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• 3D MHD equations are a mixed system:  hyperbolic + parabolic
• This leads to multiple timescales

• The hyperbolic terms are associated with ideal MHD wave propagation 
and global instabilities.   

• These are the shortest timescales:  typically micro-seconds

• The parabolic terms are associated with diffusion and transport of the 
magnetic field, current, pressures, and densities

• These are the longest timescales:  typically 100s of milliseconds

• To calculate both phenomena in a single simulation requires a highly 
implicit formulation so that the time step is determined by accuracy 
requirements only

• not by numerical stability requirements such as Courant condition

• The implicit solution procedure is complicated by the fact that the 
multiple timescales present in the physics lead to a very ill-conditioned
matrix equation that needs to be solved each time step.

• Here we describe the techniques we use to deal with this in M3D-C1

Summary and Overview:
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2-Fluid 3D MHD Equations:
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The objective of the M3D-C1 project is to solve these equations as 
accurately as possible in 3D toroidal geometry with realistic  B.C. 
and optimized for a low-β torus with a strong toroidal field.

Contain ideal MHD, reconnection, and transport timescales
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Three types of wave solutions in ideal MHD
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• only propagates 
parallel to B
• only compresses fluid 
in parallel direction
• does not perturb 
magnetic field

• only propagates 
parallel to B
• incompressible
• only bends the 
field, does not 
compress it

• can propagate 
perpendicular to B
• only compresses fluid 
in ⊥ direction
• compresses the 
magnetic field
• This is the wave that 
makes equations stiff!
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Wave speed diagram for ideal MHD.  
Intersection points show wave velocity for 
given propagation direction.

fast wave:  VF

Alfvén wave: VA

slow wave: VS

The three ideal MHD waves have widely 
separate velocities for propagation with  0k Bi ∼

F A SV V V

For tokamak geometry and 
parameters, the three wave 
velocities satisfy the inequalities:

This leads to  multiple time-
scales, even within ideal MHD
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The advantage of an implicit solution is that the time step can be 
very large and still be numerically stable  (no Courant condition) 

If we discretize in space (finite difference, finite element, or 
spectral) and linearize the equations about the present time level, 
the implicit equations take the form:

How best to solve this?
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Implicit solution requires evaluating the spatial 
derivatives at the new time level.

Very large,  ~ (107 x 107)               
non-diagonally dominant,              
non-symmetric, ill-conditioned sparse 
matrix  (contains all MHD waves)
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Original matrix 
multiplying

Vn+1, Bn+1, pn+1

• non-symmetric,
• non-diagonally 
dominant &  
• large range of 
eigenvalues

(1) Split implicit 
formulation

Smaller matrix 
multiplying Vn+1 only, 
• nearly symmetric 
• closer to diagonal
• still with large 
range of eigenvalues

(2) Apply 
annihilation 
operators

Matrix  now 
consists of 3 
dominant diagonal 
blocks, each with 
narrower range of 
eigenvalues.

(3) Apply block-Jacobi 
preconditioner by using 
SuperLU_dist on each 
poloidal plane independently

Now, range of 
eigenvalues in 
each block is 
greatly reduced. 

G
M

R
E

S

3 step physics-based preconditioner greatly improves 
iterative solve

Preconditioned 
system converges 
in 10’s of iterations 
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(1) Split implicit formulation eliminates Bn+1 and pn+1 in favor of Vn+1
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As an example, consider the 
simple 1D wave equation for 
velocity V and pressure p

Implicit FD time advance 
evaluates spatial derivatives 
at the new time level
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evaluates spatial derivatives 
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Now, algebraically eliminate new time pressure in favor of velocity

These equations will give exactly the same answers, but can be solved sequentially!

Symmetric & 
diagonally 
dominant!
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Substitution takes us from having to invert a 2N x 2N anti-symmetric system 
that has large off-diagonal elements to sequentially inverting a    N x N 
symmetric system that is diagonally dominant + the identity matrix.

Mathematically equivalent same answers! (but much better conditioned)

Schematic of difference in matrices to be inverted 
after applying split implicit formulation

1c tS
x
δ
δ

=

Coupled system 
multiplying Vn+1 & pn+1

Un-coupled system multiplying 
Vn+1 & pn+1 separately
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Original matrix 
multiplying

Vn+1, Bn+1, pn+1

• non-symmetric,
• non-diagonally 
dominant &  
• large range of 
eigenvalues

(1) Split implicit 
formulation

Smaller matrix 
multiplying Vn+1 only, 
• nearly symmetric 
• closer to diagonal
• still with large 
range of eigenvalues

(2) Apply 
annihilation 
operators

Matrix  now 
consists of 3 
dominant diagonal 
blocks, each with 
narrower range of 
eigenvalues.

