
Higher Order Spectral Elements in M3D

Bernhard Hientzsch
Courant Institute of Mathematical Sciences

New York University
mailto:BernHien@gmail.com

http://www.math.nyu.edu/~hientzsc

March 20, 2007

Talk at the
Future Directions for M3D Workshop

Princeton Plasma Physics Lab, Princeton, New Jersey

Working with H.R. Strauss at NYU.

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Why spectral elements, I
• Exponential convergence for many problems – very efficient discretization.

• p-refinement (increasing the degree) is very easy to implement.

• Works on any quadrilateral mesh, even with curved elements.

• Fast application and assembly of stiffness and mass matrix. Fast solvers
for special situations. Direct solvers for symmetric positive (or negative)
definite problems. Much work on preconditioning for standard problems
such as Poisson equation, Helmholtz equation, and Maxwell equation.
(But that work needs to be adapted or applied to the M3D problems.)

• Straightforward discretization and implementation.

• Fast solvers and methods for regular domains/problems can be used for
the development and debugging of methods for mapped and/or curved
domains.

Courant Institute, New York University 1

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Why spectral elements, II

• General, variable order discretization that can be implemented using a
few different types of matrices and modules (don’t need to implement
different elements and modules for different orders and problems)

• Easy derivation and computation of discretizations and matrices (PDE 7→
weak 7→ discretization using standard matrices 7→ optimized formulation).

• Lends itself to a modular implementation.

• A nodal representation is especially adapted to operations in the physical
domain (Poisson bracket as a pointwise operation can be discretized
easily). Can be more easily debugged and understood. Can be
transformed easily into modal representation. Modal representation
might lend itself to easier frequency-space filtering, resolution or
truncation error analysis.

Courant Institute, New York University 2

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Spectral elements in words
• Discrete problem is a subassembled version of element-wise

discretizations, consisting of combinations of derivatives (differentation
matrices), interpolation (interpolation matrices), and integrations (mass
matrices).

• The fundamental matrices (derivative, interpolation, mass, even mapping
to C1 or modal representation) on the reference element are tensor
product matrices or sums thereof – easy to implement, fast to apply
or assemble. Application of tensor product matrices turns into dense
matrix-matrix (respective tensor-matrix) multiplications which run at
close to peak.

• Mappings and curved elements bring in geometry factors inside of
diagonal matrices (or, in the application, pointwise multiplications).
The geometry factors themselves can be computed using the standard
matrices.

Courant Institute, New York University 3

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Mapped spectral elements in symbols,I
• Integration/mass matrices: (u, v) ≈

∑

E vTRT
EM̃EREu

For diagonal mass matrix: (J-Jacobian, Λ(A) diagonal matrix with
diagonal A):

M̃E = Λ(m̃E) = Λ(J)Λ(m2D) = Λ(J)(Λ(mx
1D) ⊗ (Λ(my

1D)

For general mass matrix: M̃E = Λ(
√

J)(Mx ⊗ My)Λ(
√

J).

• Differentiation matrices:

Dx = Λ

(

∂s

∂x

)

(Ds ⊗ I) + Λ

(

∂t

∂x

)

(I ⊗ Dt)

Dy = Λ

(

∂s

∂y

)

(Ds ⊗ I) + Λ

(

∂t

∂y

)

(I ⊗ Dt)

Courant Institute, New York University 4

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Mapped spectral elements in symbols,II
• Geometry factors: If X and Y are the matrices containing the images of

the GLL points from the reference element,

J = ((Ds⊗I)X)~((I⊗Dt)Y)−((Ds⊗I)Y)~((I⊗Dt)X) = [X,Y]s,t

∂s

∂x
= ((I ⊗ Dt)Y)./J

∂s

∂y
= −((I ⊗ Dt)X)./J

∂t

∂x
= −((Ds ⊗ I)Y)./J

∂t

∂y
= ((Ds ⊗ I)X)./J

• Laplacian:

