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Outline

* Motivation
— High-beta disruption discharge on DIII-D tokamak
— Simple analytic theory

* NIMROD Modeling
— Fixed boundary
— Free-boundary using equilibria above marginal limit
— Free-boundary using “best-fit” equilibria
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DIII-D SHOT #87009 Observes a Plasma Disruption
During Neutral Beam Heating At High Plasma Beta
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Mode Passing Through Instability Point
Has Faster-Than-Exponential Growth

* In experiment mode grows faster than exponential

 Theory of ideal growth in response to slow heating
(Callen, Hegna, Rice, Strait, and Turnbull, Phys. Plasmas 6, 2963 (1999)):
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DIII-D SHOT #87009 Observes a Mode on Hybrid

Time Scale As Predicted Bx Analxtic Theorx

 Growth is slower than ideal, but faster than resistive
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Resistive MHD Equations Used
to Numerically Model Disruption

« MHD Equations Solved.:
— Density Equation:
—+V-nV =0
A

— Momentum Equation

p(%+(V-V)Vj=JXB —Vp— V3V

— Resistive MHD Ohm'’s Law:
E=-VxB+ nJ
— ——

Ideal MHD Resistive
MHD

— Temperature Equations:

0;206 +Va.VTa+ yTav.Va :_(7/_1)V'qa+(7/_1)Qa

Currently: q,=-xbb-VT —(x —x)VT




Spatial Discretization Uses Finite-Elements in

Poloidal Plane, PseudosEectraI In Toroidal Angle

Non-field- « Can parallelize by FE blocks and by
aligned grid toroidal mode number
* Lagrangian elements of arbitrary
polynomial degree (specified at
runtime)
— Spectral convergence needed
for realistic conditions:

Error ~ hrtl
High S:
Use polynomial degree > 3
High «/Kperp:
Use polynomial degree > 4

See Sovinec et.al. submitted to
Journal of Computational Physics

Fleld-aligned grid (Draft at http://nimrodteam.org)
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Initial Simulations Performed
Using Fixed Boundary Equilibria

» Use g and pressure profile from experiment

* Negative central shear
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Fixed Boundary Simulations

Reguire Going to Higher Beta

» Conducting wall raises ideal stability limit

— Need to run near critical g for ideal instability NIMROD gives
slightly larger ideal growth rate than GATO

 NIMROD finds resistive interchange mode below ideal stability
boundary
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Nonlinear Simulations Find Faster-Than-

ExEonentiaI Growth As Predicted Bx Theorx

* Initial condition: equilibrium
below ideal marginal
e Use resistive MHD

* Impose heating source
proportional to equilibrium
pressure profile

= BN = Bne @+mt)

* Follow nonlinear evolution
through heating,
destabilization, and
saturation

Log of magnetic energy in n =1 mode vs. time
S =10°% Pr =200 y, = 103 sec!
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Scaling With Heating Rate

Gives Good Agreement With Theory
Log of magnetic energy vs. (t - t;)%?
for 2 different heating rates

 NIMROD simulations also
display super-exponential

growth
« Simulation results with
different heating rates are well

fit by &~ expl(t-ty)/] 32
» Time constant scales as

072028
T~ YwmHp VH

« Compare with theory:
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MHD h

r=(3/2)

» Discrepancy possibly due to
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Free-Boundary Simulations Models

“*Halo” Plasma as Cold, Low Density Plasma

e Typical DIII-D Parameters:
T.ore~10 keV Teep~1-10 eV

core sep
~ 19 m-3 ~ 1018 m-3
Neore~9X10+ m Ngep~ 10 M

Closed tield lines
hot plasma

 Spitzer resistivity: n~T-372
— Suppresses currents on open field
lines

— Large gradients 3 dimensionally

* Requires accurate calculation of
anisotropic thermal conduction to
distinguish between open and closed
field lines

Open fied lines
cold plasma
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Goal of Simulation is to Model Power

Distribution On Limiter during DisruEtion

* Plasma-wall interactions are complex and
beyond the scope of this simulation

« Boundary conditions are applied at the
vacuum vessel, NOT the limiter.

— Vacuum vessel is conductor
— Limiter is an insulator

* This is accurate for magnetic field:
— B,=constant at conducting wall
— B, can evolve at graphite limiter

 No boundary conditions are applied at
limiter for velocity or temperatures.

— This allows fluxes of mass and heat
through limiter

— Normal heat flux is computed at limiter

boundary

Limiter
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Free-Boundary Simulations
Based on EFIT Reconstruction

 Pressure raised 8.7% above
“best fit” EFIT

 Above ideal MHD marginal

stability limit
 Simulation includes: 0.55 np'sn 075
-n=0,1,2

— Anisotropic heat conduction
(with no T dependence)

—~108
Kpar/Kperp=10

» Ideal modes grow with finite
resistivity (S = 10°) 1.0
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Narmal Heat Flux At Wall
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Initial Simulations Above Ideal
Marginal Stability Point Look Promisin

Mflgnetic Field Puncture Plot ) Density
« Because magnetic field T T
becomes stochastic, heat lost
to wall preferentially at divertor |~
by parallel heat conduction
e Disruption is very different aobo S (ke (R
from conventional model of ciocton Temperate B
plasma hitting the wall. ”
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More Challenging Simulations Include

Greater Resolution and Heating

* Evolving electron and ion
temperatures, but heating is
applied just to ions

—

—

o Simulation is started with “best
fit” EFIT. Submarginal to ideal
MHD as given by DCON.

e Simulation includes:
—n=0-6
— Anisotropic heat conduction

(with no T dependence)

—108
Kpar/Kperp=10
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Faster Than Exponential Growth ?

Log(Magnetic Energy)
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Normal Heat Flux At Wall
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Future Directions

» Direct comparison of code against experimental diagnostics

* Increased accuracy of MHD model
— Temperature-dependent thermal diffusivities
— More aggressive parameters
— Resistive wall B.C. and external circuit modeling

» Extension of fluid models
— Two-fluid modeling
— Electron heat flux using integral closures
— Energetic particles

« Simulations of different devices to understand how magnetic
configuration affects the wall power loading




Nonlocal Effects Important For
Quantitative Calculation of Heat Flux

» Collision scale lengths
in this case can be
many kilometers

1.5E+08

 Nonlocal q”closure AEchE
addresses free-
streaming, collisional, i
and particle trapping .

effects in long-mean- i
free-path regime

g = [dL' [T(L-L")-T(L+ L2k

olnL




Conclusions

NIMROD’s Advanced Computational Techniques
Allows Simulations Never Before Possible

« Heating through B limit shows super-exponential growth, in
agreement with experiment and theory (although fixed
boundary works better)

» First successful case of initial-value code using “best-fit”
equilibria directly.

e Simulation of disruption event shows qualitative agreement
with experiment.

» Loss of internal energy is due to rapid stochastization of the
field, and not a violent shift of the plasma into the wall.

» Heat flux is localized poloidally and toroidally in a narrow
“beam” as X-point gets shifted towards divertor.
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