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The Problem

• Compute the low frequency dynamics of hot 
magnetized plasmas in realistic geometry in 
the presence of high frequency oscillations

• Incorporate the effects of lowest order
kinetic corrections to the usual MHD 
equations

• Develop accurate and efficient algorithms
that enable these goals



Modeling Magnetized Plasmas

• Plasma kinetic equation

      

d
dt

fα (x, v, t ) = ∂fα
∂t

+ v ⋅ ∇fα + qα
mα

E + v × B( )⋅ ∇v fα = Cα ,β ( fα , fβ )
β
∑

      

                  ∂B
∂t

= −∇ × E              ∇ ⋅ E = ρq                   

 ρq = qα fαd 3v∫
α
∑     ∇ × B − ∂E

∂t
= µ0J       J = qα fαvd 3v∫

α
∑

• Maxwell’s equations

• Contains all information about plasma dynamics
• Impossible to solve analytically except in special cases
• Impractical for low frequencies, global geometry



Fluid equations defined by taking 
moments of distribution function

• Define moments of distribution function

  
Mn(x, t) = f (x, v, t)vndv

−∞

∞
∫

• Knowledge of N moments allows (in principle) 
reconstruction of f at N points in velocity space

• N moments of plasma kinetic equation
=> N fluid equations satisfied by MN+1
– Each additional moment equation yields more 

information about velocity distribution
• Must truncate moment equation hierarchy

– Approximate solution of kinetic equation



Closure of Moment Equations

• Use low-order truncation and closures
• Need to express high-order moments in terms of 

low-order moments

• Must be obtained from approximate solution of 
kinetic equation
– Analytical
– Numerical

• There is no general agreement on the closure of 
the moment equations for hot, magnetized 
plasmas!

   q = q n,T, ...[ ],       Π = Π( p, V, ....)



Two-fluid Equations (me ~ 0, ne ~ ni)

Lowest order moments for ions and electrons:

      

∂n
∂t

= −∇ ⋅ nVe = −∇ ⋅ nVi

mn dVi
dt

= −∇pi + ne E + Vi × B( )− ∇ ⋅ Πi + R

0 = −∇pe − ne E + Ve × B( )− ∇ ⋅ Πe − R

J = ne Vi − Ve( )

+ Energy equation (+??)

+ Maxwell’s equations (V2/c2<<1)

+ Closure expressions



Two-Fluid Equations Present Challenges 
for Computation

• Extreme separation of time scales

• Extreme separation of spatial scales
– Internal boundary layers, localized and extended along 

magnetic field lines
                    δ /L ~    S-α <<  1  for  S >>  1

• Extreme anisotropy
• E.g., accurate treatment of B.∇, χ||/χ⊥ ~ 1010,    etc.

• “Parasitic” modes
– High frequency modes inherent in the formulation that 

may affect the low frequency dynamics

  
τ A

Alfvén  transit  time
 <    τS

Sound  transit  time
   <<    τevol

MHD  evolution  time
 <<    τR

Resistive  diffusion  time

S = τR/τA



Dealing with Parasitic Modes

• The fundamental problem of computational MHD: 
Compute low frequency dynamics in presence of 
high frequency parasitic modes
– “Reduction” of mathematical model

• Eliminate parasitic modes analytically
– Example: ∇⋅V = 0 eliminates sound waves
– Strong toroidal field allows elimination of fast waves from MHD 

model

– “Primitive” equations and “strongly” implicit methods
• No analytic reduction of equations
• Use algorithms that allow very large time steps (CFL ~ 104-5)

• Will concentrate on the second approach



There are Different Fluid Models

• Within fluid formulation, different terms are 
important in different parameter regimes

• Leads to different fluid models of plasmas
– MHD
– Hall MHD
– Drift MHD
– Transport

• Models distinguished by degree of force balance
• Obtained by “non-dimensionalizing” equations 

and systematically ordering small parameters:  
    δ = ρi / L << 1,    ε = ω / Ωi ,    ξ = V /Vthi



Non-dimensional Equations

      