K̃E = (DT
s ⊗ I)Λ(w11)(Ds ⊗ I) + (DT

s ⊗ I)Λ(w12)(I ⊗ Dt) +

(I ⊗ DT
t)Λ(w12)(Ds ⊗ I) + (I ⊗ DT

t)Λ(w22)(I ⊗ Dt)

Courant Institute, New York University 5

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Mapped spectral elements in C (Poisson bracket)
// derivatives on reference element

matmul(GlobCtx->dm,thisa,ax,k+1,k+1,k+1);matmul_nt(thisa,GlobCtx->dm,ay,k+1,k+1,k+1);

matmul(GlobCtx->dm,thisb,bx,k+1,k+1,k+1);matmul_nt(thisb,GlobCtx->dm,by,k+1,k+1,k+1);

for (j=0;j<(k+1)*(k+1);j++) { // geometry factors

axm[j]=thisctx->d1dx[j]*ax[j]+thisctx->d2dx[j]*ay[j];

bxm[j]=thisctx->d1dx[j]*bx[j]+thisctx->d2dx[j]*by[j];

aym[j]=thisctx->d1dy[j]*ax[j]+thisctx->d2dy[j]*ay[j];

bym[j]=thisctx->d1dy[j]*bx[j]+thisctx->d2dy[j]*by[j];}

// interpolate to GLL grid

matmul(GlobCtx->ip,axm,temp,kg+1,k+1,k+1);matmul_nt(temp,GlobCtx->ip,axi,kg+1,k+1,kg+1);

matmul(GlobCtx->ip,aym,temp,kg+1,k+1,k+1);matmul_nt(temp,GlobCtx->ip,ayi,kg+1,k+1,kg+1);

matmul(GlobCtx->ip,bxm,temp,kg+1,k+1,k+1);matmul_nt(temp,GlobCtx->ip,bxi,kg+1,k+1,kg+1);

matmul(GlobCtx->ip,bym,temp,kg+1,k+1,k+1);matmul_nt(temp,GlobCtx->ip,byi,kg+1,k+1,kg+1);

// compute point-wise poisson bracket

for (j=0;j<(kg+1)*(kg+1);j++) pbgll[j]=thisctx->jacg[j]*(axi[j]*byi[j]-ayi[j]*bxi[j]);

// mass and transpose of interpolation

left_scale_mat(pbgll,pbgll,GlobCtx->mg,kg+1,kg+1);

right_scale_mat(pbgll,pbgll,GlobCtx->mg,kg+1,kg+1);

matmul(pbgll,GlobCtx->ip,temp,kg+1,kg+1,k+1);

matmul_tn(GlobCtx->ip,temp,thisp,k+1,kg+1,k+1);

Courant Institute, New York University 6

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Available framework/implemented modules
• Subassemble the global matrix

• Apply the global matrix in a matrix-vector product

• Static condensation (i.e., subassemble the global Schur complement
system)

• Global sparse solve [block-sparse methods could be useful] for the
Schur complement system and the needed local solves for the static
condensation.

• Computing element matrices for Laplacian, Helmholtz, including
weighting etc.

• Computing geometry factors for straightline/curved elements.

• Standard spectral element matrices and algorithms.

Courant Institute, New York University 7

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Integration of a spectral element module into M3D
• Proof of concept, algorithmic development in MATLAB. First serial

production version in C.

• Refactoring modules and routines and providing two interfaces: opaque
pointers for original data structures (SWIG and C) and flat vectors (for
FORTRAN interface).

• Reimplement C version, and implement PYTHON and FORTRAN
versions using these modules and interfaces (easy scripting).

• Define interface to M3D for discretization modules.

• Implement this interface for spectral element discretizations based on the
previous C version.

• Integrate, test, and use this module with serial, OpenMP, PETSc and/or
other distributed memory version of M3D.

Courant Institute, New York University 8

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Plans

• Completely implement curved elements.

• Implement iterative methods and preconditioners (iterative substructuring
methods and overlapping methods).

• Parallelization for distributed memory machines.

