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Outline 

Ø  Properties of the HiFi code. 

Ø  Hierarchical parallel solvers. 

Ø  Scalable solver performance for ideal MHD waves. 

Ø  Magnetic reconnection: failure of physics-based preconditioning. 

Ø  The Jed Brown Fix. 

Ø  Nodal basis functions and the Legendre-Gauss-Lobatto Grid.	
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The HiFi Code 
Ø  Spatial Discretization 

•  2D or 3D unstructured collection of structured grids. 
•  Cartesian product of 1D high-order spectral elements, modal or nodal. 
•  Logical to physical coordinate mapping. 

Ø  Time Step 
•  Fully implicit Newton-Krylov. 

Ø  Solver 
•  PETSc matrix-free Newton-Krylov iteration applied to full system of preconditioned 

equations. 
•  Physics-Based Preconditioning used to reduce matrix size and condition number. 
•  Static condensation used to algebraically eliminate higher-order coefficients. 
•  Solution of preconditioning equations uses hierarchy of methods accessible through 

PETSc, including additive Schwarz and HYPRE/BoomerAMG. 

Ø  Grid Adaptation 
•  2D harmonic grid generation of mapping from logical to physical coordinates 
•  Adaptation to evolving solution. 
•  Extension to 3D straightforward but not yet implemented. 
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Scalable Parallel Solver for Extended MHD 

Ø  Jacobian-Free Newton-Krylov (JFNK) 
PETSc SNES solver with Physics-Based Preconditioning.  Time-centered solution of full 
nonlinear system of equations. 

Ø  Physics Based Preconditioning (PBP) 
Chacón.  Reduces full hyperbolic linear system to smaller parabolic systems. 
§  Partition 1: Mass matrix M 

mass density, plasma pressure, magnetic fields, currents 
§  Partition 2: Approximate Schur complement matrix S 

fluid momenta 

Ø  Static Condensation (SC) 
Exploits C0 continuity of spectral element representation.  Uses small, local direct solves 
to eliminates cell interior degrees of freedom in terms of cell boundaries. 

Ø  Solution of Reduced, Condensed Linear Systems 
§  Solver: CG for SPD matrices, GMRES for non-SPD. 
§  Preconditioners 

•  Schwarz overlap preconditioned by core-wise SuperLU_DIST. 
Fast and efficient but not scalable, increasing number of Krylov iterations 

•  Algebraic multigrid, Hypre/BoomerAMG. 
Scalable for limited range of test cases; smoother requires nodal basis. 
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Scaling for Algebraic Multigrid Schur Solve, np = 6	
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Magnetic Reconnection, Gem Problem 
Ø  Strong nonuniformity and nonlinearity. 

Ø  Requires improvements in approximate Schur complement. 

Ø Unsuccessful attempts, slower than without Physics Based 
Preconditioning. 

Ø  Rules out use of multigrid. 

Ø  Rethink whole approach to scalable solver. 



2013 CEMM and APS/DPP Meetings, Glasser & Lukin, Slide 6	


The Jed Brown Fix	

Ø Jed Brown, “Efficient Nonlinear Solvers for Nodal High-Order Finite 

Elements in 3D,” J. Sci. Comput. 45, 48-63 (2010). 

Ø For np ≥ 4, matrix formation and partial factorization dominate iterative 
solution because of loss of sparsity.  All physical quantities and basis 
functions couple within a grid cell. 

Ø Cure: form approximate Jacobian using linear finite element 
discretization on the grid of LGL nodal points; use as preconditioner for 
matrix-free solution methods. 

Ø Greatly reduces number of nonzero matrix elements; accelerates matrix 
formation and matrix-vector multiplication; reduces storage.  Replaces 
static condensation. 

Ø Retains benefits of high-order methods while minimizing cost. 

Ø Status: code written, compiled, run; not yet converging properly, 
probably due to bugs in the linear discretization. 
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Nodal Basis Functions and the 	

Legendre-Gauss-Lobatto Grid	


Nodal Basis Functions, np = 8	
 2D LGL Grid, np = 8	


LGL Nodes: (1-xi
2)Pn

’(xi) = 0	

Full: high-np coupling over each macrocell.	


JB: Linear discretization over each microcell.	

Large reduction in the number of nonzero matrix elements.	


Sufficiently accurate to serve as preconditioner.	

No dependence on the form of the equations.	
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