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motivation 
• What causes a plasma to disrupt? 

 
• Linear stability to all global modes for all time will 

ensure disruption-free operation. 
 

• However, the converse is not true.    
– Linear instability does not necessarily imply a disruption. 

 
• Can we use a non-linear MHD code to identify 

nonlinear events that lead to a disruption (or not)? 
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Outline 
• Summary of features of NONLINEAR M3D-C1 code 

 
• Review of application to sawtooth and stationary 

states with q0 ≅ 1 
 

• Nonlinear simulations of exceeding the linear stability 
limit (β-limit) in NSTX shot 124379 at late times 
 

• Summary and future directions 
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M3D-C1 code 
• High accuracy 

– High order finite elements in 3D with C1 continuity 
– Optimal decomposition of vector fields into scalars 
– Full 2F MHD equations without common approximations 
– Accuracy of linear flux-coordinate (FC) codes without using FC 

 
• Long-time simulations  (large time steps) 

– Requires fully implicit algorithm 
– Unique preconditioning techniques 

 
• Geometrical flexibility 

– Unstructured mesh allows variable mesh size (mesh packing) 
– Does not use flux coordinates  Plasma region with seperatrix 
– Arbitrary shaped vacuum vessel and conductors 4 
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2-Fluid 3D MHD Equations: 
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The objective of the M3D-C1 project is to solve these equations 
as accurately as possible in 3D toroidal geometry with realistic  
B.C. and for times long compared to τA   Solution algorithm is 
optimized for a low-β torus with a strong toroidal field. 
 
Contain ideal MHD, reconnection, and transport timescales 

I R Tτ τ τ 



Form of the vector fields motivated by reduced MHD 
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Velocity Field: 

Magnetic vector potential: 

0 is built in∇ =B

This form separates the 
different MHD 
characteristics for greatly 
improved accuracy. 

Only 2 scalar variables for the 
magnetic field and current 



Linearity and dimensionality: 
•  2D nonlinear (Nate Ferraro’s thesis) 

•  need sources and controllers for current, density, energy 
•  3D linear  (single toroidal harmonic, complex arithmetic) 
•  3D nonlinear  

• with equilibrium subtracted out (assumes initial equilibrium is 
stationary in all equations on all timescales)  
• Or, without subtracting equilibrium (using controllers) 

Full MHD or reduced MHD 
•  NUMVAR=1 
•  NUMVAR=2 
•  NUMVAR=3   full MHD 

 Ideal MHD, Resistive MHD,  or 2F MHD 

 Separate pe and pi and density (n) advance are optional 

M3D-C1 code can be run in several very different modes 
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Meshing and elements: 
2D and 3D use unstructured high order 
triangular elements in the poloidal plane 
 
This can be adapted using the equilibrium 
flux surfaces to give higher resolution 
near rational surfaces and edge 

3D linear assumes toroidal dependence exp(inϕ) for single n-mode 
3D non-linear uses high order triangular wedge finite elements.  
For every scalar quantity, each element has polynomial in (R,ϕ,Z) 
with 72 terms constructed so that variable and first-derivatives 
are continuous across elements. 
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Initial equilibrium is 
normally imported from 
geqdsk file and resolved 
using high-order M3D-C1 
elements. 
 
X-point is located, and 
seperatrix separates 
plasma from low 
temperature “vacuum”. 
 
Grid can then be packed 
near edge or rational 
surfaces, and equilibrium 
is resolved with new grid. 

Initial Equilibrium: 

Jϕ Jϕ (showing grid) 
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The advantage of an implicit solution is that the time step can be 
very large and still be numerically stable  (no Courant condition)  
 
If we discretize in space (finite difference, finite element, or 
spectral) and linearize the equations about the present time level, 
the implicit equations take the form: 
 
 
 
 
 
 
 
 
 
How best to solve this? 
 
Preconditioned iterative method 
                     (Krylov subspace) 
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Implicit solution requires evaluating the 
spatial derivatives at the new time level. 

Very large,  ~ (107 x 107)               
non-diagonally dominant,              
non-symmetric, ill-conditioned sparse 
matrix  (contains all MHD waves) 
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Original matrix 
multiplying 
    Vn+1, Bn+1, pn+1   
• non-symmetric, 
• non-diagonally 
dominant &   
• large range of 
eigenvalues 

(1) Split implicit 
formulation 

Smaller matrix 
multiplying Vn+1 only,  
• nearly symmetric  
• closer to diagonal 
• still with large 
range of eigenvalues 

(2) Apply 
annihilation 
operators 

Matrix  now 
consists of 3 
dominant diagonal 
blocks, each with 
narrower range of 
eigenvalues. 

(3) Apply block-Jacobi 
preconditioner by using 
SuperLU_dist on each 
poloidal plane independently 

Now, range of 
eigenvalues in 
each block is 
greatly reduced.  

