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The pole approximation in the Kadanoff—Baym formalism for a dense gas is
used in a systematic study to derive a kinetic equation that takes into
account simultaneously "exact" convective transport and collisional
transport.

1. Introduction

The intuitively most attractive approach in the kinetic theory of dense gases is the
method based on the Enskog—Boltzmann equation [1]. Important evidence in its support is a
result of Bogolyubov [2], who showed that for the hard-sphere system such an equation has
solutions corresponding to the exact evolution. Moreover, the collision integral in the
Enskog—Boltzmann equation describes exactly the transport of molecular characteristics by
collisions and is a convenient theoretical model that contains all the main characteristic
properties and symmetry properties of such integrals. Determining experimentally the
value of just one parameter (the x factor), one can describe very well the transport
parameters as functions of the pressure on the basis of such an approach. The difficulties
in describing the temperature dependence are associated with the inadequacy of the model
of the potential in the Enskog—Boltzmann equation.

It is convenient to divide the attempts to go beyond the framework of the Enskog model
into two main groups. In the effective-potential method [3] and its generalizations [4],
the interaction is assumed to consist of two parts — the potential of a hard wall and a
weak smooth attractive potential. On the right-hand side of the corresponding equations
there is a sum of collision integrals that take into account the individual terms of the
potential as well as their interference. The transparent physical meaning and simple
structure of the Enskog—Boltzmann integral are lost in this approach.

In the second group of approaches [5-8), a realistic smooth potential is taken as the
basis, and a kinetic equation is derived from the exact equations of statistical mechanics
[5] using an expansion with respect to a small parameter of the theory.

This leads to a kinetic equation of the Landau—Boltzmann form describing evolution
of quasiparticles, i.e., it takes into account renormalization of the energy of a particle
due to its weak (attractive) interaction with other particles. This renormalization arises
because of peripheral interactions, which determine the small-angle scattering [9]. It
ensures that transport by collisions is taken into account; in particular, an equation of
state of the van der Waals type can be obtained. Partial allowance for transport of
molecular characteristics by collisions of this type, for which the contribution disappears
in the limit of hard spheres, makes it impossible to use the obtained equations at fairly
high pressures, although for fixed pressure the temperature dependence of the transport
phenomena is correctly described.

The aim of this paper is to obtain a kinetic equation that makes it possible to
describe both the self-consistent field effects and collisional transport due to short-
range interactions. We note that the semiphenomenological approach that one might be
tempted to use, namely, replacement of the collision integral in the kinetic equation of
quasiparticle type [9] by the Enskog integral, does not work. The veason for this is that
in a consistent derivation of the kinetic equation from the equation for the Green’s
functions the convective part of the kinetic equation.of quasiparticle type is formed from
both the convective and the collisional part of the Kadanoff-Baym equation (and the situa-
tion is the same for the collisional part).
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with the same remarks as in (3.3) with regard to the integration over the momentum and
energy variables and standard indexing of the distribution functions in accordance with
their momentum dependence.

To transform the obtained expressions, it is convenient to represent V, as a combina-
tion of products with respect to the relative momentum p—p  and the total momentum p+p'=P
of a colliding pair. Then for short-range potentials, which is what we shall censider below
and for which the total momentum occurs only in the energy variable, one gradient can be

calculated explicitly:
p—p
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Short-Range Interaction

In accordance with (2.1) and (2.5), the collision integral I.51] can be expressed on
the basis of the results of Sec. 3 in the form
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where we have made the assumption of a short-range nature of the interaction between the
particles, and the integration dI' is over all energies w, w’, &, &’ and momentum variables
of the particles 1’, T, 1'. The indices of the spectral functions relate both the momentum
and the energy variables. The integration over the energies can be performed in the pole
approximation of Sec. 2. HoweVer, as was noted in [8], there is no need for this, and in
the calculation of the non-Boltzmann collision integral we can use the approximation I' = 0,

A(p, ©)=(2r)""8(0—p*/2m).

