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~___—Goal of SWIM Slow MHD campaign—numerically

simulate ECCD stabilization of NTM'’s

*Experimental efforts to stabilize neoclassical tearing modes via electron cyclotron current
drive have been very successful [La Haye, Phys. Plasmas 13, 055501 (2006)]. Want to
develop a self-consistent model for simulating this physics.

*For ECCD, the RF-induced current is relatively small (of the same order as the electric
field) - small expansion parameter

*Add an RF term to the kinetic equation:
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Quasilinear diffusion tensor from RF source




//RFtermS appear in the fluid equations

-

*Taking fluid moments in the conventional manner yields

ong

+V  (nave) =0 (RF produces no particles)
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additional energy imparted by RF waves)

Can approximate f as a
*Closure calculations for local Maxwellian, here -

q, T, are also affected by RF. RF perturbations are small




mch of the basic physics is independent of the
problem details

eUltimately, the closure scheme and the small parameter expansion yield a self-consistent
set of fluid equations for ECCD-influenced MHD.

*While work proceeds on that front, we can study simpler models (e.g. resistive tearing
modes, rather than NTM’s) to gain physical insight. (Neoclassical effects enter the
Rutherford equation additively.)

*Consider the electron momentum equation, which gives rise to the MHD Ohm’s law.
RF-induced momentum yields an additional term,

|
E+uxB=nJ— 1—

€
*A physically reasonable form for the lowest-order effect of the RF is

| B T}/\,.fo(x, t) A = RF amplitude

€ Ho f(x,t) = space/time dependence



> Simple RF models can yield sound physics results, even
without self-consistency

*For these simulations, model the RF as a Gaussian function in the poloidal
plane — neglect toroidal variation for the moment.

Ramp up on some intermediate timescale (slow compared to Alfvén timescale,
fast compared to resistive timescale), neglect closure problem.

/B (R— Rt +(Z—=Z2)\ [t —t.q
E4+uxB=nJ— Liis exp | —- rf, — rf, orf offset
Ho Wry thuild

0
eParameters: Equilibriurn total current density (Adr?) Xy]

(Ri,Z) = position of RF peak
w, = half-width
A = amplitude

*\What physics results
arise from the inclusion
of this term in the MHD

model?




- RF effects modify the saturated island width of resistive
tearing modes

Island width (m)

*|sland width data obtained from
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*Marked reduction in the
size of saturated islands
can be achieved — proof
of principle.

Magnetic islands, t =0.12721 s

field line traces — expensive.




What is the effect of the RF on the tearing modes?

*Tearing mode can be influenced by the RF in two major ways:

+*Modification of tearing parameter A’
-will affect linear growth rate and saturated island width
-easy to diagnose — proportional to linear growth rate

*Modification of helical current profile p = p, (J*B)/(B*B)
-becomes important as mode saturates nonlinearly
-not so easy to diagnose. Conceptual picture:
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To study A" modification, find growth rate after RF
influence on background comes to steady-state

*Allow only toroidally symmetric (n=0) modes in simulation, ramp RF
up to steady state — yields new RF-modified ‘equilibrium’

*Then allow n=1 (and higher) modes into simulation, check linear growth

420 - : ; ; ' *For fixed RF current
« | (centered on (2,1) rational
“oor * 1 surface), the growth rate
’ (and thus A’) is reduced

T ’ 1 slightly as the poloidal
cross-section of the RF
spot is reduced.

(2,1) mode growth rate
w W
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*In agreement with results
320} | of Pletzer/Perkins [PoP 6,
1589 (1999)].
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S —
A" modification - saturated island width is decreased as
RF cross-section is reduced

*For fixed RF current (centered on (2,1) rational surface), the saturated
island width is also reduced for smaller RF poloidal cross-sections.
(A’ modification is not the dominant effect on island size here).

*In agreement with 05

general conclusions of %45}

Hegna/Callen [PoP 4, T o4} . X

2940 (1997)]. £ 0.5} %
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*Pletzer/Perkins find 3 0,05}

that for Ie/ly < 4%, 5 ool *

offset from rational 'go .l

surface is destabilizing — ¢ *

simulations in progress 1 [

to verify this effect 0.05F
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/mnt profile modification — quasilinear flattening
occurs at the rational surface even in the absence of RF

Magnetic energy vs. time for various Fourier components
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~Current profile modification — same simulation, but with
RF added at (2,1) rational surface

n=1 magnetic energy vs. time with various RF amplitudes =00
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*To study current profile
modification, turn on RF

after resistive tearing mode

has saturated; examine the
island width reduction and
profile (here Iggn=0/lomn=0) ~ 1%)-

*\Without the RF, quasilinear
flattening leads to increased

net current on outward side of
rational surface; decreased

net current on inward side (red).

*RF adds current on both sides
of rational surface — destabilizing
inside, but stabilizing outside

(a net stabilizing effect).

