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I. FOREWORD

This note presents a reduced system of finite-Larmor-radius two-fluid equations based on the

”paraxial” or ”long-thin” geometrical approximation, namely a large-aspect-ratio and long-parallel-

wavelength ordering for plasmas in a strong guide magnetic field of weak curvature. The main new

features are the full account of diamagnetic effects associated with temperature gradients and the al-

lowance for strong pressure anisotropies, i.e. (p‖ − p⊥) ∼ p ≡ (p‖ + 2p⊥)/3, with dynamically evolved

ion and electron parallel and perpendicular pressures. For the sake of conciseness, the analysis will be

limited to the slow dynamics ordering where frequencies and flow velocities are respectively on their

diamagnetic drift scales.

II. BASIC TWO-FLUID SYSTEM

The starting system is the set of quasineutral two-fluid equations (single ion species of unit charge),

in the limit of negligible electron mass:

ne = ni ≡ n , (1)

ue = ui −
1
en

j ≡ u − 1
en

j , (2)

j = ∇× B , (3)

∂B
∂t

+ ∇× E = 0 , (4)
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∂n

∂t
+ ∇ · (nu) = 0 , (5)

E = −u × B +
1
en

(
j × B − ∇ · Pe + Fcoll

e

)
(6)

and

mi n

[
∂u
∂t

+ (u · ∇)u

]
+ ∇ · (Pe + Pi) − j × B = 0 . (7)

The fluid-rest-frame stress tensors,

Pα(x, t) ≡ mα

∫
d3vα (vα − uα)(vα − uα) fα(vα,x, t) , (8)

are for the ions

Pi = pi⊥I + (pi‖ − pi⊥)bb + Πgyr
i + Πcoll

i⊥ , (9)

and for the electrons

Pe = pe⊥I + (pe‖ − pe⊥)bb . (10)

In addition, use will be made of the four (two per species) dynamic evolution equations for the CGL

components of the stress tensors, pα ≡ (pα‖ + 2pα⊥)/3 = Pα : I/3 and pα‖ = Pα : (bb),

3
2

[
∂pα

∂t
+ ∇ · (pαuα)

]
+ Pα : (∇uα) + ∇ · qα − hcoll

α = 0 (11)

and

1
2

[
∂pα‖
∂t

+ ∇ · (pα‖uα)

]
− b · Pα ·

[
∂b
∂t

+ (uα · ∇)b − (b · ∇)uα − b × (∇× uα)

]
−

− b · Qα : (∇b) + ∇ · qαB − hcoll
αB = 0 . (12)

These involve the fluid-rest-frame stress flux tensors

Qα(x, t) ≡ mα

∫
d3vα (vα − uα)(vα − uα)(vα − uα) fα(vα,x, t) , (13)
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and, in particular, the heat flux vectors qα = Qα : I/2 and qαB = Qα : (bb)/2.

The collisional friction forces and heat generation rates are

Fcoll
α (x, t) ≡ mα

∫
d3vα (vα − uα) Cα(vα,x, t) , (14)

hcoll
α (x, t) ≡ mα

2

∫
d3vα |vα − uα|2 Cα(vα,x, t) (15)

and

hcoll
αB (x, t) ≡ mα

2

∫
d3vα [(vα − uα) · b]2 Cα(vα,x, t) , (16)

where Cα are the collision operators. Conservation of momentum and energy imply Fcoll
i + Fcoll

e = 0

and en(hcoll
i + hcoll

e ) = j · Fcoll
e .

III. ASYMPTOTIC ORDERINGS

This section lists the asymptotic orderings assumed in order to derive the reduced two-fluid sys-

tem: large-aspect-ratio and small-parallel-gradient paraxial geometry, slow (diamagnetic drift scale)

dynamics, low plasma compressibility and low collisionality.

