the normal angle24. Thus

P (Ω)dΩ = 2 cosϑd cosϑ
dφ

2π
(4)

where ϑ is computed relative to the local normal, ~∇Fiso.
Specifically in the code, cosϑ = R1/2, where R is a uni-
form random variable from 0 to 1. The azimuthal angle
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FIG. 1. Schematics of the velvet surface: the whisker geo-
metrical quantities radius, r, height, h, and spacing, 2s. Also
shown are electron velocity polar angle θ, and velocity az-
imuthal angle, φ. Numerical calculations include three contri-
butions to secondary electron emission from velvet: electrons
emitted by the side, top, and bottom surface of the whiskers.

in the local normal frame was uniformly distributed from
0 to 2π.
It is interesting to note the differences between flux and

velocity distribution function, and how they characterize
the number of electrons with a certain velocity. As flux is
total number of particles that pass through a differential
cross sectional area oriented along some normal n̂, flux is

Γ =

∫

d3v~v · n̂f(~v) (5)

for distribution function f(~v). That is, flux counts par-
ticles passing through a surface while distribution func-
tion counts particles within a volume. Thus, though
probability and flux are weighted by cosϑ, this is the
condition that the distribution function f(~v) is isotropic
in angle.
The SEY of the incident electron is computed using

several different a priori, empirical, and semi-empirical
expressions. We used one of the latter, that of Scholtz,21

γ (Ep, θ) = γmax(θ) × exp

[

−
(

ln[Ep/Emax(θ)]√
2σ

)2
]

.

(6)
where the parameters Emax, γmax, σ are free parameters
of the Scholtz model. Angular dependence is taken from
Vaughan22,

γmax(θ) = γmax0

(

1 +
ksθ

2

2π

)

Initialize particles at top
of simulation domain
with weight 1 

 

Yes No

Yes No

Move particles

Check to see if particles interacted with a surface

Give the particles new weight,

 energy, and velocity

Check to see whether particles escaped

 from the top of the simulation

Tally weight and add to SEY

FIG. 2. Flowchart of the Monte Carlo simulation algorithm.

Emax(θ) = Emax0

(

1 +
ksθ

2

π

)

.

The specific constants in the Scholtz model were taken
from the graphite experimental data given in Patino et

al.23, γmax0
= 1.2, Emax0

= 325eV, σ = 1.6, ks = 1.
The semi-empirical model of Scholtz was chosen because
it agrees well with Patino et al. experimental data for
graphite.

Emitted electrons have three energy-groups. True sec-
ondary electrons were given a low few eV temperature.
Elastically scattered electrons were given the same en-
ergy as the primary electrons. Rediffused electrons were
given energy uniformly distributed between zero and
the primary electron energy. True secondary electrons,
elastically scattered electrons, and inelastically scattered
(rediffused) electrons were simulated with the energy-
dependent probabilities of emission reported in Ref.23.
In accordance with that experiment, we used following
empirical formula for fraction of elastically scattered elec-
trons, fel:
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fel(Ep) = exp{1.59 + 3.75 ln(Ep)− 1.37 [ln(Ep)]
2

+0.12 [ln(Ep)]
3}.

(7)

for Ep = 6 − 390eV , and fel(Ep) = 100% for Ep < 6eV ,
for Ep > 390eV , fel(Ep) = 2%. The fraction of inelastic
electrons was assumed to be equal to 7%, where permit-
ting by fel < 93%. The values of SEY calculated using
this formula will prove to be sensitive to the fraction of
elastically scattered electrons, as these electrons are not
absorbed by surfaces, and can still contribute their full
number to the SEY.
The remaining, true secondary electrons were given a

Maxwellian EVDF with temperature Ttrue = 5.4eV 23.
Simulations presented here were performed for electron

incident energy of 200eV. The sensitivity of the result-
ing SEY to this primary energy is not large; simulations
performed at 400eV had the effect of increasing the ter-
tiary electrons created by elastically scattered secondary
electrons, but these only account for 2% of secondary
electrons at this energy.
We found that adding velvet to a surface can signif-

