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Nonlocal closure relations required for fluid simulations
of high-performance plasmas.

Local closures

� depend on local gradients of

�

and

���.

Nonlocal closures

� depend on perturbed

�

and

�� all along magnetic field lines.
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Outline

Derive nonlocal closures from gryo/bounce-averaged kinetic equation.

Emphasize continuous mapping from collisional to nearly collisionless regimes

for nonlocal closures which embody:

1. Landau,

2. collisional, and

3. particle trapping physics in

4. general toroidal geometry.

Use massively parallel semi-implicit implementation of nonlocal closures to

make long time scale fluid simulations possible.

Apply nonlocal closures to studies of heat flow dynamics in high-performance,
toroidal fusion experiments.
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Close fluid equations with kinetically derived

��� and .

Species evolution equations and closure moments for five moment model:
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Close fluid equations with kinetically derived

��� and .

Species evolution equations and closure moments for five moment model:
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Parallel dynamics dominant in magnetized fusion plasmas:
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Take Chapman-Enskog-like approach to derive closures.
Chapman and Enskog proposed following form for

? �

:
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Use fluid moment equations to rewrite
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in full kinetic equation
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1 S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge,

1939).
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Parallel component of closures dominant.

Temperature change due to slow, resistive evolution obeys
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2 S. I. Braginskii, Transport Processes in a Plasma (edited by M. A. Leontovich, Consultants Bureau, New York, 1965), Vol. 1.

3 E. D. Held, J. D. Callen, C. C. Hegna, and C. R. Sovinec, Phys. Plasmas 8, 1171 (2001).

4 E. D. Held, J. D. Callen, and C. C. Hegna, Phys. Plasmas 10, 3933 (2003).

5 G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990).

6 Z. Chang and J. D. Callen, Phys. Fluids 4, 1167 (1992).

7 P. B. Snyder, G. W. Hammet, and W. Dorland, Phys. Plasmas 4, 3974 (1997).
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Changing magnetic topology results in large ��� .

.� flattens

�

inside islands reducing heat confinement and possibly drives
neoclassical tearing modes (NTMs).

R

Z

1 1.5 2 2.5 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

w = 6.7 cm

Nonlocal Closures for Plasma Fluid Simulations – p.7/12



Changing magnetic topology results in large ��� .
Particles see

�

perturbations of scale length,

� � , which is comparable to the

collision length,

��
� .
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Nonlocal closures involve multiple parallel scale lengths.
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Average over bounce motion to handle short scale length.

Expand
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Balance free-streaming and collisions with temperature gradient drive for
nonlocal . � closure,
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Expand in eigenfunction basis to handle pitch angle variable,
�

.

Solve separated eigenvalue equation involving bounce-averaged pitch-angle
scattering operator
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4 E. D. Held, J. D. Callen, and C. C. Hegna, Phys. Plasmas 10, 3933 (2003).

8 J. G. Cordey, Nucl. Fusion 16, 499 (1976).

9 E. D. Held, CPTC report UW-CPTC 99-5 (1999).
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Solve for and calculate nonlocal �� closure.

Write

��

as vector of coefficients,
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3 E. D. Held, J. D. Callen, C. C. Hegna, and C. R. Sovinec, Phys. Plasmas 8, 1171 (2001).

4 E. D. Held, J. D. Callen, and C. C. Hegna, Phys. Plasmas 10, 3933 (2003)
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Continuous map for �� as collisionality varies.

Heat flow response due to sinusoidal

�

perturbations reduced by particle

trapping in collisional and nearly collisionless regimes.
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