ε ∂n
∂t

= −ξδ∇⋅ nVi = −ξδ∇⋅ nVe

εξ ∂Vi
∂t

+ξ 2δVi ⋅ ∇Vi = − 1
n

δ ∇pi + Π i0
p0

∇⋅ Π i
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +ξ E+ Vi × B( )  ,

ξE= −ξVe × B− 1
n

δ ∇pe + Π e0
p0

∇⋅ Π e
⎛ 

⎝ 
⎜ 

⎞

⎠

ε ∂B
∂t

= −ξδ∇× E   ,      J =ξ∇× B    ,      J = n Vi − Ve( )

ε = ω
Ω

   ,                 ξ =
V0

Vthi
   ,               δ =

ρi
L

<< 1 

E0 =V0B0    ,       J0 = n0eV0    ,      p0 = mn0Vthi
2

time flow length

Continuity:

Ion momentum:

Electron momentum:

Pre-Maxwell:

Orderings:

Normalizations:



Equation of Motion and Generalized
Ohm’s Law

• Adding and subtracting ion and electron 
equations:

        

ξJ × B −
1
n

δ∇p

"Equilibrium"  forces
       

= n εξ ∂Vi
∂t

+ξ 2δVi ⋅ ∇Vi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

1
n

δ Πi0
p0

∇ ⋅ Πi

Dynamical response
                 

        

ξ E + Vi × B( )
Ideal MHD
       

= ξ 1
n

J × B −δ 1
n

∇pe +
Πe0
p0

∇ ⋅ Πe
⎛ 

⎝ 
⎜ 

⎞

⎠

2- fluid and FLR effects
               

V × B and J × B enter at same order in ξ



Stress Tensor Scaling

  Π = Π|| + Π^ + Π⊥

      Π|| = bb ⋅ Π    Π^ = (I × b) ⋅ Π     Π⊥ = (I − bb) ⋅ Π

Component Scaling Remarks 

    Π|| / p0  
(Braginskii) 

 

 ξδ /(ν / Ω)  

• Diverges for low 
collisionality 
(  ν / Ω ~ δ2) 

 

Π|| / p0  
 (Neo-classical) 

 

 (ξ /δ)(ν / Ω)  
•   O(ξδ)  at low 

collisionality 
• Remains Ņin scaleÓ 

    Π⊥ / p0  
 

 ξδ(ν /Ω)  

• Vanishingly small at 
low collisionality 

• Ignore 

    Π^ / p0 
(Gyro-viscosity) 

 

ξδ  

• Independent of 
collisionality 

• Not dissipative 
• Important FLR 

effects 
 



Different Orderings Yield Different 
Fluid Models

        

ξJ × B −
1
n

δ∇p

" Equilibrium"  forces
       

= n εξ ∂Vi
∂t

+ ξ2δVi ⋅ ∇Vi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

1
n

δ Πi0
p0

∇ ⋅ Πi

Dynamical response
                 

     

ξ E + Vi × B( )
Ideal MHD
       = ξ 1

n
J × B −δ 1

n
∇pe +

Πe0
p0

∇ ⋅ Πe
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2- fluid and FLR effects
               

Model V  Force Balance OhmÕs Law 
 
 

Hall 
MHD 

 
 

    Vth /δ  

 
 

 Ωci 

   

J × B = n dVi
dt

        + 1
n

δ2 ∇p + ∇ ⋅ Πgv( )

                + O(δ3)

 
   

E + Vi × B =

       1
n

J × B

           + O(δ2 )

 

 
 

MHD 

 
 

  Vth 

 
 

 δΩci 

   

J × B = δ n dVi
dt

+ ∇p
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                 + δ2∇ ⋅ Π i
gv

                        + O(δ4 )    .