icantly decrease the net SEY of velvet surface as much
as 90% from the case of normal incidence on a flat sur-
face. The reduction in SEY depends strongly on the vel-
vet parameters: packing density, D, and aspect ratio, A.
To achieve 90% reduction in SEY, A = 100− 1000, and
D = 4% are required as evident in Fig. 3. Such velvets
with aspect ratio A = 1000 and packing density D = 4%
can be currently grown in the laboratory9. The net SEY
of velvet is a strong function of the incident angle θ. How-
ever, for all angles the net SEY is always below 50% of
the SEY of the flat surface without velvet for high aspect
ratio A, see Fig. 3.
To understand the dependencies of the SEY on the

velvet parameters shown in Fig. 3, an analytical model
is developed and discussed in the next section. It resolves
the apparent contradiction of why the trend of SEY with
θ reverses between the values of A = 10 and A = 100.
For the first of these cases, the majority of the SEY is
contributed by the bottom substrate. For the second, the
majority of the SEY is contributed by the sides of the
cylinders. This is described in the following analysis by
the value of the dimensionless parameter u tan θ, which
crosses unity between these two cases. The significance
of this difference is explored fully in Section V.

IV. ANALYTIC EXPRESSION FOR THE NET SEY OF

THE VELVET SURFACE

In the simulations we assumed that whiskers form a
rectangular lattice. This assumption helps computa-
tional tractability by introducing periodic pattern and
reducing simulation volume to one periodicity element.
For the analytic calculation it is much easier to assume
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FIG. 3. SEY reduction from the case of normal incidence on a
flat surface. SEY reduction is given as a function of incident
angle, θ, for different values of whisker aspect ratio A, and
packing density D. Figure (a) shows SEY for 4 different D
values and the same A = 1000. Figure (b) shows SEY for 3
different values of A and the same D = 4%. Solid lines show
the result of an analytic approximation. Points with error
bars are the result of these Monte Carlo simulations. The
simulation results are compared to the analytic approximation
given in section IV, Eq.23.

instead that whiskers are positioned along the surface
randomly. We show that substituting regular lattice
whiskers instead with a random distribution of whiskers
having the same average packing density does not intro-
duce significant change in SEY. The probability for a sec-
ondary electron to intersect a whisker is similar for reg-
ular and random pattern of whiskers. Qualitative agree-
ment between mean-free-paths given by the rectangular
lattice and random lattice assumptions is shown in Fig.
4. In the random position case, this probability of not
being intersecting with a whisker can be described by ex-
ponential dependence with the distance in the x−y plane
perpendicular to the whiskers’ axis, l⊥. This probability
is given by

Pfree(l⊥) = e−l⊥/λ⊥ . (8)

The mean-free-path is λ⊥

λ⊥ =
1

2rn
. (9)

where n = 1/(2s)2 is the surface density of whiskers.
This mean-free-path is determined from analogy to clas-
sical hard-sphere scattering in 3D. The cross section
length that a cylinder presents is twice its radius, and
the “scattering density” is simply the surface area den-
sity of whiskers, n.
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FIG. 4. Top: Schematics showing the top view of the velvet
with regular pattern of whiskers for D = 4%. Blue lines show
the maximum extent of trajectories emitted at 1500 values
of φ, evenly spaced between 0 and π/2, originating at point
0, 0. Bottom: Probability histogram of mean-free-path for
D = 4% for the rectangular case. 1500 trajectories, evenly
spaced in φ, were calculated. The red curve is exp(−l⊥/λ⊥),
corresponding to random configuration of whisker positions.

From Fig. 4 it is evident that for a rectangular lattice
of whiskers and a random configuration with the same
packing density, the mean-free-path is similar.

Our analytic model takes only one generation of true
secondary electrons into consideration. We neglect se-
quential secondary electrons caused by the first genera-
tion of secondary electrons. Neglecting their contribution
is the largest source of error of the analytic, but their in-

clusion would add complexity to the formulae derived.
The sequential secondary electrons can be added to the
treatment in the future. The error associated with this
truncation can be as high as 10%, as per Equation 7
The secondary electron emission can occur on one of

three surfaces: on the top of the whisker, on the side
surface, and on the bottom surface, as shown in Fig. 1.
Hence the net γeff consists of three contributions:

γeff = γtop + γbottom + γsides. (10)

The top contribution is simply proportional to the ra-
tio of surface of the top whiskers to the rest of the surface.
Consider a plane just below the whisker tops. The elec-
trons have a uniform probability of hitting any area of
that plane. Those electrons which hit the cylinder tops,
whose area is D of the total, will cause SEE from the
tops. Those electrons which hit elsewhere on the no-
tional plane will penetrate into the whisker layer and hit
either the sides or the bottom surface. Therefore,

