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• Nonaxisymmetric wall forces in ITER

– are produced on conducting structures during a disruption

– calculate with a thin resistive wall model

– obtain scaling of wall force with current and wall constant

• Simulations with M3D

– upwind method to dissipate fine scale turbulence

– thin resistive wall

∗ double ITER wall model
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Resistive Wall

The normal component of magnetic field is continuous at the wall,

Bvn = Bpn,

where Bvn, B
p
n are the normal component of magnetic field in the vac-

uum, just outside the wall, and the plasma (or blanket), just inside the
wall. Integrating the resistive diffusion equation across the wall gives

∂Bn

∂t
= −

ηw

δ
∇ · [n̂ × (Bv − B

p) × n̂] (1)

where ηw is the wall resistivity, δ is wall thickness, and n̂ is the normal
unit vector. The vacuum field is solved using Green’s functions, with
the GRIN code.
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The vacuum field is represented as

Bv = ∇ψv ×∇φ+ ∇λ+ I0∇φ

where I0 is a constant. From Green’s identity one has an integral
equation relating ∂ψv/∂n to given ψv, and λn to given ∂λn/∂n on
the boundary. When discretized, these integral equations become ma-
trix equations which are set up and solved by GRIN. Given a set of
boundary points, Ri, Zi

(
∂ψv

∂n
)i =

∑

j

K0
ijψ

p
j + Sxi, (2)

λni =
∑

j

Kn
ij(B

p
n)j (3)

where K0
ij,K

n
ij are matrices that can be precomputed given the set of

boundary points. The source term Sx is chosen so that at the initial
time, ∂ψv/∂n = ∂ψp/∂n.
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Wall Pressure

The current in the wall is given by

Jw = ∇× B ≈
n̂

δ
× (Bv − Bp).

The normal component of the force density is

Fwn = n̂ · Jw × Bw = −
1

δ
(Bv − Bp) · Bw.

Inside the wall assume that

Bw =
1

2
(Bv + Bp).
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The normal wall force density can be expressed

Fwn =
1

2δ
(|Bp|

2 − |Bv|
2). (4)

It has a simple physical meaning. It is the difference in magnetic pres-
sure across the wall, divided by the wall thickness.

Integrating over the wall thickness δ gives the magnetic pressure on
the wall. The normalized wall pressure Pw is

Pw =
(|Bp|2 − |Bv|2)

2B2
0

where B0 is the vacuum toroidal magnetic field on axis.
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The tangential component of the wall force is

Fwℓ =
1

δ
(n̂ · B)(Bv

ℓ − B
p
ℓ).

where ℓ̂ = −n̂ × φ̂. The physical interpretation is

Fwℓ = Jφn̂ · B

In general,

Fwℓ ∼ |B1|
2 << Fwn ∼ |B1|.
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Mesh ITER Double wall

Low resolution ITER mesh. Simulation regions: inner plasma region
(gold), first wall, blanket (red), outer wall, outer vacuum (white). The
velocity vanishes outside the first wall, but the magnetic field is con-
tinuous up to the outer wall. Resistive wall boundary conditions are
applied at the outer wall. The assumption is that the first wall is much
more resistive than the outer wall.
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Disruption Simulation

The initial state is an ITER reference case equilibrium (FEAT15MA).
calculated by CHEASE, and written to a file in EQDSK format. This was
read into M3D and used to generate a mesh and initialize a nonlinear
simulation. The initial equilibrium had q = 1.1 on axis. The magnetic
flux ψ, and the other equilibrium quantities were rescaled to generate a
sequence of equilibria with 0.6 < q < 1.1 on axis, and 3 < I/(aB) <

9. This models what might have occurred if outer layers of plasma were
scraped off during a VDE. The resulting state is unstable to a resistive
wall mode or external kink, depending on q. A small perturbation was
added to the plasma and it was allowed to evolve nonlinearly.
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Poloidal Magnetic Flux ψ

(a) (b) (c)

(a) initial magnetic flux contours of ITER equilibrium reconstruction.
This case was not rescaled. (b) magnetic flux contours in the poloidal
plane with toroidal angle φ = 0, at time t = 159τA. (c) at time
t = 213τA with nonlinear VDE and RWM.
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Temperature

(a) (b) (c)

(a) initial temperature contours in the poloidal plane with toroidal an-
gle φ = 0. (b) temperature contours at t = 159τA, showing pre-
dominantly (m,n) = (2,1) structure of nonlinear RWM. (c) at time
t = 213τA. Temperature is unconfined due to parallel transport along
stochastic magnetic lines. 11
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(a) time history of the total plasma pressure (red) and total toroidal
current (green) in the RWM case, showing temperature and current
quench. (b) time history of the peak normalized symmetric (green) and
asymmetric (red) normalized wall pressure. The peak wall pressure
coincides with temperature and current quench. The asymmetric part
is caused by the nonlinear n=1 mode; the symmetric part by equilibrium
loss.
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Spatial structure of wall magnetic pressure

(a) (b)

Asymmetric magnetic pressure on the wall as a function of poloidal
angle (horizontal) and toroidal angle (vertical) (a) n ≥ 1 part of RWM
at time t = 180τA. The normal wall pressure has mostly (m,n) =

(2,1) structure. (b) n ≥ 0 wall pressure at t = 180τA.
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Scaling of Wall Pressure with Current

In JET, the net vertical symmetric wall force and the net horizontal
asymmetric wall scale as the square of the current (Riccardo et al.,
NF 2000;Riccardo et al., NF 2004).