 

     

E + Vi × B =

      1
n

J × B
O(δ )

   −δ 1
n

∇pe

            = O(δ)

 

 
Drift 
MHD 

 
 

  δVth 

 
 

  δ
2Ωci 

   

−∇p + J × B =

          δ2 n dVi
dt

+ ∇ ⋅ Πi
gv⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                       + O(δ4 )

 
   

E + Vi × B =

         1
n

J × B − ∇pe( )
 

 



The “Standard” Drift Model

• In MHD, V⊥i = E × B/ B2 = VE

• In drift ordering, V⊥i = VE + V* + O(δ2)
• Write drift equations in terms of VE:

        

E = − VE + V*i −
1
n

J⊥
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ × B −

1
n

∇pe + O(δ2 )    ,

  = −VE × B −
1
n

∇|| pe +
1
n

−∇⊥ p + J × B( )
O(δ2)

       + O(δ2 )    ,

  = −VE × B −
1
n

∇|| pe      

δ2 n d
dt

V||i + VE( )+ n dV*i
dt

+ ∇ ⋅ Πi
gv Vi( )

GVC
         

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

                               − ∇p + J × B

                                          + O(δ4 )  

Ohm’s Law Equation of Motion

•Gyro-viscous cancellation gives simplified equations
•Exact form uncertain
•Only applicable to slight deviations from equilibrium
•We ignore for general application

•Valid only for slight deviations from equilibrium



Extended MHD Model

      

Mn dV
dt

= −∇p + J × B − ∇ ⋅ Π||i − ∇ ⋅ Π gvi

E = −V × B +
1
ne

J × B − ∇pe − ∇ ⋅ Π||e( )+ ηJ

∂B
∂t

= −∇ × E    ,      µ0J = ∇ × B

• + Continuity and Energy equations
• + Closure expressions
• Encompasses Hall, MHD, and Drift models
• Terms can be selected by the “user”

– GV cancellation not explicitly implemented



Extended MHD Properties

• Dispersion
– Contains all MHD modes (ω2 ~ k2)
– Introduces dispersive modes (ω2 ~ k4)

• Electrons (whistlers)
• Ions + electrons (kinetic Alfvén wave)
• Ions only (“gyro-viscous” waves)

– If extended MHD just produced more troublesome 
parasitic modes, who cares?  However…..

• Stability
– Drift stabilization at moderate to high k
– Neo-classical de-stabilization of magnetic islands
– ++++?



Dispersion in Extended MHD
Mode Origin Wave Equation Dispersion Comments 
Whistler   J × B  in 

Ohm 

   

∂2B

∂t2
= −

VA
2

Ω

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

b ⋅ ∇( )2 ∇2B   
ω2 = VA

2k2 1+
1
β

ρik||( )2⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  
• finite   k||  

• electron 
response 

KAW 
    ∇|| pe in 
Ohm 

   

∂2B

∂t2
=

VAVth*
Ω

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

b ⋅ ∇( )2

                      ∇× bb ⋅ ∇ × B[ ]
 

 

  
ω2 = VA

2k||
2 1+ ρsk⊥( )2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

• finite   k|| ,  k⊥  

• ion and electron 
response 

Parallel 
ion GV 

  η4 term in 

  ∇ ⋅ ΠGV  
 

   
ρ ∂2V⊥

∂t2
= −η4

2∇||
4V⊥    

ωL± = VAk|| ±1+
1+ β

2 β
ρik||( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

  
ωR± = VAk|| ±1−

1+ β

2 β
ρik||( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

• finite   k||  

• ion response 

Perp. ion 
GV 

  η3  term in 

  ∇ ⋅ ΠGV     
ρ ∂V⊥

∂t
= −η3

2∇⊥
4 V⊥  

  
ω2 = VA

2k⊥
2 1+

γβ
2

+
β
16

ρik⊥( )2⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

 

• finite  k⊥  

• ion response 

Notation:     ρi = Vthi / Ω  is the ion gyro-radius;   Vth* = Te / mi ;   ρs = Vth* / Ω ;   η4 = nTi / 2Ω ;  η3 = 2η4 

ω2 ~ k4 → ∆t ~ ∆x2 Requires implicit methods



Stability: Gravitational Interchange

x

y

k
× B 

g

∇ρ

   

∂ρ
∂t

+ ∇ ⋅ ρV = 0

ρ dV
dt

= −∇ p +
B2

2µ0

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ + ρg − ∇ ⋅ Π

E = −V × B +
M
ρe

ρ dV
dt

+ ∇pi − ρg + ∇ ⋅ Π
⎡ 

⎣ ⎢ 
⎤

⎦⎥

Assume electrostatic:

     

∇ × E = 0   ⇒  

       ∇ ⋅ V +
1
Ω

∇ ×
dV
dt

−
1

Ωρ2
∇ρ × ∇ ⋅ Π

Extended MHD
           

= 0

    

∇ ⋅ Π( )x = − ρ0ν0( )′ikVx + ρ0ν0k2Vy

∇ ⋅ Π( )y = − ρ0ν0( )′ikVy − ρ0ν0k2Vx

Gyro-viscosity:

K. V. Roberts and J. B. Taylor, Phys. Rev. Letters 8, 197 (1962). 



G-mode stabilization
  

Dispersion Relation 
 

Solution 
Stabilizing Wave 

Number 
 

MHD 
  (ξ = 0,  ζ = 0) 

 

  ω
2 + gη = 0 

 

 

 ω = i gη  
 

None 

 
 

2-Fluid 
  (ξ = 0,  ζ = 1) 

 

    
ω2 −

gk
Ω0

ω + gη = 0 

  

2ω =
gk
Ω0

       ± gk
Ω0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− 4gη

 

 

  
k2 >

4ηΩ0
2

g
 

 
Gyro-Viscosity 
  (ξ = 1,  ζ = 0) 

 

 

    ω
2 − ν0ηkω + gη = 0 

   

2ω = ν0ηk

       ± ν0ηk( )2 − 4gη
 

 

  
k2>

4g

ν0
2η

 

 
Full Extended 

MHD 

  (ξ =1,  ζ =1)  

 

    
ω2 −

gk
Ω0

+ ν0ηk
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ω + gη = 0 

  

2ω =
gk
Ω0

+ ν0ηk

       ± gk
Ω0

+ ν0ηk
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− 4gη

 
  

k2 >
4gη

g
Ω0

+ ν0η
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 

 



Form of the Gyro-viscous Stress
(Hooke’s Law for a Magnetized Plasma)

   
Π ^ = Π gv = p

4Ω
b× W( )⋅ I + 3bb( )+ transpose[ ]• Braginskii:

   
W = ∇V + ∇VT − 2

3
I∇⋅ V

• Suggested modifications for consistency (Mikhailovskii and
Tsypin, Hazeltine and Meiss, Simakov and Catto, Ramos) 
involve adding term proportional to the ion heat rate of strain:

      

Π^q =
2

5Ω
b ×Wq ⋅ I + 3bb( )+ transpose[ ]

Wq = ∇qi + ∇qi
T −

2
3

I∇ ⋅ qi

• Implicit numerical treatment difficult
• What is the effect of this term on dispersion and stability?

– Does it introduce new normal modes?
– Does it alter stability properties?



Ion Heat Stress Has Little Effect on 
Important Dynamics

      

Π ^ q = 2
5Ω

b× Wq ⋅ I + 3bb( )+ transpose[ ]

Wq = ∇q i + ∇q i
T − 2

3
I∇⋅q i          q = −κ ||∇||T −κ⊥∇⊥T −κ ^ b× ∇⊥T

   

ρ0
∂V
∂t

= −∇p− ∇⋅ Π ^ q

∂p
∂t

= −γp0∇⋅ V

    
ω2 =Cs

2k2 1+ f (θ ) ρik( )2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥      f (0) = 0     f (π / 2) = 1

• Dispersive effect on compressional waves, but……
• Negligible effect on g-mode stability
• Simplification: ignore these terms (for now!)