(See mu_with_ RF_1D.avi movie)



~The addi

| e additional current is linear in A, but island reduction
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Perturbed n

is limited by the RF cross-section
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*The island cannot shrink appreciably below the width of the poloidal
cross-section of the RF drive. In agreement with Hegna/Callen result

*\When RF is offset from rational surface, investigating A’ and current profile
modifications relative to non-offset case; compare with Pletzer/Perkins
conclusions (in progress). Size of RF cross-section relative to saturated island

size also important.



P Replace ad hoc RF term with reaiﬁlﬁ%

physics using GENRAY

*GENRAY calculates ray o e
tl’ajeCtOFIeS and pOWGF 06k ofRF‘propagation
deposition as a function 04} in oo
of flux surface, given the o2r
. 0k
magnetic geometry and Wl
wave parameters 0af
-0.6F
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Ray data from GENRAY is passed to NIMROD in a CDF file

*Rays are launched in a cone of r concentric rings around a central ray,
with s, equally spaced rings on the rth ring with a relative phase shift
of p,. GENRAY writes this metadata and the ray data to a CDF file.

*GENRAY calculates flux-surface-averaged
quantities. A nontrivial geometric calculation s =4, 5,.=[8,10,16,20],
determ_ines vqume_ elements for ‘undoing’ this p,=[0,71/10,0,T7/20]
averaging; alternatively, can pass the full \

quasilinear operator to NIMROD.




%erdiscrete GENRAY data has been passed to NIMROD,
it needs to be mapped to continuous finite elements

*Some regions of the NIMROD grid will have more contributions from
discrete points than there are basis functions (overdetermined); others will
have only a few contributions (underdetermined).

*Eric Held — working on importance-sampling techniques (similar to some
PIC methods) — a single point of ray data can be more important to some finite
element basis functions than others.

eUltimately, we’ll import the full quasilinear diffusion tensor from GENRAY

into NIMROD. \
0 0

Qlfa) = ov D ov



’ Importance sampling —a simple example

Quadratic basis functions on [0,1]

eConsider a set of quadratic basis '
functions on the interval [0,1]. 1k
a(z) = (2z—1)(z—1) 08}
ay(z) = 4z(l — z) o5l

asz(z) = z(2z —1)

*An arbitrary (unknown) function
F(x) can be approximated as

F(z) = E Aja;(z)

-0.2
0

*To find the coefficients A;, multiply by a trial basis function
and integrate over the interval;

1 3 ]
What are / F(z)ay(z) dzx = Z A, / aj(z)op(z) dz
0 = :

these coefficients? 0



/Ion/orthogonal basis functions yield a matrix equation

for the A’s, and integrals over the unknown F(x)

U T SRR 1 1 1
l'ﬁ] F(z)a(z) dx L az)en(z) de [) eslz)en(z) dz [, es(z)es(z) dz | | A,
! ) \ o 1 1 1
Jy Flzlag(z)dz | = | [ ayz)as(z) de [) aslz)as(z) dz [, es(z)as(z) dz A,
! ! ! 1
[ [, F(z)as(z) dz o az)as(z) de [ co(z)as(z) dz [ as(z)as(c) dz | | A

*Basis function integrals can be evaluated (explicitly here, or by Gaussian
quadrature in general) to yield

-

1 , ]
f(i F(z)on(z) dzx 1 4 How
[y Flz)ap(z) dr | = 20 21 are these
Il F(z)as(z) do -1 integrals
- " done?
*Matrix inversion yields F(x) is not
- 1T known, it's
12 =2 4 Jo Flz)en(z) dz A what we
1
2 -2 3 =2 Jo Flz)ea(z)dz | = | A, want to
4 =2 12 ﬂ)l F(z)as(z) dz A, find.




/Ihtegrals can be performed by Monte Carlo methods

*Suppose F(x) represents the effect of the RF fields — we don’t know F(x), but
we know F(x;) at a set of N discrete ray points x;. Perform the integrals

1
[ﬁ: ' / F(.’II)Q,(III) dz
JA

by defining a normalized PDF w(x) on the interval [0,1]:

/l U(z) dz =1 : I ‘/: U(z) {F(I)Q\(x)] d

. (Wl
’ @) What is y(x)?

, : How do we
*Then one can use Monte Carlo integration: know its
- relationship
: F(z)ai(x) 1 @ F(z;)a(z;) :
b EL T A 37 KA to the x's?
= [ u) [T o ST :

N U(z;) /

*Assumes that the individual x/'s are realizations of y(x).



P> Whatis the optimal form of ¢/(x)?

*Suppose the discrete data is uniformly distributed on the interval

v(z) = 1 = z;s uniformly distributed; I} ~ ¥ 2 Flz;)o(zx;)

*Data may vary widely — a single large value of F(x;) may introduce large
errors in the calculation.