Courant Institute, New York University 9

Bernhard Hientzsch Higher Order Spectral Elements in M3D

M3D interface

• M3D implements the assembly of the right hand side and the elliptic
solves in terms of a number of functions/routines defined originally in
mpp3.F.

• The M3DSEL module provides an implementation of that interface in
terms of solvers for specific symmetric statically condensed systems (in
a new file mpp4bh.F) and spectral element operators.

• The functions in mpp4bh.F are implemented in terms of the
functions of the original C version (plus some necessary extensions)
in mpp4interface.c.

• To initialize the discretization and mesh structures and some structures
that will be needed in the solvers, we implement a call back function
getselmesh in getmesh.c which initializes the needed structures,
computes the GLL mesh, and sets up the environment for the C module.

Courant Institute, New York University 10

Bernhard Hientzsch Higher Order Spectral Elements in M3D

The mpp3/mpp4bh interface

poiss Solves ∆u = f
delsq Computes ∆u
gcro Computes [u, v]

gradsq Computes ∇u · ∇v
agrad Computes ∇u · ~v

dxdr , dxdz, wgrad Compute derivatives

lowpois Solves 1
R(∇ · (R∇))u = f

lowpoisa Solves R(∇ · (1
R∇))u = f

poisvmu Solves (∆ − 1/(dt ∗ ss(.)))u = f
poisdmd Solves (∇ · (ss(.)∇) − 1/(dt ∗ hmt))u = f

poisvmu3 Solves (∆ − 1/(dt ∗ ss(.))u = f

lopoismu Solves (∇ · (1
R∇) − 1/(dtt ∗ R ∗ ss(.)))u = f

load3 Computes load vector
pvol Computes volume integral

intgrsq Computes square integral
fft Some FFT functions

Courant Institute, New York University 11

Bernhard Hientzsch Higher Order Spectral Elements in M3D

The mpp4interface.c implementation

• Differential and integral operators are straightforward to implement once
some basic structures have been initialized and some fields have been
computed.

• The elliptic solvers are all symmetric and positive definite (or negative
definite).

• Assembling local matrices straightforward. Schur complement matrix
can be assembled in general function with a function argument (that
function computes parametrized local matrix).

• Solvers can be initialized and solve can be implemented as general Schur
complement solvers for symmetric systems, using sparse direct solvers for
global block-sparse system, dense direct solvers for local systems, and
fast BLAS. Use abstract interface for these linear algebra algorithms.
Has been implemented with several different packages.

Courant Institute, New York University 12

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Status of the M3D integration: serial, OpenMP

• Serial M3D runs for several test problems. Could be more stable and
cleaner, but it works with M3D if done/used right.

• OpenMP version runs for the same test problems. No thread issues
anymore. In the moment, we are trying to apply it to more and
more problems to find hidden bugs/problems/issues. The interface is
completely implemented, but not completely tested.

• The module has reached some stable state, except necessary fixes every
now and then. Started to work on documentation and examples to verify
the implementation.

Courant Institute, New York University 13

Bernhard Hientzsch Higher Order Spectral Elements in M3D

... onto distributed memory, massively parallel
• In the moment, I am considering several possible distributed memory

parallelizations of the module and M3D.

• The approach with the least amount of rewriting necessary for the module
would be to implement a parallelization of that Schur complement
approach, maybe two-level or multi-level, and see if this allows massively
parallel implementations. In this case, one only needs to communicate
the data on the interfaces, which can be implemented in a straightforward
way.

• The approach more similar to PETSc-M3D and possibly optimal with
respect to complexity would be to use iterative solvers and optimal domain
decomposition/multigrid preconditioners. Alas, Schur complement
methods for spectral elements require good coarse spaces but (relatively
little) communication since only on the interface; overlapping methods
are somewhat easier but require more communication.