In this approximation, the non-Boltzmann part of the collision integral I.o,11 (i.e., all
the terms in the integrand of (4.1) except the first) together with the third and fifth
terms from the convective part (2.5) can be naturally divided into a sum of four terms:
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In these last vrelations, & is the symbol of the principal value of an integral, and the
index of E identifies the momentum used in the calculation of the kinetic energy Ei=Kk*/2m.
For the 7 matrix on the energy shell, we use the symbol T. 1In addition, in the derivation
of (4.2) one of the terms, proportional to fV.f, vanishes, since, as can be shown {12],

Sde(Ek—E,,)Im(<p|T|k>*V,,<plTl_k>)=0.
Using for the quasi-Boltzmann part of the collision integral the notation
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where 6f=6(p+p5¥5»5'% 8.=6(e (p)+e(p’)—¢(p) s( ")) are the & functions of the momentum and
energy conservation laws for the quasiparticles, we write our kinetic equation in the final
form
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The collisional parts of this equation Iéoll and Ip are determined by the relations (4.2)
and (4.3), respectively.
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(4.4)

5. Hard-Sphere Limit

We now consider the obtained collision integral in the limit of hard spheres. In the
semiclassical approximation, which is consistent with the approximation in which the kinetic
equation has been derived, the amplitude for scattering by hard spheres is

i
0=+ exp{- 50 } (5.1)
where ¢ is the hard-sphere radius, S(8) is the increment of the classical action,
S(0)= | movb (0)de,

and b(8) is the impact parameter. For absolutely elastic scattering b(8)=a cos (6/2), and
therefore

S (0)=2muva sin (8/2). (5.2)

Note that 2muva/h=A is the semiclassical parameter. Under normal conditions, A » 1, and
therefore (5.1) is valid everywhere except at the smallest angles (grazing collisions),
which do not contribute to the collision integral.

For the scattering amplitude (5.1)~(5.2) in the integral (4.2), the derivatives with
respect to the momenta can be calculated explicitly. For this, we shall use the directly
verified relation
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Vef (p, 0)= ———f (p,0)+ p—— 1(p, 8)=ifa (e, sin 6/2+e, cos 6/2) =ifan, (5.3)

where e; is the unit vector in the direction of the y axis, and n is the unit vector that
joins the centers of mass of molecules moving with momenta p and p’° at the time of the
collision. Using (5.3), we can obtain
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Note that under semiclassical conditions of the collisions exchange effects can be
ignored.

We make a number of simplifications. By virtue of (5.4), we obtain for K, and K,
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In transforming K,, it is convenient to use the identity
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and obtain for the sum K = K; + K, + K; + K, the expression

K=2n S dp'dkd (EE_,,_, — Ey) an (fVf + FV:f) %

CFE T 16T G 71+ (apak B v g7 —17) x

1 P

- L0 PP\ [
T [T E 0
2

ngdp'dné(Ek—Ep.z_pr)Im<l.’——7ElT |k><k|T’|p;pl> x

(B2 vy — 1)~k VI —T5) (5.7)

where ¥ is the derivative of the operator & with respect to the variable E. The first

term in this sum is the Enskog integral expanded in a series with respect to the weak
nonlocality. Note that under the conditions of a consistent derivation the x factor is

not present in these terms, since they are themselves small corrections. In the approxima-
tion in which only the first terms of the expansion with respect to the spatial gradients are
taken into account, the x factor arises only in the Boltzmann part of the collision integral,
and for it a microscopic representation can be obtained in the framework of the developed
formalism. As a result, the collisional part of the kinetic equation can be rewritten in

the form

[ +0I+1 oy, (5.8)

where I(y1] is determined from (5.7), If is the Boltzmann integral obtained from Ip in
(4.3) by replacement of &(p) by p?/2m, and the question of the calculation of the x factor
and 6I will be considered in more detail in the following section. For the part of the

x factor that describes the reduction in the volume accessible to the molecules on account

