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Thesis

• Accurate predictions of “slow-MHD” island physics in high
temperature plasmas requires the inclusion of a number of
non ideal-MHD physical effects.
– Neoclassical-like viscous forces

• parallel viscous forces
• gyro-viscosities

– Anisotropic transport in helical geometry
– Rf-source effects - ECCD stabilization



Outline

• NTM basics
• Neoclassical related closures

– Bootstrap current drive - electron viscosity
– Threshold physics

• Neoclassical polarization currents - ion viscosity, gyro-viscosity,
natural island frequency

• Anisotropic heat conduction - heat flux

• ECCD stabilization - RF closures



Elements of NTM physics

• Phase diagram illustrates differ aspects of NTM evolution
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w = wthreshold~ ε0.5ρθi  or wd ~ (χperp/χ||)0.25

W > δres ~ S-2/5

w=wsat
~ Dnc/(-Δ’))
~ε0.5βθ

Issues
Saturated state
Temporal evolution
Threshold physics
Seeding 



NTM physics has been binned into different
parts of the problem problems

• Some elements of theory are
in relatively good shape

– Saturated state
wsat  ~ ε0.5βθ  ~ local bootstrap
current density --->  in good
agreement with experiment
– Timescale of island
evolution ~ resistive
diffusion time through
the island region  --->
in good agreement w/expt
– Observed on TFTR, JET,
 DIII-D, JT60U, AUG, etc Chang, et al, PRL ‘95



Other elements of NTM physics are less well
understood

• Threshold physics - NTM excitation requires w > wthreh

– Empirically, critical β for
NTM onset scales with ρ*
---> very bad for ITER
- somewhat consistent with theory,
but work remains

– Seeding processes
– How to initiate w > wthresh?
- Some ideas, no single explanation
for all observations - transient
evolution of Δ’, electromagnetic
coupling to outside MHD, transport
changes, sawteeth period?
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Modified Rutherford equation provides a useful
model to interpret NTM dynamics

• Nonlinear tearing mode dynamics initially worked out for resistive
MHD theory - Rutherford ‘73
– Slowly evolving helical MHD “equilibrium”

– Resistive Ohm’s law

– Matched asymptotics - Rutherford equation - with Pfirsch-
Schluter effects (Kotschenreuther et al ‘86; CCH ‘99)
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Ψ* =helical magnetic
surface label

DR* = (E + F + H2)/(αs - H)

(Glasser, et al ‘75)



Neoclassical electron viscosity brings in bootstrap
current effects

• Bootstrap currents - viscous damping of poloidal electron
diamagnetic flow
– Toroidal equilibrium - relevant  neoclassical closures are

the flux-surface average of parallel viscous forces

• For electrons, Uθe =Uθi -Jθ/ne ≅- J||/(Bne) - F(dp/dψ)/(neB2)
Alters electron force balance - Ohm’s law

– For islands, the helical current is produced from the
helical deformation of plasma profiles (Carrera, et al ‘85,
…

  

! 

<
r 
B " # " $

||
>

<
r 
B " # " %

||
>

& 

' 
( 

) 

* 
+ = mn < B

2 >
µ
00

µ
01

µ
10

µ
11

& 

' 
( 

) 

* 
+ 

U,

q,

& 

' 
( 

) 

* 
+ , µ - ./, U, =

v
||

B
+

r 
v 0 " #,r 

B " ,

  

! 

<
r 
B " # "

t 
$ ||e >%*&<

r 
B " # "

t 
$ ||e >axi

1

po

'

dp

d%*
< 'x%* >%* +(...)J||

& µe

me

e
F < B

2 >
dp

d%*
< 'x%* >%* +(...)J||



Inclusion of neoclassical viscosity leads to
neoclassical tearing mode instabilities

• Modified Ohm’s law

– Modified Rutherford equation (Carrera et al, ‘85, Qu and Callen
‘86)

– Heuristic model suggested to facilitate NIMROD simulations
of NTMs (Gianakon, et al ‘02)
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Dnc > 0 for dq/dr > 0, generally Dnc >
|DR*|
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The heuristic model has a number of positive
features

• Properties of heuristic model
– Manifestly dissipative, as it should be
– Yields correct perturbed bootstrap current for sufficiently

small islands
– No toroidal flow damping; damps poloidal flows

– Gives neoclassical particle transport

– Relies on coordinate system of the initial axisymmetric
equilibrium - with larger island - deformed equilibrium? -
neoclassical toroidal viscosity? (Shaing ‘02)
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Polarization currents alter island stability

• In resistive MHD, rotating islands add polarization effects
which alters island evolution

– In sheared slabs with cold ions, modified Rutherford
equation (w >  ρL) - Smolyakov ‘89

• A number of folks are looking at various 2-fluid, cold ion,
sheared slab modificiations of this (Waelbroeck, et al ‘03;
Ottaviani et al ‘05, etc.)
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Neoclassical physics “enhance”
polarization currents