Courant Institute, New York University 14

Bernhard Hientzsch Higher Order Spectral Elements in M3D

More details: description of the skeleton mesh

• Elements are described as 4 x nt array of indices of their vertices. [elempt
in C code, itnode in FORTRAN]

• The coordinates of the points are given in arrays indexed by the point
index. [pos_x,pos_y in C]

• My code: boundary edges are described as 2 x nb array of the indices of
their vertices [bdedge in C]. M3D: points are considered boundary points
if their index is higher than a threshold, ldb. Any edge between two
boundary points is a boundary edge. (Does not work for thin domains.)
My code transforms one into the other.

Courant Institute, New York University 15

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Generating the GLL mesh points and meshes

[setupelem.c]

• Starting from the indices and the coordinates of the corners, my code
computes the coordinates of all GLL points.

• It also determines the correct indices for points on the element interfaces,
on the boundary, and in the interior of elements.

• This is needed to be able to store the data in a flat vector, to work on
distributed datastructures, and also to implement static condensation.

• Might also be needed for other geometric operations and implementations
of certain other algorithms.

Courant Institute, New York University 16

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Representations of the variables

• Flat FORTRAN vectors as used in M3D.

• Distributed variables [distvar.c]: variable is described by the collection
of its values on all elements. This allows the fast implementation
of many spectral element operations (see for instance earlier slide for
Poisson bracket implementation). (Also, later on, for the implementation
of iterative methods with overlapping preconditioners.)

• Vectors of interface values or interface and boundary values as needed
in the solution of the Schur complement system for different kinds of
boundary conditions. (Also, later on, for implementation of iterative
substructuring methods.)

• My code provides mappings between these [flatvar.c and elsewhere]

Courant Institute, New York University 17

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Global operations based on element-wise operations

[assemble.c,mapdifop.c,...]

• assemble.c implements different kinds of subassembly for elementwise
results to give global results, corresponding to different treatments on
the boundary (this is essentially just summing up the correct values and
treating the boundary correctly).

• This is used to implement differential operators in mapdifop.c

(Laplace+0 B.C.: ApplyLapSub; Strong Laplace averaged:
ApplyLapSubStrongBdry; mappoisbrgll: ([a,b],v), also for x- and

y-derivatives; mapgradsq: (∇a ·∇b, v), mapagrad: (∇a ·~b, v); mapdxdr:
(ax, v); mapdxdz: (ay, v)) and

• also to implement integral operators in mapdifop.c (maploadvec:
< bc, v >∂Ω; mapintgrsq: (∇a,∇b); and mappvol:

∫

a dΩ.

Courant Institute, New York University 18

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Direct solvers for symmetric positive definite problems

[symschursolve.c]

• The function prepsymschur takes a pointer to a function and an opaque parameter

vector (used to generate element-wise matrix for those parameter values), and

subassembles the global Schur complement matrix for essential (Dirichlet) and natural

(Neumann) boundary conditions, possibly non-singularized, and also the matrix for the

right hand side for nonhomogeneous Dirichlet boundary conditions.

• To do that, it needs implementations of dense symmetric factorizations and solves (for

the interior of the elements) and sparsification and factoring for sparse symmetric solve

for the global Schur complement.

• Using these pre-computed factorizations and implemented solves, the different stages

of the Schur complement solver are implemented for symmetric positive and negative

definite problems with different boundary conditions, which are: computing the right

hand side of the Schur complement system, solve the Schur complement system, and

solving the local systems in the interior of the elements.

Courant Institute, New York University 19

Bernhard Hientzsch Higher Order Spectral Elements in M3D

The abstract interface for the element-wise and global

solvers
• For the global sparse problem, spsymsolve.h defines an abstract

interface consisting of init_sparse, exit_sparse, sparsify,
sparse_sym_factor, sparse_sym_solve, freeSpMatrix, and
freeSpMatSlv.

• For the local dense problems, densymsolve.h defines an abstract
interface consisting of dense_sym_factor, dense_sym_solve, and
dense_sym_solve_mult.

• There are a few implementations, mainly trying to use different program
packages. In the moment, I am using an LAPACK implementation
for the dense symmetric solves (see densymslv_lapack1.c) and
an LDL implementation for the global sparse symmetric solves (see
spsymslv_ldl.c).