G
M
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S
 

3 step physics-based preconditioner greatly 
improves iterative solve 

Preconditioned 
system converges 
in 10’s of iterations  
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Original matrix: 
λMAX/λMIN= 1013 
 

M3D-C1 can be run with 1, 2, or 3 velocity variables.   Tracking the 
eigenvalues shows how they separate into 3 groups in a cylinder 
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Number of velocity variables 

Annihilation 
operators split this 
into 3 loosely 
connected matrices, 
each with a condition 
number much less 
than original matrix 
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Weak Scaling Study
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Parallel Scaling Studies have been performed from 96  to 12288 p  
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Time increased by 
1.7 as # of zones 
increased by 130 



Extensive benchmarking for ideal,  
resistive, and two fluid modes 

Ideal MHD Resistive MHD 
2-Fluid 
Reconnection 



Typical result:   1st sawtooth event depends on initial conditions.    
After many events, system reaches steady-state or periodic behavior 

Repeating 
sawtooth cycle 
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Poincare plots 
during a single 
sawtooth cycle 
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2 2
2

1R U R
R

ωφ φ χ⊥= ∇ ×∇ + ∇ + ∇V

The poloidal velocity decomposition used in M3D-C1 is very 
effective in capturing most of the poloidal flow in U. 
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Sawtooth Studies-3: 

CMOD 

For other transport parameters (η,κ,µ),  after an initial transient, 
system reaches stationary-state with flow with q0 ≅ 1 

Poincare plot 
at final time Note large region 

with q = 1 + ε 
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Sawtooth Studies-4: 

ϕ = 0o ϕ = 90o ϕ = 180o ϕ = 270o 

Electron 
Temperature 

Poloidal velocity 
stream function 
U 

Toroidal angular 
velocity ω 

2 UR φ= ∇ ×∇V

2R φω= ∇V

Stationary state 
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Sawtooth Studies-4: 

ϕ = 0o ϕ = 90o ϕ = 180o ϕ = 270o 

Electron 
Temperature 

Poloidal velocity 
stream function 
U 

Toroidal angular 
velocity ω 

2 UR φ= ∇ ×∇V

2R φω= ∇V

Stationary state 
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Sawtooth Studies-5: 
Comparison of midplane profiles at different toroidal locations with 
profiles from an identical 2D run at the same time (same transport 
coefficients) 

In 3D, the velocity generated from the instability at q = 1 acts to distort 
and flatten the Te profile and J profile, which keeps q pegged at  (1. + ε) 



NSTX pressure driven modes with q0 ≥  1 
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Toroidal current pressure 
Series of geqdsk equilibrium for shot 
124379 generated by S. Gerhardt for 
2011 Breslau, et al NF paper.  

extrapolated 

0.8
7 %

1

P

T

PI MA

β
β +






Midplane 
values    



26 

This scaled equilibrium was above the beta limit and unstable 
to many linear (interchange) modes with n>1. 
 
The nonlinear code is converging from below to the linear 
result, which is essential for numerical stability in these cases. 

NSTX shot 124379 time 0.630 
TF scaled by 0.9 so q0=1.17 

M3D-C1 growth rate vs number of toroidal elements 

Convergence Studies for linear 
regime of nonlinear code  

LINEAR result uses 
same code, but 
assumes ϕ 
dependence 
exp(inϕ), everything 
is complex,  non-
linear terms are not 
included  



Possible mechanism for soft beta limit 

Shot 124379 
Time .640 
q0 = 1.28 
No toroidal rotation 
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extrapolated 

Initially, only 
n=3 is 
unstable 

All modes 
saturate  
with K.E. 
decreasing 
with time β decreases slightly in time, 

but no more than in an 2D run 
with same transport model 
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500 1400 6000 400 Soft beta limit 
q0 = 1.28 

Poincare plots  

∆Te   

Surfaces deform, 
become stochastic, 
& completely heal. 

First pure n=3, then 
nonlinear, finally 
axisymmetric 
annulus 
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•  Comparison of 3D run at t=6000 with 2D run with identical 
transport coeffs. shows thermal energy has been redistributed. 
 

•  Central Te differs by 10%,  beta differs by only 0.6 % 

 soft beta limit -- continued 
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 dependence on heating source 

•  Previous run had beta decreasing in time, even in 2D case, because 
there was no heating source (except Ohmic). 
 

•  Now add neutral beam source to keep beta constant and to drive 
sheared toroidal rotation 

With neutral beam source 

Previous run with Ohmic 
heating only 
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 dependence on heating source-cont. 
Ohmic heating only With neutral beam source 

With heating and momentum source: 
   
•  Initial linear growth of n=3 mode 
much slower 
 

•  n=3 and higher harmonics do not 
decay away:  surfaces distort 
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 effect of increasing (decreasing) heating 

1 2 

3 

1 2 3 

Heating halved Heating doubled •  With heating reduced, 
plasma returns to an axi-
symmetric state (2) 
 

•  With heating 
increased, surfaces 
become more distorted, 
but still exhibits 
confinement (3) 
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 effect of increasing (decreasing) heating 

2 

3 •  at low heating power, Te 
profiles from 2D and 3D agree 
 

•  at higher heating powers, 
they differ considerably 

1 

2 1 3 
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 importance of sheared rotation 

With 
heating and 
momentum 
input 
(sheared 
rotation) 

With 
heating only 
(no rotation) 

t=2000 t=3000 t=4000 t=5000 



35 

Compare                                 
these  

 equilibrium with lower q0 
shows thermal collapse 

q0 = 1.28 q0 = 1.06 



New meshing routines being developed to include wall 
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The SCOREC group 
at RPI is developing 
new mesh routines 
that will include a 
capability for a 
resistive wall 
surrounding the 
plasma. 
 
Each triangular 
element will belong 
to either the plasma 
region, the wall 
region, or the 
vacuum region. 

Vacuum region 

Wall region 

Plasma region 



Inductive transfer of current to wall 
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summary 
• M3D-C1 working nonlinearly in production mode 

 
• Sawtooth and m=1 stationary states can occur in resistive MHD 

depending on transport parameters 
 

• Studying nonlinear consequences of exceeding beta limits in 
NSTX for q0 > 1 
 

• Sheared rotation is stabilizing 
 

• More violent behavior expected as q0  1 
 

• Resistive wall capability available soon 
 

• Convergence studies underway 
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