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ELM onset and growth linked to the coupling 
between ballooning and kink modes

• “Ideal-like”/ “Halo” defined in NIMROD

• ELITE benchmarks with NIMROD

• Single Linear case examined as precursor to NL studies

• Technique developed to isolate ballooning and kink drives

• Preliminary nonlinear results guide future analysis

• Summary



Detailed “ideal” study in NIMROD
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define ideal and halo in NIMROD with 
the intent of using the halo placement 

to “dial in” kink/ballooning drive
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Halo region defined with an imposed 
resistivity and density transition

• # transitions from low, “ideal” to a large value at a specified $Halo

! Tanh function used as an # multiplier

• Density decreased by a factor of 100, transitions at a specified $dens

! Tanh function also used, sharp transition not possible
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Quantifying “Ideal” in NIMROD    
requires high spatial resolution

• Start with purely ideal case
! S = ! everywhere

- no halo region

Z(m)

R(m)

! linear ideal MHD, n = 12
! no dissipation in system
! kvisc, kperp =0 

computational 
grid points packedn=12 mode

Vn eigenfunction



Lundquist scans define critical,       
“ideal-like” value in NIMROD

• systematically decreased S from !

• critical value defined, below which plasma behaves ideally

Ideal Plasma behavior in NIMROD
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Beyond a critical halo-resistivity         
the modes are not affected

• Define Scrit-Halo : increase vacuum resistivity until no effect is produced
! Lundquist ratio not a good characterization parameter
! Introduction of halo region doesn’t affect Scrit-ideal

$ped=0.75
$vac=0.84

#crit-Halo ~1-10 (%•m)

Scrit-Halo ~ 0.5

Scrit-ideal /Scrit-Halo~108
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Ballooning unstable equilibrium 
generated for ELITE benchmarking

• TOQ-generated series of equilibria 
scanning across stability boundary 

• shape = simple circle

• pedestal is wide

• interface at PsiN ~0.7 (P’ and J|| = 0.0)

• plasma vacuum interface has 0 pressure 
and current

• ELITE growth rates weakly sensitive to 
vacuum location
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Results show excellent spectral 
agreement with ELITE

• Equilibrium generated to have little variation with vacuum placement

• results without halo region show                                                       
little variation at high-n 
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n = 8 mode structure in 
NIMROD and ELITE

• &'aELITE ~ 0.132 

• &'aNIMROD = 0.132

• Sin=1e8, Sout=10

• $halo = 0.82, dvac = 500

• $dens = 0.82, npp(1) = 50

• kperp = kvisc = 0
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Z

R

Z

Z

R

Po

#mult

no

x107

x1020

R



Nonlinear calculations of n = 10 

duration = 100'A

• 22 modes included: n=0-21, initialized with linear n=10 mode

• nonlinear n=0 & n=20 mode growth at twice linear n=10 rate expected

• The transition to nonlinear dynamics is expected when
! For an initial velocity perturbation Vo~1x10-4 this occurs after ~30'A

• Results show linear growth rates well into NL regime,
!  (as expected, Ping Zhu -- see APS poster)
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Currently working on benchmarking the 
stability threshold with ELITE

• Similar equilibrium

• Lower pedestal pressure and edge current

• n > 10 converged

• n (1-10) appears to be slowly growing oscillating modes... in progress
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New equilibrium allows the study of 
peeling & ballooning mode drives

Ro = 3m, a=1m

Bo = 2T

*to = .005

n = 1.06x1020(m-3)

- no density transition

• Modified TOQ
! currents in edge set to 0
! minimizes numerical 

errors   (no separatrix)
! pedestal region 
! ~67-75cm on midplane
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•      TOQ-generated shifted-circle 
tokamak equilibrium 

• ~S. Kruger & P. Snyder
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Equilibrium profiles show peeling-
ballooning  instability drive source

• Steep pressure gradients 
drive ballooning modes 
(DCON)
! Pedestal width twice 

experimental value, simplify 
vacuum transition region

• Self-consistent edge 
currents &  2 <qedge< 5 
to provide increased 
kink drive
! comparable to 

ballooning drive
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Halo location relative to the q rational 
surfaces affects instability drives

• using q profile 
identify mode 
rational surfaces

• adjusting the halo location 
“dials in” kink, ballooning, &       
peeling-ballooning behavior
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Low-n modes are sensitive to     
location of halo transition 
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Kink & ballooning drives are adjusted 
within a single equilibrium

• Developed a technique where relative rates of ballooning / kink drive 
are changed by adjusting the location of the halo region relative to 
the plasma pedestal region

- actual NIMROD calculations
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Summary

• Currently developing/documenting detailed linear peeling-ballooning 
analysis in NIMROD
! Defined critical Lundquist values for defining an “ideal-like” plasma and 

halo region in NIMROD
- (Scrit-ideal ~ 5 *107; Scrit-halo ~ 0.5)
- Ratio of these values are greater than in experiment

! Demonstrated a technique that varies the linear spectral properties of a 
single equilibrium
- scans show extreme spectral sensitivity to halo location

" convergence in this region is quite challenging                                           
*(especially when $Halo ~  $qmn)

- edge ballooning & kink effects can be “dialed in” by using a sharp resistivity 
transition region located at relevant flux positions

• Preliminary NL results show qualitatively needed resolution and 
expected energy growth rates for a single NL filament growth



Eigenfunctions have peeling-ballooning 
structure

• n=12 Halo-free mode structure, ballooning

• n=3 $vac=0.751 mode structure, peeling-ballooning
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Preliminary NL runs in NIMROD

• In addition to the linear, began preliminary NL calculations in 
NIMROD

• Purely a demonstration of technique
! not ideal Scrit: Sin ~ 5*105 
! not resistivity independent halo: #out ~ 10-2 (%•m)

- Sout ~ 5*102

! $vac = 0.84
! calculation grid points not packed

• Used to:
! guide future studies
! use results to design analysis tools

- develop method to estimate transition between NL stages
- determine growth regime to compare with analytic studies 



Increasing S (constant) increases problem

• For S = 106 the sawtoothing is seen up to n = 3 mode

• Not entirely sure if it is the exact same behavior

• Ping and Chris believe this is converged growth, I am not sure
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Low-n modes have oscillatory behavior

• Strange “saw-tooth-like” growth
! occurs in low-n (stable?) modes
! may be real physics

- two modes (resistive & ideal) may 
simultaneously exist 

- Scott also saw this sawtoothing
- perhaps nimrod bounces between 

two solutions
! Moving the vacuum region out 

seems to eliminate the issue...
- without a vacuum modes don’t 

grow
! Modes appear to be rotating/

oscillating?

Kinetic Energy vs. t
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Linear n=9 eigenmode used to 
excite NL growth
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• 22 modes included: n=0-21

• initialized with linear n=9

• nonlinear beating expected to 
produce n=0 & n=18 mode growth 
at twice linear n=9 rate



Lundquist/Resistivity ratio is not a 
good characterization parameter
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