Careful Computational Approach is
Required

• Spatial approximation
– Must capture anisotropy and global geometry

• Flux aligned grids
• High order finite elements

• Temporal approximation
– Must compute for long times

• Require implicit methods
• Semi-implicit methods have proven useful



Solenoidal Constraint

• Faraday: ∂B
∂t

= −∇ × E      ⇒      ∂
∂t

∇ ⋅ B = 0

• Depends on ∇ ⋅ ∇× = 0

• Different discrete approximations

– Modified wave system
– Projection
– Diffusion

– Grid properties

∂U
∂t

+ ∇ ⋅ F = R∇ ⋅ B

′ B = B + ∇φ    ∇2φ = −∇ ⋅ B

∂B
∂t

= −∇ × E + κ∇∇ ⋅ B   ,   ∂
∂t

∇ ⋅ B = ∇ ⋅ κ∇∇ ⋅ B

∇ a ⋅ ∇ b× ≡ 0 E.g., staggered grid, “dual mesh”



Galerkin Methods

• Finite differences and finite volumes 
minimize error locally
– Based on Taylor series expansion

• Galerkin methods minimize weighted error
– Based on expansion in basis functions

• Solve “weak form” of problem
∂u(x,t)

∂t
= Lu(x, t)    →    v ∂u

∂t
− Lu⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ dx = 0∫

Minimize error by expansion in basis functions
and determining coefficients



Galerkin Discrete Approximation

Mij
du j
dt

= Liju j

  

Lij = dVβiLα j∫
Response Matrix

     
  
Mij = dVβiα j∫

Mass Matrix
     

• Solution generally requires inverting the mass matrix, even 
for “explicit” methods

• Different basis functions give different methods
– Usually: βi = αi

• αi=exp(ikx) => Fourier spectral methods

• αi=localized polynomial => finite element methods



Finite Elements

• Project onto basis of locally defined polynomials of degree p
• Polynomials of degree p can converge as fast as hp+1

• Integrate by parts:

        

α iα j
dV j
dt

dV = − α i∇⋅ Π(α jV j )∫∫ dV = ∇α i ⋅ Π∫ (α jV j )dV

Evaluate Π only
         

− α jn ⋅ Π(α jV j )dS
S
∫

Boundary  condition
         

– Simplifies implementation of complex closure relations
– Natural implementation of boundary conditions

• Automatically preserves self-adjointness
• Works well with arbitrary grid shapes



Three Examples of Favorable Properties 
of High Order Elements

R

Z

1 1.5 2 2.5

-1

-0.5

0

0.5

1

ln(h)

ln
[|

|d
iv

(b
)|

|/
||

b
||

]

-5 -4 -3 -2-8

-7

-6

-5

-4

-3

-2
bilinear
biquadratic
bicubic

ln(h)

ln
[|

|d
iv

(b
)|

|/
||

b
||

]

-5 -4 -3 -2-8

-7

-6

-5

-4

-3

-2
h1

h2

h3

χ|| / χperp

w
(c

m
)

108 109 1010

1

2

3

4

5
6
7 sim. data & fit

analytic Wc

Grid used for ELM studies
Non-uniform meshes retain 
high-order convergence 
rate

Critical island width for 
temperature flattening
Dealing with extreme 
anisotropy
Agreement on scaling

Magnetic divergence 
constraint
Scalings show expected 
convergence rates



Multiple Time Scales
(Parasitic Waves)

• MHD contains widely separated time scales (eigenvalues)

  

∂u
∂t

= Ωu
Full MHD operator

= Fu
Fast time scales:

Alfvén waves, soundwaves, etc
(parasitic waves)

+ Su
Slow time scales:

Resistive instabilities, island evolution,
(interesting physics)

• “Parasitic” waves are properties of the physics problem but 
are not the dynamics of interest

• Treat only “fast” part of operator implicitly to avoid time 
step restriction

un+1 − un

∆t
= Fun+1 + Sun

• Precise decomposition of Ω for complex nonlinear system 
is often difficult or impractical to achieve algebraicly



Dealing with Parasitic Waves

• Original idea from André Robert (1971)
– Gravity waves in climate modeling

• F and Ω are often known, but an expression for 
S is difficult to achieve
– Ω: full MHD operator
– F: linearized MHD operator

• Use operator splitting: Ω = F + S    ⇒   S = Ω − F

un+1 − un

∆t
= Fun+1 + (Ω − F)un = Ωun + ∆tF un+1 − un

∆t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
 

• Expression for S not needed



Semi-Implicit Method

un+1 − un

∆t
= Fun+1 + (Ω − F)un = Ωun + ∆tF un+1 − un

∆t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
 

• Recognize that the operator F is completely arbitrary!!