Courant Institute, New York University 20

Bernhard Hientzsch Higher Order Spectral Elements in M3D

The actual problems assembled and implemented

[hhschurprep.c]

prepsymschur is called from hhschurprep.c to assemble the correct
matrices and to set up the solvers for the following problems:

• α(∇u,∇v) + β(u, v) = (f, v)

• α(∇u,∇v) + (β(·)u, v) = (f, v)

• α(γ(·)∇u,∇v) + β(u, v) = (f, v)

• α(γ(·)∇u,∇v) + β(δ(·)u, v) = (f, v)

It is easy to extend this list to others, the listed ones can all be computed
easily from the fundamental matrices already computed.

Courant Institute, New York University 21

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Supporting cast, I

• Interfaces to libraries: cblasdegemm.c and cblasdgemv.c: very
rudimentary implementation of CBLAS in terms of BLAS.
blasmacros.h: useful macros to express matrix-matrix multiplication
shorter, which then expands to the correct BLAS calls.

• Interface to my tools: dvarbinary.c and readelem.c: write and read
descriptions of the triangulation and also variables in a binary format (for
debugging and my visualization).

• Standard matrices: discelem.c: compute the discretization matrices
(mass, differentiation, interpolation, Jacobian, geometry factors,
Laplacian, grid points) and the lengths of the boundary edges. semmat.c:
compute standard spectral element matrices for the reference interval or
reference element. gllgrid.c: compute the one-dimensional GLL grid.
legpoly.c: values of Legendre polynomials and their derivatives.

Courant Institute, New York University 22

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Supporting cast, II

• Fast operations: scalemat.c: utility functions to scale matrices (faster
implementations in newer BLAS??). tensormult.c: tensor-product-
matrix operations.

• Others: chkptr.c: tracking down zero pointers. prepimass.c:
compute inverse diagonal mass matrix. rdistvar.c: various distributed
variables and operations involving expression in R.

Courant Institute, New York University 23

Bernhard Hientzsch Higher Order Spectral Elements in M3D

General control flow of the module

• getselmesh_ is called during initialization. In it, the GLL mesh points,
their indices, and whatever data structures and global variables are
computed respective allocated.

• M3D is implemented in terms of calls to functions formerly defined in
mpp3.h, but now implemented in mpp4bh.F.

• mpp4bh.F implements this FORTRAN interface, mostly by calling the
appropriate C functions implemented in mpp4interface.c.

• The functions in mpp4interface.c first map the flat vector to
distributed variables, and then call functions implemented in various
files in my code, map the results back to flat vectors, and multiply by
the inverse of the mass matrix, if appropriate.

Courant Institute, New York University 24

Bernhard Hientzsch Higher Order Spectral Elements in M3D

Control flow example

• poiss in mpp4bh.F calls slvpoiss0bh_ in each poloidal plane.

• slvpoiss0bh_ is implemented in mpp4interface.c. In its first
call, it assembles the appropriate matrices and factors them
with prepMapHHSchur from hhschurprep.c, which in turn call
prepSymSchur from symschursolve.c, which in the current version
calls LAPACK and LDL to do the actual factorizations and solves.

• In all calls, these factorizations are used to solve the Poisson problem
with different types of boundary conditions (solveSymSchurNeg,
solveSymSchurNHNeg, solveSymSchurNeuNeg) in symschursolve.c,
which again uses the abstract solver interface to finally have LAPACK,
LDL, and BLAS do the main computational work.

Courant Institute, New York University 25

Bernhard Hientzsch Higher Order Spectral Elements in M3D

The end

• This was a short overview of the implementation. More on request. Also,
I would be happy to explain more about the algebraic or mathematical
details.

• For examples of results of my modules, see previous talks at the CEMM
meetings.

• For first examples of M3D running with my module, see my talk at
Philadelphia CEMM meeting.

• For more examples of M3D running with my module, see Hank Strauss’s
presentation.

• Thanks for your attention.

Courant Institute, New York University 26