γtop = γ(θ)D. (11)

The sides and bottom contributions require calcula-
tion of probability to hit a side surface of the whisker.
As discussed above, the probability of intersection of a
side surface of the whisker can be assumed to be con-
stant per unit distance traveled parallel to the surface
(or perpendicular to the axis of the whisker), which is
l⊥ = z tan θ, where z is the distance traveled along the
z-axis in the velvet layer and θ is again the angle between
the z-axis and electron velocity. Thus the probability for
one electron to not intersect a side surface of the whisker
is given by

Pfree(z, θ) = e−2rnz tan θ. (12)

This is the cumulative probability to not have hit
by depth z. The differential probability to intersect a
whisker side at z is given by −∂Pfree(z, θ)/∂z. The prod-
uct of this and the probability to not hit the tops (1−D)
is the probability that one electron, coming in from above
the whisker tops at angle θ, will hit a whisker at a height
z

Phitside(z) = −(1−D)
∂

∂z
Pfree(z, θ). (13)

To simulate how many secondaries emitted on a side
surface can reach back to free space, we need to calcu-
late probability of emission as a function of the velocity
direction. In order to describe emitted electron veloc-
ity direction we use the coordinate system that is placed
at the whisker side as shown in Fig. 5. In polar an-
gles around z-axis, we introduce angle, θ2 between z-axis
and emitted electron velocity and azimuthal angle, φ. We
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FIG. 5. Angle θ is the polar angle of the primary electron.
Angle θ2 is the polar angle of the secondary electron. Angle
ϑ2 is the local normal angle of the secondary electron. φ is
the primary azimuthal angle. φ2 is the secondary azimuthal
angle.

n̂

FIG. 6. Definition of the impact parameter, b. Cylinder is
seen from tops, view aligned along z axis.

also use polar angle ϑ2 between local normal and emitted
electron velocity and in this same frame, a local normal
azimuthal angle φ2. If we assume that the normal to the
whisker surface coincides with the y-axis, the ϑ2 angle
between between y-axis and emitted electron velocity is
given in terms of polar angles θ2 and φ according to

cosϑ2 = sin θ2 sinφ. (14)

The probability distribution emitted over solid angle,
Ω2(θ2, φ2) is

P (Ω2) = 2 cosϑ2Θ(cosϑ2). (15)

Here Θ is the Heviside function and we accounted for
the fact that emission flux is proportional to cosine of
angle between of emitted electron velocity direction and
normal to the surface, Eq.(4). Averaging over azimuthal
angle φ2 we obtain probability of electron emission with
angle θ2

P (θ2) ≡
∫ 2π

0

dφ

2π
sin θ2P (θ2, φ2) =

2

π
sin2 θ2. (16)

Therefore the SEY of the sides of the velvet whiskers
is

γside(θ) =
2

π
(1−D) 〈γ(θ)〉b

∫ π/2

0

dθ2 sin
2 θ2

×
∫ h

0

dzPfree(z, θ2)
∂

∂z
Pfree(z, θ).

(17)

〈γ(θ)〉b is necessary to compute because the local polar
angle ϑ depends not only on the absolute polar angle
θ but also the impact parameter at which the electron
strikes (see Fig. 6); that is an electron which hits a fiber
dead-on will have ϑ = π/2−θ, but an electron which hits
at a glancing angle will have ϑ = π/2. Averaging γ(ϑ)
over this impact parameter b gives

〈γ(θ)〉b =
∫ 1

0

dbγ(cos−1(sin θ
√

1− b2)). (18)

Using Scholtz’s and Vaughan’s expressions for SEY,
this averaged SEY, 〈γ(θ)〉b, was never more than about
30% higher than the flat value, γ(θ). Substituting equa-
tion 12 into equation 17 and introducing notation t =
tan θ2, equation 17 becomes

γside(θ) =
2

π
(1 −D) 〈γ(θ)〉b tan θ

×
∫ ∞

0

dt
t2

(1 + t2)2
1− e−2rnh(t+tan θ)

t+ tan θ

(19)

Similarly for the contribution from the bottom surface,

γbottom(θ) = 2(1−D)γ(θ)

