
Nonlinear MHD Milestones 2007 Q2 
 
1. Improve understanding of the present discrepancy between NIMROD and  
M3D and move to new CDX-U-relevant cases with more realistic parameters and 
sources. 
Q2: M3D to understand q0 evolution, and NIMROD to perform nonlinear  
calculation with several values of q0 to determine dependence. (J. Breslau, C. Sovinec) 
Report: 
 
NIMROD has now rerun the CDX-U benchmark with two new equilibrium 
corresponding to q0=0.82 and q0=0.71.  Both of these runs exhibit periodic sawtooth 
behavior and have been run for 3 sawtooth periods.  The q0=0.82 case was extensively 
converged both with respect to element order and to toroidal mode number, going up to 
n=21.  The dimensionless linear growth rate was determined to be:  γτA=1.39×10-2.  This 
case was chosen to be compared in detail with M3D 
 
After exhaustive testing in M3D, it was determined that the large and steady drop in q0 
over time in the 2D nonlinear case beginning from equilibrium was a consequence of a 
lack of good conservation properties in the formulation of the equation for C (toroidal 
current density) in the presence of large 2D flows and low resistivity when a current 
source term is used. (The large 2D flows had previously been established to result from 
equilibrium discretization errors in the interpolation of the VMEC equilibrium onto 
M3D’s linear finite element mesh; the amplitude of the flow converges to zero as the 
M3D mesh resolution is increased, and the rate of change of q0 drops proportionately). 
The C equation has now been reformulated to a more conservative form, in which the 
derivative of the right-hand-side is taken numerically rather than algebraically.  As a 
result, the rate of change of q0 in the 2D case is reduced to insignificance.  A full 3D 
nonlinear calculation performed using the new C equation confirms that q0 and the n=1 
growth rate now both remain constant until well into the nonlinear regime. The q0=0.82 
case gave a converged growth rate of  γτA=1.7×10-2 which is in reasonable agreement 
with the NIMROD result on this equilibrium.  But more significantly, the nonlinear M3D 
and NIMROD results for the q0 =0.82 case are now in much better qualitative and 
quantitative agreement.  These results are detailed in the appendices of this report. 
 
 
2. Perform a linear edge stability calculation in a non-diverted equilibrium with a 
resistive code, and compare results with the linear ideal MHD code ELITE. 
Q2: Perform scans of resistivity values and profiles to study how the resistive, linear 
MHD results converge to the ideal MHD results for each toroidal mode number with an 
equilibrium that is robustly unstable peeling-ballooning modes. (S. Kruger, P. Snyder) 
Report: 
 
Prior experience of benchmarking ELITE, GATO, and DCON has shown that difference 
in equilibrium mapping can account for ~5-10% differences in growth rates, and that 
when an inverse equilibrium is used, the differences were reduced to less than 2%.  For 
this reason, our goal was to try and use an inverse solver such as TOQ.  The difficulty 

 1



with this approach is that NIMROD requires a Grad-Shafranov solution in the vacuum 
region. The solution was to modify TOQ to solve for the vacuum region as well, which is 
possible for weakly-shaped cross sections.  Another numerical difficulty is that NIMROD 
must transition from a low resistivity plasma to a high resistivity plasma over a narrow 
region.  To minimize the influence of the resistive transition region on the NIMROD 
growth rates, we are choosing an equilibrium that has a wider pedestal width than those 
normally studied.   
 
We have successfully created an equilibrium that has the parameters we desire.  Its 
features can be seen in Figure 1.  The pressure profile is flat in the core to avoid pressure-
driven core instabilities.  The current at the edge includes the self-consistent bootstrap 
current using the Sauter model.   The pedestal width given is approximately 10% of the 
normalized poloidal flux, which is approximately twice the normal experimental width.  
The vacuum region can be discerned from examining the pressure profile versus major 
radius at the midplane.  Because of how this equilibrium is constructed there is a large 
Shafranov shift.  On the outboard midplane, there is approximately 40 cm of vacuum 
region versus a minor radius of approximately 85 cm. 

 
Figure 1.  Equilibrium (labeled krmb1) designed for benchmark studies shows 
characteristics of H-mode plasmas while simplifying core profiles and geometry for 
benchmark purposes.  It was generated with the TOQ equilibrium solver. 