Peak non symmetric wall pressure
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Scaling of peak axisymmetric wall pressure
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The peak pressure is rather high; but the wall averaged net horizontal
force and the net vertical force are about an order of magnitude smaller.
The ITER disruption database only includes I/(aB) ≤ 7.
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Scaling of wall averaged horizontal force
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The horizontal normalized pressure force is

Ph ≈
1

2πL

∫

dφdlRPnnR

It is about 5% of the peak normal n = 1 pressure. In terms of ITER
parameters, the toroidal field Bφ = 5.3T, the plasma surface area
is 2π

∫

dlR = 917m2. In the RWM case I/(aB) = 3.4, the total
horizontal force is FR = 1.25 MN.
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Scaling of Force with Current and Wall Resistivity

The scaling of wall force with current and wall resistivity can be esti-
mated using a simple model. The magnetic field is approximately,

B = ∇ψ × φ̂+Bφ̂,

and assuming a simple circular flux surface geometry, ψ = ψ0(r) +
ψmn exp(imθ+inφ),with constant toroidal current ∇2ψ0 = 2B/(q0R0)
inside the plasma boundary at r = a. A perturbed equilibrium satisfies

B0 · ∇∇2ψ1 + B1 · ∇∇2ψ0 = 0.

Integrating this across the plasma - blanket interface at r = a gives

∂ψbmn
∂r

−
∂ψ

p
mn

∂r
−

2k⊥
k‖q0R0

ψpmn = 0. (5)

where k‖q0R0 = (m−nq0), and k⊥ = m/a. At the vacuum - blanket
interface, r = b, from (1),

γψmn =
ηw

δ

(

∂ψvmn
∂r

−
∂ψbmn
∂r

)

(6)

18



The force density (4) is

Fδ = Bθ

(

∂ψvmn
∂r

−
∂ψbmn
∂r

)

In the plasma, ψmn = ψ1r
m, in the blanket a < r < b, ψmn =

ψ2r
m + ψ3r

−m, and in the vacuum, r > b, ψmn = ψ4r
−m. Using

continuity of ψmn at r = a and at r = b, and using (5) and (6), it is
possible to eliminate ψ2, ψ3 and ψ4 to obtain

Fδ =
Bθ

1 + ηwm
γδb

[

1 +
1 + (ab)

2m

m− nq

]

ψ1b
m. (7)

If ψ1 is assumed to be proportional to ψ0, which in turn is propor-
tional to Bθ, then Fδ is proportional to I2/(aB)2. In the limit γ ≪

(ηwm)/(δb), F δ ∝ γI2/(aB)2. The net horizontal force, averaged
over the wall, is

< F >=
1

4π2R0

∫ ∫

dφdθRF ∼
1

4
(ψ11 +

b

R0
ψ21)
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Wall pressure as a function of ηw/δ.
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Variation of peak wall pressure Pw = Fwnδ/B2
0 as a function of wall

resistivity divided by wall thickness, ηw/δ. The data is fit by the formula,
Pw ∝ 1/(1 + αηw/δ) where α = 9. This justifies the two wall model;
the wall force goes to zero with the wall time constant.
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Numerical Difficulties

• Current generated in disruptions cause magnetic island overlap,
stochastic magnetic field. Arbitrarily short spatial scales are gen-
erated.

• Pressure driven (ballooning modes) are unstable for all wavelength
in ideal MHD.

• Dissipation is required to limit the spatial scales. A large resistivity
η varied from 10−5 on axis to 10−2 at the wall. A spatially constant
perpendicular viscosity was used, µ = 10−4.
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Dissipative Numerical Methods

• Upwinding to maintain positivity of density and temperature

– gives an effective dissipationD ∼ v∆ where ∆ is the grid size

– flux limiter subtracts off most of the dissipation if there are no
mesh point to mesh point oscillations - not so important when
v ≪ vA.

– only diffusive part is used as an “artificial diffusion.”

• dealiasing: highest 1/3 of n modes set to zero
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Future Work

• higher resolution will be used to improve results.

• try initial states corresponding to different disruption scenarios.

• carry out JET simulations and compare with data.

• contact with Hiro current theory (Zakharov 2008).

• two wall model improvements:

– add structure to blanket

– give finite resistivity to first wall; blanket region solved with Green’s
function or elliptic solver
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