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Most benchmark problems have been linear;
nonlinear benchmark problems are emerging

I Benchmark for numerical codes
I Code-experiment comparison (Validation)
I Code-code comparison (Benchmark)
I Code-theory comparison (Verification) –> this talk

I Recent linear benchmark:
I Ideal and two-fluid g-mode

[e.g. Schnack 2005; Ferraro and Jardin 2006; Zhu, Schnack, Ebrahimi et al. 2008]

I Resistive and two-fluid tearing mode
[e.g. King, Sovinec, Mirnov, Ramos 2008]

I Ballooning and peeling instability [e.g. Kruger et al. 2007; Squires et al. 2008]

I ......
I Recent nonlinear benchmark:

I 2D resistive and fast reconnection
[e.g. Bhattacharjee, Germaschewski, and Ng 2004; Chacon and Simakov 2007; 2008]

I 1/1 kink-tearing and sawtooth (two-fluid)
[e.g. Germaschewski and Bhattacharjee 2006; Lukin and Jardin 2007; Sovinec 2008]

I Nonlinear ballooning [e.g. Zhu, Hegna, and Sovinec 2008] –> this talk
I ......



Different nonlinear regimes of ballooning
instability are characterized by the relative
strength of the nonlinearity with powers of n−1

I For ε � n−1, linear ballooning mode theory [Connor, Hastie, and Taylor,

1979; Dewar and Glasser, 1983]

I For ε ∼ n−1, early nonlinear regime [Cowley and Artun, 1997; Hurricane,

Fong, and Cowley, 1997; Wilson and Cowley, 2004]

I For ε ∼ n−1/2, intermediate nonlinear regime → this
work [Zhu, Hegna, and Sovinec, 2006; Zhu et al. , 2007; Zhu and Hegna, 2008; Zhu, Hegna, and

Sovinec, 2008; ]

I For ε � n−1/2, late nonlinear regime; analytic theory under
development.



The local linear ballooning mode structure and
growth continue to satisfy the nonlinear
ballooning equations in Lagrangian space

I The nonlinear ballooning equations can be written in the
compact form [Zhu and Hegna, 2008][

Ψ + ξΨ, ρ|e⊥|2∂2
t ξΨ − L⊥(ξΨ, ξ‖)

]
= 0, (1)

ρB2∂2
t ξ‖ − L‖(ξΨ, ξ‖) = 0. (2)

I The general solution satisfies

ρ|e⊥|2∂2
t ξΨ = L⊥(ξΨ, ξ‖) + N(Ψ + ξΨ, l , t), (3)

ρB2∂2
t ξ‖ = L‖(ξΨ, ξ‖). (4)

I A special solution to the nonlinear ballooning equations is
the solution of the linear ballooning equations

N(Ψ̃, l , t) = 0, where Ψ̃ = Ψ + ξΨ. (5)



An extra field equation is introduced in NIMROD
code to advance ξ in simulations

In order to connect the Lagrangian and Eulerian frames,

r(r0, t) = r0 + ξ(r0, t) (6)

an equation for ξ is used. In the Lagrangian frame

dξ(r0, t)
dt

= u(r0, t) (7)

In the Eulerian frame

dξ[r(r0, t), t ]
dt

= u[r(r0, t), t ] (8)

ξ is advanced as an extra field in Eulerian coordinates using

∂tξ(r, t) + u(r, t) · ∇ξ(r, t) = u(r, t) (9)

where u(r, t) is velocity field, ∂t = (∂/∂t)r, and ∇ = ∂/∂r.



The prominence of Lagrangian compression ∇0 · ξ
marks transitions in nonlinear regimes

Transforming from Lagrangian to Eulerian frames, one finds

ξ(r0, t) = ξ[r− ξ(r, t), t ] (10)

∇ξ =
∂ξ

∂r

=

(
∂r
∂r
− ∂ξ

∂r

)
· ∂ξ

∂r0

= (I−∇ξ) · ∇0ξ (11)

The Lagrangian compression ∇0 · ξ is calculated from the
Eulerian tensor ∇ξ at each time step using

∇0 · ξ = Tr(∇0ξ) = Tr[(I−∇ξ)−1 · ∇ξ]. (12)



Lagrangian compression ∇0 · ξ can be used to
identify nonlinear regimes

I Linear regime
∇0 · ξ = ∇ · ξ (13)

I Early nonlinear regime

∇0 · ξ ∼ λ−1
Ψ ξΨ + λ−1

α ξα + λ−1
‖ ξ‖ (14)

∼ n1/2n−1 + n1n−3/2 + n0n−1 ∼ n−1/2 � 1.

I Intermediate nonlinear regime

∇0·ξ ∼ λ−1
Ψ ξΨ+λ−1

α ξα+λ−1
‖ ξ‖ ∼ n1/2n−1/2+n1n−1+n0n−1/2 ∼ 1.

(15)
I The Lagrangian compression is sensitive to nonlinearity:

matrix (I−∇ξ)−1 could become singular passing beyond
intermediate nonlinear regime.



Simulations of ballooning instability are performed
in a tokamak equilibrium with circular boundary
and pedestal-like pressure

I Equilibrium from
ESC solver [Zakharov and

Pletzer,1999]

I Finite element mesh
in NIMROD
simulation.
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Exponential linear growth persists in the
intermediate nonlinear regime of tokamak
ballooning instability [Zhu, Hegna, and Sovinec, 2008]
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Dotted line indicates the transition to the intermediate nonlinear
regime when ∇0 · ξ ∼ O(1)



Lagrangian compression is a good indentifer for
entire nonlinear regimes
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I Intermediate nonlinear regime is entered ∼ 28µs.
I Large ∇0 · ξ indicates transition to nonlinear regimes.



Perturbation energy grows with the linear growth
rate into the intermediate nonlinear regime
(vertical line)
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Coutours of plasma velocity and displacement ξ at
t = 5µs, linear phase
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Coutours of plasma velocity and displacement ξ at
t = 30µs, intermediate nonlinear phase
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Coutours of plasma velocity and displacement ξ at
t = 40µs, late nonlinear phase
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Distortions of flux surface are consistent with
plasma displacement
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I Above: Pressure contours.
I Left: t = 30µs; Right: t = 40µs.



Agreement converges at higher resolutions
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I my=128, linear growth slower.
I Intermediate nonlinear regime is entered ∼ 68µs.
I When ∇0 · ξ ∼ 1, ξ ∼ Lp ∼ 0.05− 0.1.



Coutours of plasma velocity and displacement ξ at
t = 80µs, late nonlinear phase (higher resolution)
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Summary

I Nonlinear ballooning theory predicts exponential global
growth in intermediate nonlinear regime [Zhu and Hegna, 2008]

I NIMROD simulations of tokamak ballooning instability
agree with the theory prediction [Zhu, Hegna, and Sovinec, 2008]

I Nonlinear ballooning instability can serve as a benchmark
problem for a MHD code.