(3) Apply block-Jacobi 
preconditioner by using 
SuperLU_dist on each 
poloidal plane independently

Now, range of 
eigenvalues in 
each block is 
greatly reduced. 

G
M

R
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S

3 step physics-based preconditioner greatly improves 
iterative solve

Preconditioned 
system converges 
in 10’s of iterations 
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(2) Apply annihilation operators to separate 
eigenvalues into diagonal blocks

2 2
2

1R
R

UR ωφ φ χ⊥= ∇ ×∇ + ∇ + ∇V
φ

Z

R

Associated mainly with 
the shear Alfven wave: 
does not compress the 
toroidal field

Associated mainly with 
the slow wave:  also 
does not compress the 
toroidal field

Associated mainly with 
the fast wave: does
compress the toroidal 
field

To obtain scalar equations, we apply annihilation projections to isolate the 
physics associated with the different wave types in different blocks in the matrix
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Alfven wave:

slow wave:

fast wave:

Velocity vector written in terms of 3 scalar fields:

Code can be run with 1,2 (reduced MHD) 
or 3 (full MHD) velocity variables

ˆ ˆR Z
R Z⊥

∂ ∂
∇ ≡ +

∂ ∂
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Original matrix: 
λMAX/λMIN= 1013

M3D-C1 can be run with 1, 2, or 3 velocity variables.   Tracking the 
eigenvalues shows how they separate into 3 groups

U ω+ U ω χ+ +

E
ig

en
va

lu
e

U
Number of velocity variables

Annihilation 
operators split this 
into 3 loosely 
connected matrices, 
each with a condition 
number much less 
than original matrix
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M3D-C1 uses a triangular wedge high order finite element

(3) Apply block-Jacobi preconditioner by using 
SuperLU_dist on each poloidal plane independently   

Block Jacobi Preconditioner: reduces condition number by

Top view:  16-32 
toroidal prisms

Slice view: 
~ 104 nodes/plane

• Continuous 1st derivatives in all directions … C1 continuity
• Unstructured triangles in (R,Z) plane
• Structured in ϕ

2

,

~ 4000
R Z

x
x

ϕ⎛ ⎞Δ
⎜ ⎟⎜ ⎟Δ⎝ ⎠

Triangular wedge 
integration volume

Because of the small zone size within the plane, and hence 
strong coupling, we precondition the matrix by directly inverting 
the components within each poloidal plane simultaneously.
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(3) Apply block-Jacobi preconditioner by using 
SuperLU_dist on each poloidal plane independently   (cont)

• All the nodes on each poloidal plane are coupled only to their nearest 
neighbors.  This leads to block triangular structure

1
1 1 1
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N NN N N

V yB C A
.

V y
V yA B C
V y

.

.
V yC A B

i i i
i i i

i
i i i

i i i
i i i

Block Jacobi preconditioner corresponds to 
multiplying each row by inverse of diagonal block                  

PETSc now has the capability of doing this using 
SuperLU_Dist concurrently on each plane

-1
jB

, ,j j jA B C

are 2D sparse 
matrices at plane j 

jV denotes all the 
velocity variables 
on plane j
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Resistivity:
Thermal Conductivity:

Viscosity: uniform (~η)

Current controller provides loop 
voltage to maintain plasma current 
at initial value.

Loop voltage provides thermal 
energy through Ohmic heating

Current density periodically peaks, 
becomes unstable, reconnects, 
and broadens…periodic cycle

Transport Timescale simulations in 
which stability is important:       
with Δt = 40 τA

3/2 1/2

610

n pκ

κ κ

−
⊥

⊥

=

=

3/2 3/2n pη −=



Typical result:   1st sawtooth event depends on initial conditions.    
After many events, system reaches steady-state or periodic behavior

Repeating 
sawtooth cycle

Precursor phase Crash phase
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10040 7055 85

Poincare plots during a single sawtooth cycle
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Weak Scaling Study
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40 60

16 24 32 64 Number of 
toroidal planes 
varied from 8 
to 64

Parallel Scaling Studies have been performed from 96  to 12288 p 

Triangle linear 
dimension 
varied by 
factor of 4



Summary
• 3D MHD in a highly magnetized high temperature plasma

– Multiple timescales (ideal, reconnection, transport) demand implicit time 
advance

– Implicit matrix contains large range of eigenvalues associated with the 3 
different MHD wave types

• 3-step physics based preconditioner employed
– Split implicit method reduces matrix size by 2 and makes matrix near 

symmetric and diagonally dominant
– Annihilation operators approximately split matrix into 3 diagonal blocks, 

each with a greatly reduced condition number
– Block Jacobi preconditioner dramatically reduces the condition number of 

each of the diagonal blocks
– Final preconditioned matrix given to GMRES converges in 10s of 

iterations for fine zoned problem

• Recent Results
– Repeating sawtooth demonstrate multiple timescale calculations
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