 As expected, GATO and ELITE give excellent agreement with the equilibrium as shown 
in Figure 2.  The unique growth rate spectrum is due to the rational q’s which are near the 
surface, and is indicative of a strong peeling component in this case.  GATO was run with 
and without a wall at rwall/a=1.8 to give an indication of the importance of wall 
stabilization.  For this equilibrium, the wall is a relatively unimportant effect.  
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Simulations have begun by both the NIMROD and M3D teams, but no results are 
available at this time. 
  

 
 
 
 
 
3. Extend the 2D GEM nonlinear benchmark to non-zero guide field and more 
extreme parameters.  
Q2:  Perform exploratory studies of non-zero guide field case and better define 
parameters. (S. Jardin) 
 
Report: 
What has become a “standard problem” in 2-fluid magnetic reconnection was proposed in 
[J. Birn, J. F. Drake, M. A. Shay, et al., J. Geophys. Res., [Space Phys.] 106, 3715 (2001) 
].  In there, they define initial values for the equilibrium poloidal flux, in-plane magnetic 
field, total pressure, density, and electron pressure as follows; 
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All other quantities are initialized to zero.  A perturbation is applied at time t=0 as 
follows: 

( , ) cos cosx yx y k x k yψ ε= . 
 

The initial equilibrium and perturbed current densities are just the Laplacian of the fluxes,  
0 2 0 2,J J .ψ ψ= −∇ = −∇   The computation is carried out in a rectangular domain: 

 and .  The system is taken to be periodic in the x- 
direction with ideal conducting boundaries at 

/ 2 / 2x xL x L− ≤ ≤ / 2 / 2yL y L− ≤ ≤ y

/ 2.yy L= ±   The parameters are chosen 
such that 2 /x xk Lπ= , /y yk Lπ= , with 25.6, 12.8,x yL L= =  and 0.1ε = . These 
calculations used values of resistivity η = 0.005, viscosities μ=μC=0.05, and thermal 
conductivity κ =0.02.   
 
Since the current could be carried by either the electrons or the ions, there is another 
degree of freedom in specifying the initial equilibrium.  Thus, we have introduced the 
variable fi ≡ VELION which is the fraction of the initial toroidal current that is carried by 
the ions.  Thus, in general we define an initial ion velocity: 

0 21
z iV f

n
0ψ= − ∇  

Another variable we introduced was the fraction of the initial pressure profile that was 
due to density variation as opposed to temperature variation.  Thus, we introduce another 
variable fn ≡ FACDEN into the equilibrium definition as follows: 

0 2( , ) sec (2 ) 0.2nn x y f h y⎡ ⎤= +⎣ ⎦  
We have experimented with varying fi in the range 0-1, and fn in the range 0.1 to 1, and 
the viscosity in the range 0.05 to 0.005.  We find that as fn is lowered from 1, the fast 
reconnection becomes more pronounced, as it does when the viscosity is lowered from 
.05 to .005.  Both of these also make the resolution requirements more severe. 
 
In order not to exacerbate the severe resolution requirements, and to aid in direct 
comparison with the zero-guide field studies, we are thus recommending that at this stage 
that we keep the same profiles with fi = 0 (all equilibrium currents are carried by the 
electrons) and fn = 1 (same equilibrium density profile as in GEM), and the viscosity and 
thermal conductivity equal to .05 as they were in the GEM benchmark. 
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4. Scalability studies on leading edge computers: 
Q2:  Perform scaling studies of NIMROD on Jaguar, and identify bottlenecks.(E. Held) 
Report: 
One avenue toward scaling plasma fluid codes to tens of thousands of processors 
involves coupling codes such as NIMROD and M3D to kinetic calculations of closures.  
For example, the implementation of parallel closures in NIMROD requires on the order 
of 10^6 solutions to lowest-order, Chapman-Enskog-like (CEL), drift kinetic equations 
for every advance of the fluid equations.    
         
