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Abstract
Resistive MHD computations using the NIMROD code find a strong dependence of

low-n edge instabilities on the edge parallel current density distribution. Here n is the

toroidal mode number. The low-n edge-localized-modes can be driven unstable by

increasing the edge current density across the peeling-ballooning stability boundary.

When edge peak current density is sufficiently large, the corresponding safety factor q

profile obtains an edge region with zero or reversed magnetic shear, and the low-n

edge instabilities are partially or fully stabilized. These results are consistent with

previous analytic theory on peeling modes which indicates that zero or reversed

magnetic shear can be stabilizing. Nonlinear simulations indicate that the stabilizing

effects of edge current density on the low-n peeling-dominant modes through zero and

reversed shear can persist throughout the nonlinear exponential growth phase. Near

the end of this nonlinear phase, the radial extent of the filament exceeds the pedestal

width, and disconnected blob-like substructures start to develop within the filaments.

Relative pedestal energy loss from these radially extending filaments can reach

20− 30%. Both filament size and pedestal energy loss from the nonlinear low-n

peeling-dominant instabilities can be reduced and regulated by the equilibrium edge

current density distribution.



Outline

1. Introduction
I ELM power loss scaling not understood
I Tokamak edge instability sensitive to current current density

2. TOQ equilibriums with different edge current profiles
3. Linear edge instabilities with different edge current density

profiles
4. What is the range of achievable edge current density?

I Contribution from bootstrap current
5. Does the stabilizing effect persist in nonlinear stage?

I Blob formation
I Pedestal energy loss

6. Summary and Discussion



Empirical scaling of type-I ELM energy loss on
collisionality suggests possible role of edge
bootstrap current in pedestal instability [Loarte et al. 2003]



Edge current profiles in H-mode experiments are
less certain from direct measurement or
equilibrium reconstruction

[Thomas et al. 2004]

I Direct measurement of
edge current density in
experiment difficult and
less accurate.

[Wade et al. 2004]

I Reconstruction of edge
current density profile
involves considerable
uncertainty.



Peeling-ballooning instability boundary from
theory is sensitive to edge current density
location

[Hegna et al. 1996]

I Marginal stability bounary
closer to peeling as plasma
edge approaches 1st
external rational surface.

[Connor et al. 1998]

I Marginal stability
boundary closer to
ballooning as plasma
edge moves away from
1st external rational
surface.



NIMROD calculations show low-n (n < 10) mode
linear growth rate can decrease with edge current
density [Zhu, Hegna, and Sovinec 2011]
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Linear growth rates of low-n modes spatially
converge in NIMROD calculations
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Circular-shaped tokamak equilibrium is used
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I Equilibrium from
TOQ solver

I Finite element mesh
used in NIMROD
simulation.
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A set of equilibria prepared with different edge
localized current profile and same pressure profile
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I Peak location slightly shifts
inward as peak value
increases
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appears as peak
current increases.



Theory suggests zero or reverse shear can be
stabilizing for peeling mode

I Leading order necessary stability condition for peeling
mode [Connor et al. 1998]
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where α = −2Rq2

B2 p′ and shaping effects ignored.
I Shafranov shift ∆′ term from Pfirsch-Schlüter current

contribution.
I Trapped particle fraction ft term from bootstrap current

contribution.
I Zero or reverse shear yields less restrictive criterion,

suggesting stabilizing effects.



Neoclassical theory is used to evaluate the range
of bootstrap current density in pedestal region

I Models on tokamak bootstrap current calculations, e.g.
I Multi-ion species, full matrix numerical [Hirshman and Sigmar 1981]

I Single ion species, analytical [Hirshman 1988; Harris 1991; Kessel 1994]

I Single ion species, CQL fitted [Sauter et al. 1999]

I Full matrix based method has been used here [Zhu et al. 1999].
Similar to and benmarked with NCLASS [Houlberg et al. 1997] but
with approximations

I Collisionless regime
I Model equilibrium B = B0(1 + r cos θ/R)−1

I Large aspect ratio
I For single ion species, basically recover [Hirshman 1988] formula.



For the given equilibrium the calculated bootstrap
currents are consistent with total equilibrium
current
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I Major part of inner
pedestal region is in
banana transport regime
(ν∗ < 1).
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I MHD equilibrium profiles.



For the given equilibrium there is a moderate
range of variation for the peak value of bootstrap
current density
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I Bootstrap current density
maximizes at certain
number density.
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I Increasing trapped
particle fraction is most
effective at increasing
bootstrap current density.



Several other factors can affect edge current
density in pedestal region

I J‖ = σneoE‖ + JNBI + Jrf + JPS + Jbs.
I Finite aspect ratio and full geometry effects.
I Varing collisionality from collisionless to collisional regimes;

can lower bootstrap current at edge [e.g. Houlberg et al. 1997].
I Impurity ion species effects.
I Pedestal width comparable to ion drift orbit size (nonlocal).
I Ion orbit squeezing effects due to Er in pedestal region.
I Strong Er may enhance bootstrap current in banana

regime [e.g. Kagan and Catto 2010].
I Ion orbit loss effects [Shaing 1992].
I Nonaxisymmetric magnetic field effects.
I ......



Exponential growth persists well into nonlinear
stage when higher toroidal harmonics become
same order of magnitude
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5th order 40 × 195 elements and 43 Fourier components.



Blob-like structure starts to develop near the end
of nonlinear exponential growth phase

I Radial extent of nonlinear
structure reaches and
exceeds pedestal scale
length.

I Disconnected segments
of radially extending
structure can be source
of blobs.



Relative pedestal energy loss reaches
experimental level near the end of nonlinear
exponential growth phase
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ped.



Discussion

I Reversed magnetic shear is known to stabilize not only
peeling but also internal ballooning instability. Which
stabilization is dominant?

I What is the self-consistent maximum and minimum
(noninductive) edge current density for a given pressure
pedestal?

I Full saturation phase needed for evaluation of pedestal
energy loss per pedestal crash.

I Nonlinear time advance becomes challenging as blob front
steepens and moves to less resolved domain.

I What additional nonideal and dissipation physics needed?



Summary

I Marginal peeling-ballooning stability boundary is known to
be sensitive to edge current density.

I NIMROD calculations indicate increasing edge current
density can reduce and stabilize linear growth of low-n
edge instability.

I NIMROD simulations show such a stabilization effect can
persist in exponential nonlinear growth phase.

I Neoclassical calculation suggests it’s possible for edge
bootstrap current to provide the necessary edge current
density required for the stabilization.

I Future work
I Mechanism of edge current stabilization effects.
I More accurate evaluation of edge bootstrap current density.
I Full saturation and relaxation phase.