∫ π/2

0

dθ2

× sin θ2 cos θ2Pfree(h, θ2)Pfree(h, θ),

(20)

or in the same notation as equation 19,

γbottom(θ) = 2(1−D)γ(θ)

∫ ∞

0

dt
te−2rnh(t+tan θ)

(1 + t2)2
. (21)

It is apparent from equations 19 and 21 that the di-

mensionless parameter

u = 2rnh =
2rh

(2s)2
=

2

π
DA (22)

is the relevant parameter to characterize a SEY from the

velvet surface. The total SEY can be written

γeff (θ) = γ(θ) [D + (1−D)f(u, θ)] , (23)

where

f(u, θ) = 2

∫ ∞

0

dt
te−u(t+tan θ)

(1 + t2)2

+
〈γ(θ)〉b
γ(θ)

tan θ
2

π

∫ ∞

0

dt
t2

(1 + t2)2
1− e−u(t+tan θ)

t+ tan θ
.

(24)



7

From Fig. 3 it is evident that the predictions of the
analytical model of velvet SEY agrees well with the nu-
merical simulation results. The differences are due to
approximations: First, only one generation of electrons
is considered analytically. Second, the geometry simu-
lated is a rectangular lattice rather than the continuous
distribution of scattering centers assumed by the analyt-
ical model. The depicted simulation error derives from
counting statistics, with δγ ∝

√
N,N = 105. Therefore

stochastic counting error < 1%.

V. DEPENDENCE OF THE NET SEY ON WHISKERS

PROPERTIES

Having the analytic expression for the net secondary
electron emission yield (SEY, γeff ) given by equation 23
allows for analysis of optimum whisker properties for re-
duction of γeff . Firstly, analysis shows that f(u, θ) is
a monotonically decreasing function of the dimensionless
parameter u, and therefore is a monotonically decreas-
ing function of whisker height, see equation 22 . This is
expected; because as whisker height increases, electrons
instead of hitting the bottom surface would penetrate
deeper into the whisker region further from the top of
whisker surface. Any secondary electrons produced by
these electrons will have a longer distance to traverse
and large probability to hit whiskers again and therefore
net SEY is reduced.
The relative contributions from bottom and sides of

whiskers is determined by value of parameter u tan θ, as
evident by comparing terms in equation 24. In the limit
of high u tan θ

u tan θ ≫ 1

the contribution of the SEY from the bottom surface into
the net SEY is negligible, because electrons hit a whisker
near the tops with higher probability. In the opposite
limit

u tan θ ≪ 1

the SEY from the bottom surface is significant, because
electrons are more likely to hit the bottom surface at
these conditions and these secondary electrons are more
likely to escape. Moreover in this limit contribution from
the bottom surface is reduced for a more shallow angle,
θ; whereas contribution from side surfaces is increased
for a more shallow angle, θ. This is demonstrated in Fig.
7.
In Fig. 3, the only case in which u < 1 corresponds to

A = 10, D = 4%, in which u ≈ 0.25. As explained above
the main contribution to the SEY in this case is from the
bottom surface and the net SEY is a decreasing function
of the incident angle.
In the opposite limit u tan θ >> 1 , the functional form

of the SEY becomes
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FIG. 7. Top: f(u, θ) vs θ for several u (curves) that de-
termines the net SEY in equation γeff = γflat{D + (1 −
D)f(u, θ)}, including the approximation given by equation 26
(blue symbols). Bottom: Relative contribution to the SEY of
the sides of the whiskers. Pointed out in both are the points
at which the quantity u tan θ crosses unity.

lim
u tan θ→∞

γeff = γ(θ)D +
2

π
〈γ (θ)〉b (1−D)

×
∫ ∞

0

dt
t2 tan θ

(1 + t2)2(tan θ + t)
,

(25)

which is the contribution from whisker tops and sides
only (no contribution from bottom). As evident from
equation 25 increasing whisker length (h) above u tan θ =
2rnh tan θ > 1 will not affect the SEY.
For the expression given by equation 25 we have devel-

oped an approximate expression in the form
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FIG. 8. Reduction of Secondary Electron Yield (ratio of the
net SEY to that of a flat surface) as function of whiskers pack-
ing density and incident angle. Magenta line shows optimal
value of packing density D(θ) corresponding to the minimum
net SEY.

lim
u tan θ→∞

γeff ≈ γ(θ)D +
1

2
〈γ (θ)〉b (1 −D)

×
[

1− 1

(1.39 tan θ + 1)0.45

]

,
(26)

with average deviation of 0.5% from the exact result.
This function is depicted in Fig. 7 (blue symbols).