of their size, we obtain
, IR =t
v =(1--28eZ)™ (5.9)
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The remaining terms owe their origin to the specific way in which the interaction is
introduced — by the process of going to the limit of hard spheres from a soft repulsive
potential. This limit is singular [10], and when the amplitude is expanded there arise
specific contributions corresponding to grazing waves and diffraction by the hard edge of
the scatterer. The influence of these effects on the kinetics is reflected by the last
terms in (5.9). It is important that in the other limiting process — from hard sphere with
weak attraction — they do not appear, since in that case there are no diffraction effects.
Since it also follows on physical grounds that the contribution of such collisions to the
kinetics of hard spheres is small (because they do not lead to transport of molecular
characteristics), it appears that their contribution can be ignored in an analysis of the
kinetic equation.

6. Microscopic Models of the x Factor

In the calculation of the corrections in the density (~ne®, where n is the density of
the gas, and ¢ is the interaction range of the particles), it is necessary to take into
account triple collisions in the transport coefficients [13]. Enskog took them into
account by means of the structure x factor. This factor is introduced phenomenologically
and consists of two parts. One describes the decrease in the volume accessible to the
molecules on account of their finite size, while the second describes the screening of a
collision of two particles by the particles of the medium. In the proposed approach, both
these effects are contained in the self-energy function, and the estimate of them is
associated with a calculation of the derivative 3I/3w. The first effect is taken into
account by the renormalization of the scattering amplitude [14] and is equal to the fourth
power of the renormalization constant. In the pole approximation, this result is obtained
automatically, and for the corresponding part of the x factor we obtain the representation
(5.9). 1In the framework of the T approximation,
a—sz'(o)*/, (6.1)
LI

where the prime denotes the derivative with respect to the energy, and the symbol *

denotes the convolution with respect to the momentum and energy variables. The argument

(0) of the T matrix means that it corresponds to forward scattering.

To calculate the derivative of the T matrix, we can proceed from the Lippmann-—
Schwinger equation, from which it follows that [5]

i7" (0) [p>=<p|T|q> (0—g*/2m)~*q|T|p">. (6.2)

To calculate the object on the right-hand side of (6.2), it is convenient to use a mixed
representation for the T matrix,

. ; ‘

<p|T(m)|r>=v(r)exp{——lpr+ijv(r—g—)dt}, (6.3)
A ko m

the last term being written down in the semiclassical approximation. Instead of (6.2) we

then have ot

plT (@) ]|p” =j dt tv(r+vt)v(r—vt)exp{—%}— j v(r)dz}, (6.4)

where the z axis is chosen in the direction of the asymptotic velocity v, and in writing
down the final exponential in (6.4) we have used the approximation of straight paths,
which is sufficient for the hard-sphere potential and is valid for all potentials in the
high-energy limit. Thus, for the hard-sphere model

Lp|T’|p">=na’/3, (6.5)

and for the x’ factor we have (1 + 47ma3/3), which corresponds to the result of the

classical kinetic theory [1]. When the screening effect is taken into account, it is no
longer sufficient to approximate the statistical T matrix by means of the ordinary collision
amplitude (as is done in the case of a rarefied gas). In our formalism, it is necessary

to take into account the finite lifetime of the quasiparticles [8] (the correction —il/2

in the energy argument of the T matrix). Under the considered conditions, these corrections
are small, and it is sufficient to take into account only the first two terms of the
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expansion in the "line width" I'. In this way, we obtain
r ’ 2 ’ ’ Iy
(s ) o )| @1 191+ D Il a1 T 53401 77 195). (6.6)

2
In the same approximation, it is necessary to use for the quasiparticle energy the formula
0o(p) =e(p)—il'(p)/2, where e(p) is the ordinary real quasi-energy [8], and expand the & func-
tion of the energy conservation law with respect to T.