*To prevent this, we want the square-bracketed quantity to be of order one in

1 / ( \. ra (. '\" ” 4 ) ' f . \:
I U(z) Fl‘x.ja':kr) dr ~ l, Z F'\x;){an'\kl..u
0 b(z) N 4 viz;)
*Choose a reasonable guess for the (unknown) F(x): F(z) ~ F(z)

*Since the basis functions can be negative, renormalize:

F(z)ow(z) + |min[F(z)ax(z)]|

Jo (F(zx)ax(z) + |min[F(z)ok(z)]|) dz

U(z) = Yi(z) =




Possible forms of ¢(x) m

Add a constant to
the numerator so
/ that it is nonnegative
F(z)og(x) + |min[F(z)ax(z)]|
o (F(z)a(z) + |min[F(z)ox(z)]|) dr €&——

Denominator
normalizes the
numerator on [0,1]

U(z) = Yi(z) =

Approximate I;(x) can incorporate any known information
(e.g. spatial localization of deposited RF power) to improve
accuracy

In the absence of useful information, can also setl_z(x) = 1; then y(x) is
largest where basis functions are largest or “most important”.

A single ray point can contribute more to some basis function integrals
than others — “importance sampling” concept
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How well does it work?

*More generally, we want to represent the effect of the RF fields by
this method — Jgx(R,Z,¢) in NIMROD

*\Works for bilinear basis functions in the poloidal plane — need to
generalize to arbitrary-order polynomial basis functions (not too

hard) and toroidal asymmetry

*Can also find I, by bivariate interpolation of ray data onto NIMROD's
Gaussian quadrature points... possibly inaccurate.

*Work in progress...



= Poloidal flux
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o Poloidal flux
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~ 30,000 _points folded into crude Monte———
C"a’rlmgfzion of basis functions times
Jacobian times Braginskii heat flow,

should approximate real heat flow shown earller
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~ 20,000 points folded into importance-sampled Monte

C:Wn of basis functions times——_
J ian times Braginskii heat flow, importance sampling |

based on basis function only; could also fold in Jacobian .|
and analytic estimate of heat flow data
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approximately a third of the points are thrown

out for basis function, a(x,y)
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~__—GENRAY + NIMROD coupling—initiakapproach

Initial Slow MHD Scenario
Data transfer handled

NIMROD | ‘
step 0 2 COUp|_€,ﬂ
NIMROD \
step 1
GENRAY
Goupler
NIMROD |—
step n
NIMROD
stepn+1 || Coupler

I

GENRAY

Coupler

—/ by IPS through Plasma State

*|sland geometry only weakly modifies
magnitude of magnetic field
* Resonance condition of GENRAY

@ changes weakly
* Time advance done via files

*Use IPS framework to manage
coupling
* |f greater sensitivity discovered, can
move to tighter coupling

Time

CHALLENGES:

* NIMROD uses primitive fields, GENRAY wants flux function
*Accuracy issues in calculation and interpolation

* GENRAY gives Q at random points on NIMROD grid
*Accuracy issues in depositing quantities onto high-order finite
element grid (previous slides)
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GENRAY + NIMROD coupling through IPS using neoclassical closures

@ time

Closure | NIMROD » Coupler
step 0
Closure | NIMROD '
step 1
GENRAY
Coupler
Closure | NIMROD ‘/
step n
NIMROD
Closure e Coupler

y

GENRAY

Coupler

*NIMROD runs on M processors and
writes out dump files periodically

*IPS detects dump file, and executes
NIMROD-GENRAY coupler

*IPS launches parallel GENRAY job

IPS detects GENRAY completed,
moves files into NIMROD directory

*NIMROD detects files and reads in
sources, and writes out dump file.

*Cycle repeats.

CEEDEEEETD
CECDEEEETD
Processor CIEEEEEEETD

Elements

Fluid Closure
Processors Processors
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= Plans for coming year — physics in Slow MHD cafﬁ‘paign

v

Done

v
Published

v

Done
Done
In progress

V .

In progress

Phase 0:
Use axisymmetric, phenomenological model for the RF interaction; L.e.,
Fpi=Fpp(R,Z) is specified as an analytic function in NIMROD.

Phase 1:
Use non-symmetric phenomenological model for RF interaction (Fy= Frp(R,Z,¢)) and include
equilibrium toroidal flow.

Phase 2:

Pass the NIMROD equilibrium data to RF ray tracing codes, and fit the ray data generated by
these codes to the parameters of the phenomenological model (e.g. Gaussian half-width,
amplitude, spatial location, etc.)

Phase 3:
Use quasilinear diffusion tensor from GENRAY and calculate Fp,
Update GENRAY sources in time while code is running using IPS.

Phase 4:

Fully couple the RF and MHD codes such that F, is calculated at every time step
using MPMD approach.

Phase 5:
Incorporate more advanced closures and neoclassical effects.
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Good progress achieved on project milestones thus far

*First simulation results with ad hoc Jgr term being written up for
publication, demonstrating proof-of-principle concepts and agreeing well
with existing literature

*Full coupling of GENRAY and NIMROD is nearly completed; bugs are
rapidly being worked out.

*Studies in progress — effect of misalignment of RF deposition with rational
surface, physics of RF equilibration across flux surface, discrete-to-continuum

data mapping (with importance sampling).

Near-term studies will focus on effects of time modulation when the RF is
tightly toroidally localized.