• Neoclassical physics dominate the MHD polarization
currents

– The q2/ε2 enhancement of the dielectric tensor -
neoclassical MHD (Callen, et al ‘86)

– For lower collisionality regimes n < w/e, the enhancement
is down by ε3/2 (Wilson, et al ‘96)
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Physics - at low collisionality, infrequent 
collisions across trapped/passing boundary 
eliminates the passing particle enhancement 
of the banana’s “diamagnetic” current



Strength of neoclassical enhancement depends on
collisionality

• Modified Rutherford equation with neoclassical polarization
currents

– Valid for w > ε0.5ρθi

– For F(ω) < 0, neoclassical polarization currents are
stabilizing and provides a threshold island wthresh ~ ε0.5ρθi -
--- crudely consistent with βonset ~ ρi*

• The “collisional” version of this model should be described
by the heuristic closure scheme
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Transition formula for different collisionality
regimes requires evaluation of a temporally

varying viscous force
• Recent calculation has accounted for temporal variation of

parallel viscous force (Garcia-Perciante ‘05).  For small ε

– Long time behavior reproduces correct asymptotic value
– Application to the NTM problem hasn’t been addressed

yet.
– Not clear how to implement this formula into initial value

codes
--- require evaluation of a “time-history” integral 

  

! 

<
r 
B " # "

t 
$ >% mn < B

2
> [U& (t) +

1

'

(U

(t
+ c

n
d)

0

t

* e
+' , n (t+) )

(U&

(t
],

n

-



Stability properties of polarization effects
depend on frequency: gyroviscosity is important

• Two-fluid effects are important in evaluating the neoclassical
polarization effect

– Origin of this dependence is two-fluid ion flows + gyroviscous
cancellation

– Neoclassical polarization currents are stabilizing for
ω(ω-ωi

*) < 0 --- threshold physics requires finite Ti and island
rotation frequency in the range 0 < ω < ωi*
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Predictions of natural island rotation frequencies
are thought to depend on relative strength of ion

to electron viscosities
• “Dissipative” contributions to the island region parallel current

determine the natural island frequency.  (Connor et al ‘02, …)
– Frequency is determined from the relative contributions of

electron and ion viscosities (Shaing PoP ‘02; CCH ‘03;
Fitzpatrick and Waelbroeck PoP ‘05)

• In sheared slabs, phenomenological cross-field viscosities are
included in many calculations

• Alternative model - see CCH APS ‘05 poster
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Anisotropic transport properties can also produce
a threshold island

• NTM instability relies on self-consistent deformation of
plasma profiles -
– rapid equilibration along field lines relative to cross-

field transport (Fitzpatrick, ‘95;  Gorelenkov et al ‘96)

– Characteristic length scale wd ~ (χperp/x||)0.25

– Parallel heat flux in island-like geometry has non-local
feature (Held et al, ‘03)
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RF physics can be treated as a closure problem

• Inclusion of RF operator modifies kinetic theory

– Moment equations are modified

– Ohm’s Law (me ≅ 0)

• Relevant quantity for modified Rutherford equation is the helical
flux surface average of Ohm’s law (CCH and JDC ‘97;  Zohm ‘97;
Sauter ‘04)
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Theoretical modeling includes an ECCD
contribution to modified Rutherford equation

• Modified Rutherford equation with rf-current drive

• ECCD stabilization has been successful in stabilizing NTMs
(LaHaye ‘02)
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There are a number of modeling issues associated
with rf-modeling

• Logic from a MHD perspective - turn the rf-term as a closure
problem.  Issues/opportunities arise:
– With lots of rf/beams, etc - non-Maxwellian distribution -

viability of expansion - Laguerre energy Polynomials?
– RF modeling is generally 2D - how do we account for 3D with

island induced E|| and helical magnetic fluctuations?
– Self-consistent evolution on transport timescale with particle,

momentum, energy inputs?
– Numerical instabilities from energetic particle components

that significantly modify Ohm’s law (Jardin and Ignat ‘95)
– ECCD efficiency requires an accurate temporal evolution of

electron slowing-down etc.  Particularly an issue for phasing
current drive (Giruzzi, et al)



Summary

• Heuristic model for parallel viscosity has a number of desirable
features
– Correctly reproduces perturbed bootstrap current and

polarization currents
– Manifestly dissipative, damps poloidal flows, no toroidal flow

damping, gives neoclassical cross-field particle transport
• To properly describe the neoclassical polarization current effect,

it requires
– Neoclassical ion poloidal flow damping
– Two-fluid physics - Hall-MHD terms in Ohm’s law
– Gyroviscosity - gyroviscous cancellation to yield proper

frequency dependence
• The inclusion of RF-forces on the electron momentum balance

equation can be treated as a closure problem, but a number of
issues need to be resolved