Thus, with allowance for what was said in Sec. 5 (before Eq (5. 8)) the quasi-
Boltzmann collision integral (4.3) decomposes into two terms x'Ig = X IB + 8I, where IB
is exactly equal to the Boltzmann integral (see (5.8)), and the correction responsible for
the screening effect has the form
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Returning to the hard-sphere model, we must set

e () =E(p)=p"/2m, T(p)=a® | |p—p’|f(p')dp",
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and we obtain for the additional collision integral (6.7) the explicit representation
35 , - = sin 6/2 , , - — e,
0l =a") dp” dp dp’ 6,8xs, {{T ()T ()1 (P)f(p)—[T(p)+T(p) 1/ (P f(p")}, (6.8)

where ¢=|p—p —p+p'|/2. and 6 is the angle between p—p and p—p’. It is worth noting that
the assumption of a weak dependence of I'(p) on p (for example, replacement of I'(p) by its
mean value) reduces I + &I to the Enskog form with an explicit representation for the

x factor. 1In fact, from this it is possible to obtain the limitations of the popular
models of the x factor.

As a result, the kinetic equation for the hard spheres will have the structure (4.4)
with quasi-energy € = p?/2m — il'/2 and collisional part in the form

o 1 +8I+1 . (6.9)

where §I and I.,1] are determined by (6.8) and (5.7), respectively. Then x'Iﬁ and the
first term in (5.7) give the first two terms in the expansion of the Enskog collision
integral with respect to the small gradients.

It should be pointed out that the expansion with respect to the polarization diagrams
[8] that is used to obtain the screening corrections for attractive potentials does not
contribute in the hard-sphere model since the corresponding contributions to the transport
properties appear only in the third order in nd®

7. Connection with the Traditional Approach

To establish the connection between the employed approach and the traditional ones
based on a system of coupled equations for the partial distribution functions, we consider
in the framework of these approximations the right-hand side of the equation for the
single-particle Green’s function, which is expressed in terms of the convolution [5]

= 5T(1~1)*G(t;.t,)*G(t;,tg)dtz.
—1if

Transition to Fourier transforms, use of the convolution theorem, and elimination of the
operators r= by means of the identity

T(Z):g,,j’T>(m)—T<(m) do

32— 2n
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gives to accuracy (na3®)?2
d(ﬂi dﬁ)z

2a 2a

(7.1)
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It is convenient to treat the matrix elements of the T operator that appear here in the
mixed representation, in which there is a simple approximation for T in the semiclassical
limit (6.3). However, for a dense gas, with allowance for the difference between e(p) and
p?/2m and the finite width T, the phase of the exponential in (6.3) is replaced by the
somewhat more complicated expression [12]

y(r, p)=j v(rt+et)exp(—Tt)dt, e(p)=ade(p)/adp. (7.2)

Substitution of these relations in (7.1) and integration over the frequencies give, after
lengthy manipulations, a representation directly for the two-particle distribution function:

f2(ps, P, Ry, R)=f(P,, Q)f(Py, Q.), (7.3)
where P,+P,=p,+p,, P,—Py=p,—p,—0dn/dr, Q,+Q.=R,+R,, Q,—Q.=R,—R,+an/dp.

It is now clear that P, Q; are analogs of the limit coordinates of Bogolyubov, but
they describe the evolution of a distinguished pair of particles in the semiclassical
approximation in the effective mean field of the remaining particles with allowance for
damping.

8. Conclusions

Thus, our analysis has enabled us, in the framework of a unified formalism, to give
a description of two alternative transport mechanisms — the convective and the collisional.
The kinetic description, which generalizes the advantages of the local quasiparticle
approach and the nonlocal description of Enskog, is obtained in the framework of a model
potential of Rice—Allnatt type [3], in which collisions occur on a hard core, and the
quasiparticles are ''dressed" on a long-range attractive potential. Such an approach makes
it possible to reproduce correctly all the known limiting cases and approximations and
can serve as a basis for the study of transport processes in gases in a wide range of
pressures and densities.
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