We have completed the programming aspects of having one group of processors perform 
NIMROD's CEL parallel closure calculation while a separate group of processors 
advances the fluid equations.  This required forming multiple communicator groups using 
the MPI split command so that processors treating different aspects of the problem (fluid 
versus kinetic) could easily communicate in their distinct groups as well as between the 
fluid and kinetic groups.  Testing and debugging were completed on Bassi at NERSC.  
Due to the present revamping of Jaguar at ORNL (it is down while new processors are 
being added), the code is presently being ported to Seaborg for scaling studies up to at 
least 4000 processors.  Once Jaguar is up and running again, scaling studies will be 
performed there as well.  Preliminary calculations are encouraging and suggest that in 
addition to adding important physics to the fluid model, the massively parallel calculation 
of closures is a viable avenue toward running plasma fluid codes on thousands of 
processors. 
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Appendix I:  Nonlinear NIMROD Results on the CDXU q(0)=0.82 Case 
Carl Sovinec 

March 1, 2007 
 

A pair of nonlinear simulations for the CDXU equilibrium with q(0)=0.82 has been 
run with NIMROD.  The physical parameters for the computations are listed in Table I 
and have been selected to match the dimensionless parameters used for the q(0)=0.92 
case.  The major radius is 0.3754 m, and the minor radius is 0.2409 m.  The dimensional 
Alfvén time is slightly smaller than the previous case, because BBφ(0) is slightly larger 
(0.1359 T; 0.1315 T for the larger-q0 case).  The computations have been run with a 
40×60 mesh of biquadratic elements that conform to the equilibrium flux surfaces.  
Linear tests with the same mesh, physical parameters, and either biquadratic or bicubic 
elements show that the 1/1 mode grows at γτA=1.39×10 .  The nonlinear computations 
are initialized with the 1/1 eigenmode only, as specified for the benchmark.  The finite 
Fourier series in the first of the two nonlinear computations has 0≤n≤10, and it has 
0≤n≤21 in the second.  The computations use NIMROD’s separate steady-state 
capability, which is equivalent to having sources that maintain the equilibrium profile 
against dissipation. 

-2

The evolution of the kinetic fluctuation spectrum (Fig. 1) shows repeating 1/1 
activity, but only the high-n modes ‘crash’ after each event.  The n=1 itself decays with a 
rate that has roughly the same value as its growth rate when it is increasing.  The activity 
appears to damp very slight with each event, so it is not clear whether the cycle will 
repeat indefinitely.  The results are not sensitive to toroidal resolution.  The comparison 
provided in Fig. 1 shows that the 0≤n≤10 case is already well resolved. 

 

Table I.  Parameters used for the CDX-U benchmark with q(0)=0.82. 

quantity NIMROD (dimensional) dimensionless 
Zeff 2 2 

ne(0) 1.374×1019 m-3 - 
ρ(0) 1.149×10-8 kg/m3 1 
mi 1.673×10-27 kg - 
τA 3.319×10-7 s 1 

( ) 0/0 μη  9.005 m2/s 5.15×10-5

τr 6.445×10-3 s 1.94×104

Dparticle 174.9 m2/s 1×10-3

νkinematic 90.05 m2/s 5.15×10-4

χperp* 158.9 m2/s 9.09×10-4

χparallel* 1.0 ×108 m2/s 572. 
*The thermal diffusivities are NIMROD input values.  The actual thermal diffusivities are 3/2 larger. 
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Figure 1.  Temporal evolution of kinetic energy in each toroidal harmonic vs. time from 
NIMROD simulations with 0≤n≤10 (top) and with 0≤n≤21 (bottom). 
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The remaining plots show the changes in magnetic topology and its effect on the 
temperature distribution during the first event in the second simulation.  Figure 2 is a 
Poincaré plot of the magnetic field during the initial growth of the mode.  Figure 3 shows 
a set of Poincaré plots starting from the time when the high-n activity peaks (the 
magnetic energy in the n=1 mode is already decreasing slightly at this time).  The final 
plot in the sequence is still before the fluctuation energy reaches a minimum, but the flux 
surfaces have largely returned. 

The maximum electron temperature at the start of the computation is 101.5 eV.  At 
the time of peak high-n activity (163 μs), the temperature drops to 80.7 eV.  It regains as 
the flux surfaces return, reaching 95.7 eV at 200 μs.  However, it should be noted that the 
heating is from the effective thermal energy source and not a realistic Ohmic heating with 
temperature-dependent resistivity.  Finally, Table II compares peak temperatures from the 
two nonlinear simulations from data files that are as closely matched in time as possible. 
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Figure 2.  Poincaré surface of section at φ=0 and t=129 μs into the computation with 
0≤n≤21. 
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Figure 3.  Poincaré surfaces of section at φ=0 and t=163 μs (top left), 166 μs (top right), 
172 μs (lower left), and 200 μs (lower right) into the computation with 0≤n≤21. 
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Figure 4.  Temperature profiles at φ=0 and t=163 μs (left) and 200 μs (right) from the 
computation with 0≤n≤21. 
 
