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Motivation

e As anonlinear MHD code benchmark, model
resistive MHD events in a tokamak plasma using

realistic physical values to make guantitative
predictions.

— Large tokamaks have large disparities in spatial and
temporal scales to be resolved.

 Resistive MHD: Current sheet thickness ~ S1/2
e Two-fluid MHD: ion skin depth ~ n-1/2

— Small tokamaks operate in regimes accessible to present-
day codes.



Characteristics of the Current Drive
Experiment Upgrade (CDX-U)

Low aspect ratio tokamak
(R/a=1.4-15)

Small (R, = 33.5 cm)
Elongation x~ 1.6

B, ~ 2300 gauss

|, ~ 70 kA

n, ~ 4x101 cm3
T,~100eV —» S ~ 104
Discharge time ~ 12 ms

Soft X-ray signals from
typical discharges indicate two
predominant types of low-n
MHD activity:

— sawteeth
— *“snakes”




Equilibrium: g, < 1

Equilibrium taken from a
TSC sequence (Jsolver
file).

Qi = 0.922

g@) ~9

toroidal current density

.

10—

Questions to
Investigate:
— Linear growth rate
and eigenfunctions
— Nonlinear evolution
o disruption?
 stagnation?

* repeated
reconnections?




Baseline Parameters for CDX

Lundquist Number S

~2x10% on axis.

Resistivity 7

Spitzer profile T2, cut off at 100x 7,

Prandtl Number Pr

10 on axis.

Viscosity u

Constant in space and time.

Perpendicular thermal
conduction x,

Original study: O
Followup studies: 200 m?/s (measured value)

Parallel thermal
conduction (sound
wave)

Original study: O
Followup studies: V;, =6 V,

Peak Plasma /

~ 3 x 10 (low-beta).

Density Evolution

Turned on for nonlinear phase.

Nonlinear initialization

Pure n=1 perturbation such that —




n=1 Eigenmode

Incompressible velocity Toroidal current density
stream function U Jy

y75 = 8.61x 10 — growth time =116 7,



Higher n Eigenmodes

Incompressible velocity
n=2 stream function U n=3

mz=5 mz=7
vz, = 1.28 x 1072 vz, = 1.71 x 1072



High Perpendicular Heat Conduction Stabilizes All Ballooning

Modes

By Mode Number
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Nonlinear Evolution, Heat Conduction On

By Mode Number
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t =1266.17

Initial state:

Poincare plot
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During 1st Crash: t = 1810.51

Poincare plot Temperature profile




After 1st Crash: t = 1839.86

Poincare plot Temperature profile
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t =2094.08

Flux surfaces recovered
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Kinetic Energy

Three Sawtooth Cycles

By Mode Number
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After 3rd Crash: t = 2602.50

Poincare plot
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High-Resolution Study

48 planes — 22 toroidal modes
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During 1st C

rash:t=1717.08

Poincare plot
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After 1st Crash:t = 1725.34

Poincare plot Temperature profile
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After Incomplete

Recovery: t = 1848.30
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Disagreement Between Low-res &
High-res Runs
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 Both timing and energy of peaks are different.
 Quter flux surfaces do not heal in high-res case.

 Energy in higher-n modes significantly affects sawtooth evolution.
e Further study Is needed to assess convergence on this case.



Two-Fluid Study

Same parameters as single-fluid, but «*; term on.

lon skin depth = 0.05 minor radii.
Pressure divided evenly between electrons, ions.

Modest increase In poloidal resolution relative to 1%
single-fluid study (89 vs. 79 radial grids); same
toroidal resolution (24 planes).

Start nonlinear run with MHD n=1 (1,1) eigenmode,
vT,=5.1x10-3 as small initial perturbation.



The Two-Fluid Model

—'0+V (pv,)=0

ot
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Kinetic Energy

Two F|UId Sawooth Energy Hlstory

By Mode Number
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95

t =653

Early state

Poincare plot
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Nonlinear phase: t = 1008.38

Poincare plo Temperature profile
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After 1st Crash:t = 1118.44

Poincare plot Temperature profile
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Second Crash: t = 1502.53

Poincare plot Temperature profile
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Summary of Observed Two-Fluid Effects

 Plasma rotation.
 QOscillations in energy of higher-n modes.
» Sawtooth period increases slightly.

» Magnetic field does not become stochastic over most
of plasma cross-section.

* Reconnection iIs incomplete in second crash.



Conclusions

* Nonlinear MHD simulation with actual device parameters Is
capable of tracking evolution through repeated sawtooth
reconnection cycles.

— Dynamics depend on number of modes retained, implying high energy in
high-n modes.

— Failure of convergence in number of modes kept would suggest
Inadequacy of the MHD model for this problem.

o Two-fluid simulation has now also been applied to the problem.

— Qualitatively similar to MHD predictions, but
— Sheared rotation inhibits island growth, reducing stochasticity of field.

— Incomplete reconnection in second cycle suggests possibility of saturated
Islands. To be investigated.