  

(I − ∆tG
S. I.

operator

)un+1 = (I − ∆tΩ)un

Explicit
     − ∆tGun

S. I.
operator

   

• G can be chosen for accuracy and ease of inversion
– G should be easier to invert than F (or Ω, e.g., toroidal coupling)
– G should approximate F for “modes of interest”
– Some choices are better than others!

• Has proven to be very useful for resistive and extended MHD
– Used for spheromak, RFP, tokamak, and solar corona modeling



SI Operator for MHD

  

∂B
∂t

= ∇ × V × B −ηJ( )
∂ρ
∂t

= −∇ ⋅ ρV

∂p
∂t

= −∇ ⋅ pV − (γ −1) p∇ ⋅ V

ρ ∂V
∂t

= −ρV ⋅ ∇V − ∇p + J × B + α∆t 2 ∇ × ∇ ×
∂V
∂t

× B0

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ × B0

Alfvén waves
           

+ ∇γP0∇ ⋅
∂V
∂t

Sound waves
     

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

• Ideal MHD operator (Lerbinger and Luciani)
• Anisotropic, self-adjoint
• Avoids implicit toroidal coupling (great simplification)
• Accurate linear results for CFL ~ 104-5 (=> Condition number ~ 1010!!)

kV∆t <1



Semi-Implicit Leap Frog

• Variables staggered at different time levels
• SI operator on velocity

  

∆V =V j −V j−1

∆p = p j+1/2 − p j−1/2t

tj-1

tj+1/2

tj-1/2

tj

∆t

∆t
V

p
    

∆V
∆t

= −∇p j−1/ 2 +α∆tS ∆V
∆t

⎛ 

⎝ 
⎜ 

⎞

⎠

V j = V + ∆V

  

∆p
∆t

= −γP0∇⋅V j

p j+1/2 = p j−1/2 + ∆p



Extended MHD Time Advance

• “Implicit leap-frog” (also used in MHD)
– Maintains numerical stability without 

introducing numerical dissipation
• MHD advance unchanged (semi-implicit 

self-adjoint operators)
• Need to invert non-self-adjoint operators at 

each step for dispersive modes
• Requires high performance parallel linear 

algebra software



Implicit Leap Frog for Extended MHD

        

mi n
j+1/ 2 ∆V

∆t
+

1
2

V j ⋅ ∇∆V +
1
2

∆V ⋅ ∇V j

Implicit advection
           

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

−  ∆tL j+1/ 2 ∆V( )
SI MHD

       
+ ∇ ⋅ Π i ∆V( )

Includes ALL stresses
     

=

                                            J j+1/ 2 × B j+1/ 2 − mi n
j+1/ 2V j ⋅ ∇V j − ∇p j+1/ 2 − ∇ ⋅ Π i V j( )  

      
∆n
∆t

+
1
2

V j+1 ⋅ ∇∆n = −∇ ⋅ V j+1 ⋅ n j+1/ 2( ) 

        

3n
2

∆Tα
∆t

+
1
2

Vα
j+1 ⋅ ∇∆Tα

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

1
2

∇ ⋅ qα ∆Tα( )
Anisotropic thermal conduction

     
=

                − 3n
2

Vα
j+1 ⋅ ∇Tα

j+1/ 2 − nTα
j+1/ 2 ∇ ⋅ Vα

j+1 − ∇ ⋅ qα Tα
j+1/ 2( )+ Qα

j+1/ 2

        

∆B
∆t

+
1
2

V j+1 ⋅ ∇∆B +
1
2

∇ ×
1
ne

J j+1/ 2 × ∆B + ∆J × B j+1/ 2( )
Implicit HALL term

                 
+

1
2

∇ × η∆J

Implicit resistive term
     

=

                                  − ∇ ×
1
ne

J j+1/ 2 × B j+1/ 2 − ∇pe( )− V j+1 × B j+1/ 2 + ηJ j+1/ 2⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