 

Table II.  Comparison of results on peak temperature for the two simulations. 

0≤n≤10 0≤n≤21 
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t (μs) Te (eV) t (μs) Te (eV) 
0 101.5 0 101.5 

128 101.3 129 101.0 
163 80.9 163 80.7 
166 84.4 166 84.3 
172 89.9 172 89.9 
218 97.6 200 95.7 
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Appendix II:  Nonlinear NIMROD Results on the CDXU q(0)=0.71 Case 
Carl Sovinec 

March 20, 2007 
 

• Equilibrium label: run06time29 
• Physical parameters: see Table I.  Dimensionless parameters use a=0.2414 m. 
• Numerical parameters: 40×60 mesh of biquadratic elements, 0≤n≤10  (no 

convergence testing  
• Linear growth rate for the 1/1 mode: γτA=0.0226 
 

Table I.  Parameters used for the CDX-U benchmark with q(0)=0.71. 

quantity NIMROD (dimensional) dimensionless 
Zeff 2 2 

ne(0) 1.374×1019 m-3 - 
ρ(0) 1.149×10-8 kg/m3 1 
mi 1.673×10-27 kg - 
τA 3.212×10-7 s 1 

( ) 0/0 μη  9.34 m2/s 5.15×10-5

τr 6.239×10-3 s 1.94×104

Dparticle 181.4 m2/s 1×10-3

νkinematic 93.4 m2/s 5.15×10-4

χperp* 164.8 m2/s 9.09×10-4

χparallel* 1.0 ×108 m2/s 552. 
*The thermal diffusivities are NIMROD input values.  The actual thermal diffusivities are 3/2 larger. 
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Appendix III: 
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Figure 1.  Temporal evolution of kinetic fluctuation energies. 
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Figure 2.  Poincaré surfaces of section for the φ=0 plane at t=317 μs (left) and at t=386 μs 
(right). 
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Figure 3. Contours of constant electron temperature for the φ=0 plane at t=317 μs (left) 
and at t=386 μs (right). 
 
 

Table II.  Estimated sawtooth period for the three CDXU computations with the 
dimensionless parameters listed in Table I. 

 q(0)=0.71 q(0)=0.82 q(0)=0.92 
Γ (μs) 100 160 270 
Γ/τA 320 490 790 
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Appendix III:  Nonlinear M3D Results on the CDX-U q(0)=0.82 Case 
Josh Breslau 

March 22, 2007 
 
 
This case was run with the new, conservative form of the equation for C (toroidal current 
density), which does a much better job of maintaining the q profile in the n=0 piece. In 
order to isolate the effect of this change, the case was run at the same resolution and with 
the same parameters as the previous nonlinear M3D run: 24 planes (up to n=10); 79 
radial zones, and 3 theta partitions. As before, I used the new isotropic viscosity and the 
same size time step (dt=0.004 τA), and did not use isotropic heat conduction. Other 
parameters are shown in the table. 
 
The linear growth rate for the 1,1 mode at this resolution was found to be γτA≈1.63×10-
2. Initial convergence tests did not show an easily identifiable power law convergence 
with mesh spacing, but the projected converged value is around 1.7 ×10-2. 
 
To ease comparison of the nonlinear results with those from NIMROD, I have plotted the 
kinetic energies on a similar scale (with times converted to μs using Carl’s value of 
0.3319 μs for the Alfvén time). I started with a somewhat larger perturbation than before 
to save run time, but there is still a distinct linear regime in which the n=0 growth rate 
matches the linear rate without increasing before the nonlinearity sets in. I also 
terminated the run somewhat earlier than the NIMROD case. The large n=0 kinetic 
energy suggests that this case is not fully resolved poloidally. 
 
For the Poincaré sections and temperature contours, I have chosen times and toroidal 
angles that seemed to correspond with those depicted in the NIMROD summary for ease 
of comparison. I am impressed with the level of agreement we now have between the 
codes. 
 

 
 
 

Quantity Value 
η0 5.15×10-5(non-evolving Spitzer, cutoff=100) 
ν 5.15×10-4(constant isotropic) 
κ⊥ 9.09×10-4(perp to ϕ) 
κ|| [Artificial sound speed = 6 VA;Vμ=10-3

Dρ 10-3
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