A. Paraxial geometry approximation

This is the main asymptotic ordering. It uses as expansion parameter the ratio ε ∼ a/L‖ � 1

between characteristic lengths perpendicular and parallel to the magnetic field. The magnetic field is

assumed to be made of a time independent, weakly inhomogeneous background plus a dynamic part

of order ε relative to the static background:

B ≡ Bb = B0 + B1 ≡ B0b0 + B1 , (17)

where

|b| = |b0| = 1, B0 = constant , ∂b0/∂t = 0 , ‖∇b0‖ ∼ 1/L‖ ∼ ε/a and |B1|/B0 ∼ ε . (18)

All parallel gradients are assumed to be first order in ε relative to the perpendicular gradients:

k‖ ∼ b · ∇ ∼ b0 · ∇ ∼ εk⊥ ∼ ε/a . (19)
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The ion and electron betas are assumed to be of order ε,

pα/B2
0 ∼ v2

thi/v2
A ∼ ε , (20)

and the ion and electron pressure anisotropies are assumeed to be of order unity,

(pα‖ − pα⊥) ∼ pα . (21)

In the case of an axisymmetric background geometry such as in the application to tokamaks, the

background magnetic unit vector b0 is the azimuthal unit vector eζ of the cylindrical coordinate sys-

tem (R, ζ, Z) and, in the plasma domain, R = R0 + O(a) with R0 = O(a/ε) = O(L‖).

B. Slow dynamics ordering

The second expansion parameter is the ratio δ ∼ ρi/a ∼ ρik⊥ � 1 between the ion Larmor radius

and the perpendicular lengths, and it is required to satisfy δ2 <∼ ε. A slow dynamics ordering is

assumed, whereby flow velocities and time derivatives are respectively comparable to the diamagnetic

drift velocities and frequencies:

uα ∼ j

en
∼ δvthi and

∂

∂t
∼ uα

a
∼ δ2Ωci . (22)

In addition, the heat fluxes are also assumed to satisfy their slow dynamics ordering:

qα ∼ uαpα ∼ δminv3
thi . (23)

Whereas the small ion Larmor radius assumption is necessary in the present fluid description, the

slow dynamics ordering is not essential and is adopted here just for the sake of conciseness. A similar

analysis can be carried out for the fast (MHD-like) dynamics ordering, uα ∼ vthi and ∂/∂t ∼ δΩci, or

keeping enough terms to cover both the fast and slow orderings. In all cases, the condition qα‖ ∼ uαpα

on the parallel heat fluxes is necessary for the asymptotic closure of the reduced two-fluid system.

C. Low compressibility

It is assumed that the particle density is constant in lowest order:

n = n0 + n1 , with n0 = constant and n1/n0 ∼ ε . (24)
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Then, consistent with the continuity equation and the parallel component of Faraday’s law, the diver-

gence of the flow velocity is first order in ε:

∇ · u ∼ εu/a . (25)

This assumption is made for simplicity. It allows to express the lowest-order flow velocity in terms

of only two scalars and to write the lowest-order convective derivative in the form of a Poisson bracket.

The analysis could be extended to the general case of strong density variation and flow compressibility,

where the three scalar components of the velocity vector must be considered and the Poisson bracket

form of the convective derivative no longer holds.

D. Low collisionality

Finally, it is assumed that the collision frequencies are much smaller than the ion cyclotron fre-

quency, νcoll
αβ � Ωci. Again, this is not an essential assumption. It is made for the sake of simplicity

and of applicability to regimes of interest in magnetic fusion plasmas. The main consequence is that

the ion collisional perpendicular stress Πcoll
i⊥ is neglected compared to the gyroviscous stress Πgyr

i and

the collisional parts of the perpendicular heat fluxes are neglected compared to the corresponding

diamagnetic parts.