Momentum

Continuity

Energy

Maxwell/Ohm



Nonlinear ELM Evolution

• Anisotropic thermal 
conduction

• ELM interaction with wall

• 70 kJ lost in 60 µsec
• 2-fluid and gyro-viscosity have 

little effect on linear properties



Two-fluid Reconnection
GEM Problem

• 2-D slab
• η = 0.005
• Good agreement with many other calculations
• Computed with same code used for tokamaks, 

spheromaks, RFPs



“Heuristic Closure” Captures 
Essential Neoclassical Physics

   

∇⋅ Πα = ρα µα B2

(Gianakon et.al., Phys. Plasmas 9, 536 (2002)

Vα ⋅ eθ

Bα ⋅ eθ( )2
eθ

Neo-classical theory gives flux 
surface average

Local form for stress tensor forces:

•Valid for both ion and electrons

•Energy conserving and entropy 
producing

•Gives:

•bootstrap current

•neoclassical resistivity

•polarization current enhancement



Beyond Extended MHD: Parallel 
Kinetic closures

• Parallel closures for q|| and Π|| derived using 
Chapman-Enskog-like approach.

•Non-local; requires integration along 
perturbed field lines.

• General closures map continuously from 
collisional to nearly collisionless regime.

• General q|| closure predicts collisional 
response for heat flow inside magnetic island.  
As plasma becomes moderately collisional (T
> 50 eV), general closure predicts correct flux 
limited response.

•Incorporated into global extended MHD 
algorithms.

T
κ ||

100 101 102

104

105

106

107

108

109 general κ||

Braginskii κ||

Thermal diffusivity as function of T showing
T5/2 response of Braginskii and general closure.



Beyond Extended MHD: Kinetic 
Minority Species

• Minority ions species 
affects bulk evolution:
    nh << n0    ,        βh ~ β0

        

Mn dV
dt

= J × B − ∇ ⋅ Π
Bulk Plasma

                 − ∇ ⋅ Πh
Hot Minority Ion Species

   

      δΠh = M (v − Vh )∫ (v − Vh )δf (x, v)d 3v

• δf determined by kinetic 
particle simulation in 
evolving fields

• Demonstrated transition 
from internal kink to 
fishbone

• Benchmark of three codes



Constraints on Modeling

Balance of algorithm performance and problem requirements with available cycles

Algorithms:
• N - # of meshpoints for each 

dimension
• α - # of dimensions

– 1.5 - transport
– 3 (spatial) fluid 
– 5-6 kinetic  (spatial + 

velocity)
• Q - code-algorithm 

requirements (Tflop / 
meshpoint / timestep)

• ∆t - time step (seconds)

Constraints:
• P - peak hardware performance 

(Tflop/sec)
• ε - hardware efficiency

– εP - delivered sustained 
performance

• T - problem time duration 
(seconds)

• C - # of cases / year
– 1 case / week ==> C ~ 50

  

NαQ
∆t

Algorithms
   

= 3 ×107 εP
CT

Constraints



“The Future”

????

Assumptions:
• Performance is delivered
• Implicit algorithm
• Q ind. of ∆t (!!)
Requirements:
• At least 3-D physics required
• Required problem time: 1 msec -

1 sec
Conclusions:
• 3-D (i.e., fluid) calculations for 

times of ~ 10 msec within reach
• Longer times require next 

generation computers (or better 
algorithms) 

• Higher dimensional (kinetic) 
long time calculations unrealistic

• Integrated kinetic effects must 
come through low dimensionality 
fluid closures

  

NαQ
∆t

Algorithms
   

= 3×107 εP
CT

Constraints



Summary

• Fluid models are an approximation to the plasma kinetic 
equation, but are required for modeling low frequency 
response of hot, magnetized plasmas with global geometry
– Direct kinetic calculations are impractical

• Primitive equations and implicit methods have proven 
successful in modeling a variety of plasmas

• Implicit methods are required for handling the dispersive 
terms of MHD.  An understanding of the dispersive 
characteristics of discretized equations needed.

• “Kinetic” effects must be captured through fluid closures
– “Best” form of fluid equations still unknown
– Often problem dependent

• Next step is direct coupling of kinetic/fluid/transport 
models