1. Optimization of velvet parameters for SEY reduction

In this section we investigate the velvet parameters
that give SEY the most reduction. Figure 8 shows SEY
as a function of packing density and incidence angle for
given aspect ratio of whiskers.
From Fig. 8 it is evident that there is an optimal pack-

ing density that yields the minimum net SEY for a set
aspect ratio A. Indeed at large values of D → 1 the con-
tribution of SEY from the whisker tops dominates the
net SEY the net SEY increases with the packing density.
At small values of D → 0 and large values of A so that
2
πDA tan θ ≫ 1 the contribution of sides dominates and

lim
2

π
DA tan θ≫1

D→0

γeff → 1

2
〈γ (θ)〉b

[

1− 1

(1.39 tan θ + 1)0.45

]

(27)
and for very small values of D → 0 such that
2
πDA tan θ ≪ 1 contribution of the bottom of whiskers

dominates and taking appropriate limit in equation 23
gives

lim
2

π
DA tan θ≪1

D→0

γeff → γ(θ). (28)

That is at very low values of D there are simply not
enough whiskers for any significant number of electrons
to intersect them when traversing the velvet.
Therefore the optimum value of whisker parameters

corresponding to minimum SEY is approximately given
by the condition

2

π
DA tan θ ∼ 1. (29)

Investigation of Fig. 8 allowed us to derive the location
of the optimal D to minimize net SEY, γeff for given
values of A, θ. This optimal Doptimal is approximately
given by

Doptimal(θ) ≈ 0.97
ln(A)

A(tan θ)0.47
− 0.26

A
. (30)

Equation 30 gives agreement with 12% average error
for the position of the optimal D as shown in Fig. 8.

VI. CONCLUSIONS

We have investigated numerically and analytically the
effect of velvet surfaces on secondary electron emission
(SEE) and concluded that the net secondary electron
yield (SEY) can be reduced dramatically by application
of velvet to the surface. Geometrical quantities of the
whiskers are the whisker radius, r, whisker height, h,
and spacing between whiskers, 2s. The beneficial velvet
configuration for the net SEY reduction consists of high
aspect ratio long whiskers,

A ≡ h/r, (31)

rarely placed on the surface with low packing density

D ≡ πr2/(2s)2 → 0, (32)

such that

2

π
DA tan θ ≫ 1.

In this case incident electrons do not reach the bottom of
the velvet and large fraction of the secondary electrons
emitted from the side do not exit the velvet, because they
are intersected by whiskers again. The approximate net
SEY is given in this case by

lim
2

π
DA tan θ≫1

D→0

γeff → 1

2
〈γ (θ)〉b

[

1− 1

(1.39 tan θ + 1)0.45

]

(33)
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where

〈γ(θ)〉b =
∫ 1

0

dbγ(cos−1(sin θ
√

1− b2)). (34)

From equation 33 it is evident that it is possible to
decrease SEY by more than 50% for shallow incidence
(tan θ ∼ 1) and more than 90% for normal incidence
(θ ≪ 0.7) compared to the case of normal incidence on a
flat surface.
The optimal packing density for reducing SEY depends

on the angle of incidence of the primary electrons and is
approximately given by

Doptimal(θ) ≈ 0.97
ln(A)

A(tan θ)0.47
− 0.26

A
. (35)

Equation 35 gives agreement with 12% average error
for the position of the optimal D as shown in Fig. 8.
In summary, using plausible values for parameters of

lab-grown velvets (A > 100), we find that velvet surfaces
are a promising candidate for reducing SEY by more than
50% for shallow incidence (tan θ ∼ 1) and more than
90% for normal incidence (θ ≪ 0.7) compared to the
case of normal incidence on a flat surface. The closer to
the normal is the angle of incidence, the more a long,
non-dense velvet can suppress the SEY. Interestingly, if
it is known that the incident electron flux has a narrow

distribution of incident angles, one could use a velvet with
whiskers oriented not normally but along that direction;
such velvet is the most efficient way to minimize SEY.
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