IV. LOWEST-ORDER FIELDS IN TOKAMAK GEOMETRY

In the tokamak-relevant case of axisymmetric background geometry, the lowest-significant-order

magnetic field and current density are

B(R, ζ, Z, t) = [B0 + B1ζ(R, ζ, Z, t)] eζ + ∇ψ(R, ζ, Z, t) × eζ + O(ε2B0) (26)

and

j(R, ζ, Z, t) =
B0

R0
eZ + ∇B1ζ(R, ζ, Z, t) × eζ − ∆2ψ(R, ζ, Z, t) eζ + O(ε2B0/a) , (27)

with

B1ζ(R, ζ, Z, t) = −B0

(
R − R0

R0

)
− 1

B0

[
pi⊥(R, ζ, Z, t) + pe⊥(R, ζ, Z, t)

]
+ O(ε2B0) (28)
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and the two-dimensional Laplacian operator ∆2 being defined as

∆2 ≡ ∂2

∂R2
+

∂2

∂Z2
. (29)

The ion flow velocity is

u(R, ζ, Z, t) = uζ(R, ζ, Z, t) eζ − ∇φ(R, ζ, Z, t) × eζ + O(εu) (30)

and the electric potential is

Φ(R, ζ, Z, t) = B0 φ(R, ζ, Z, t) − 1
en0

pi⊥(R, ζ, Z, t) + O(εuaB0) + O

(
aF coll

e

en

)
. (31)

V. REDUCED TWO-FLUID SYSTEM IN TOKAMAK GEOMETRY

After carrying out the reduction of the two-fluid system (1-7, 11-12) under the above discussed

orderings, considering in particular the tokamak geometry, the following six-field coupled system

is obtained for the lowest-order representations of the ion and electron parallel and perpendicular

pressures and the magnetic and flow potentials ψ and φ:

1
2

d′pi‖
dt

− hcoll
iB = 0 , (32)

d′pi⊥
dt

− hcoll
i + hcoll

iB = 0 , (33)

1
2

d′pe‖
dt

− hcoll
eB = 0 , (34)

d′pe⊥
dt

− hcoll
i + hcoll

eB = 0 , (35)

∂ψ

∂t
+ (B · ∇)0

(
φ −

pi⊥ + pe‖
en0B0

)
+ eζ ·

(
Fcoll

e

en

)
= 0 (36)

and

d′

dt
(∆2φ) + (B · ∇)0

(
∆2ψ

min0

)
− Λ(pi⊥, φ)

en0B0
− eZ · ∇

(
pi‖ + pi⊥ + pe‖ + pe⊥

min0R0

)
= 0 . (37)
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Here, use has been made of the shorthand notations:

d′

dt
≡ ∂

∂t
+

[
eζ ×∇

(
φ − pi⊥

en0B0

)]
· ∇ , (38)

(B · ∇)0 ≡ (B0eζ + ∇ψ × eζ) · ∇ (39)

and

Λ(pi⊥, φ) ≡ ∂2pi⊥
∂R∂Z

(
∂2φ

∂R2
− ∂2φ

∂Z2

)
− ∂2φ

∂R∂Z

(
∂2pi⊥
∂R2

− ∂2pi⊥
∂Z2

)
. (40)

The azimuthal component of the velocity uζ and the first-order density n1 are not involved in

the reduced system (32-37) that couples the six primary fields pα‖, pα⊥, ψ and φ. Their evolution

equations, which can be integrated after the solution for the primary fields has been obtained, are:

d′uζ

dt
+ (B · ∇)0

(
pi‖ + pe‖
min0B0

)
= 0 . (41)

and

d′n1

dt
+ (B·∇)0

(
n0uζ

B0
+

∆2ψ

eB0

)
+ eζ ·

(
∇pi⊥ ×∇pe⊥

eB3
0

)
+ eZ ·∇

(
2n0φ

R0
−

2pi⊥ + pe‖ + pe⊥
eB0R0

)
= 0 . (42)

It is worth stressing that, despite its formal simplicity, this reduced system takes into account all the

two-fluid effects associated with the Hall physics in the generalized Ohm’s law, the ion gyroviscosity,

the ion and electron pressure anisotropies (sometimes called parallel viscosities) and the diamagnetic

perpendicular heat fluxes, within the assumed orderings. The parallel heat fluxes do not contribute

to these lowest-order reduced equations by virtue of the orderings specified in Eqs.(19) and (23), with

the result that the system is consistently closed except for the collisional terms. The toroidal effects

that break the R ↔ Z symmetry are represented by the last terms in Eqs.(37) and (42); these two

terms would be missing in the case of a straight (R0 = ∞) background geometry.
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