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1. Introduction 

Extensions to the usual resistive MHD equations are required to capture two-fluid 
and finite-Larmor radius (FLR) effects.  These extra terms include the Hall term and the 
electron pressure gradient in Ohm’s law, and the divergence of the gyro-viscous stress in 
the fluid momentum equation.  While considerable attention has been paid to the physical 
and computational consequences of the modifications to Ohm’s law, the role of the gyro-
viscous force does not appear to have been as thoroughly studied.  The purpose of this 
note is to examine the linear dispersion properties of the full set of equations including 
both the generalized Ohm’s law and the gyro-viscous force, to identify characteristics of 
this dispersion that may lead to computational difficulties, and to envision paths to an 
efficient time stepping algorithm when all terms are taken into account. 

In a previous note1, several possible orderings for the two-fluid equations were 
identified.  In all cases the ratio of the ion Larmor radius to the macroscopic scale length, 
    δ = ρi / L, was considered to be a small parameter, i.e., it was assumed that   δ <<1.  Three 
distinct sets of equations were identified depending on the assumed ordering of other 
parameters with respect to δ .  These are: Hall MHD, which is valid at very low plasma β  
and accommodates very vast flows; resistive MHD, which is valid at relatively low β  
and accommodates fast, but not supersonic, flows; and, drift MHD, which allows for high 
β  but is limited to very slow flows.  These models are summarized in Table I. 

Table I 
Properties of Fluid Models 

Model   Vi ω  β   J × B  Whistlers† KAW†† 

Hall 
MHD 

    Vthi /δ    Ωci   O(δ2 ) 
   
mn dVi

dt
+ O(δ)

Yes No 

Ideal 
MHD 

  Vthi   δΩci   O(δ)   O(δ) No No 

Drift  δVthi     δ
2Ωci   O(1) 

  ∇p + O(δ2 ) No Yes 
†Whistler waves are high frequency phenomena that disappear as the frequency is ordered successively 
lower. 
††Kinetic Alfvén waves are finite pressure phenomena that appear as β  becomes successively larger. 
 

Hall and drift MHD represent the lowest order (in δ) FLR and two-fluid corrections 
to the resistive MHD model.  In both cases the gyro-viscous force enters at the same 
order in δ  as the pressure gradient; it is inconsistent to include one without also including 
the other.  Only resistive MHD escapes this ordering, and the gyro-viscosity is then 
ignored.  As indicated in Table I, the Hall and drift models introduce new normal modes 



(whistlers and kinetic Alfvén waves) that are dispersive, i.e., they lead to dispersion 
relations of the form     ω2 ~ k 4.  An explicit time advance of these terms will therefore 
have a CFL restriction of the form   ∆t < ∆x2, which is unacceptable for high resolution, 
long time scale simulations.  The appropriate semi-implicit treatment of these modes has 
been the topic of several recent notes2,3. 

The general form of the gyro-viscous force is  −∇ ⋅ Πgv , where 

      
Πgv =

η3
2

b ×W ⋅ I + 3bb( )+ transpose[ ]   , (1) 

is the gyro-viscous stress tensor, W is the rate of strain tensor, 

      
W = ∇Vi + ∇Vi

T −
2
3

Ι∇ ⋅ Vi    ,  (2) 

with 

    
η3 =

nTi
2Ω

   , (3) 

and     Ω = eB / mi is the ion gyro-frequency.  The gyro-viscous force is not dissipative 
because it is not caused particle collisions (  η3 is independent of the collision frequency 
ν ); it represents a momentum transport inherent in the gyro-motion of the particles, 
which is reversible.  (It can be shown explicitly4 from Equation (1) that the work done by 
the gyro-viscous force vanishes, i.e.,    ∇v : Πgv = 0 .)  From the form of Equation (2), the 
gyro-viscous force appears diffusive.  Indeed,   η3 / mn  as the dimensions of a diffusion 
coefficient (m2/sec).  However, the aforementioned dissipationless property of this term 
requires that the gyro-viscous momentum equation must remain hyperbolic, i.e., it must 
produce waves.  Since equations of similar form (e.g., the Hall term in Ohm’s law) 
produce dispersive waves, we anticipate that this will also be the case with the gyro-
viscosity. 

In the following sections we investigate the dispersion properties of the gyro-
viscous/Hall equations for the special case of an infinite uniform plasma imbedded in a 
straight, uniform magnetic field.  We find that the presence of the gyro-viscous force 
introduces new normal modes that are indeed dispersive; like the whistler and kinetic 
Alfvén waves, they have     ω2 ~ k 4.  For the case of parallel propagation they appear 
simply as corrections to the whistler branch.  (However, they persist in the absence of the 
Hall term.)  For the case of perpendicular propagation they appear as corrections to the 
compressional (fast) magnetosonic mode.  Neither the whistler or kinetic Alfvén waves 
propagate in the perpendicular direction.  The perpendicular dispersive waves thus 
represent a new set of normal modes of the system that must be accounted for when time 
advance algorithms are considered. 
1. The Gyro-viscous Fluid Equations 

Neglecting electron inertia and assuming quasi-neutrality and an adiabatic equation 
of state, the equations for a gyro-viscous fluid are 



      
∂n
∂t

= −∇ ⋅ nV    ,  (4a) 

      
mn dV

dt
= −∇ pe + pi( )+ J × B − ∇ ⋅ Πgv    ,  (4b) 

      
J = ne(V − Ve ) =

1
µ0

∇ × B    ,  (4c) 

      
E = −Ve × B −

1
ne

∇pe = −V × B +
1
ne

J × B − ∇pe[ ]   , (4d) 

      
∂B
∂t

= −∇ × E    ,  (4e) 

      
∂pi
∂t

= −γpi∇ ⋅ V    ,  (4f) 

and 

      

∂pe
∂t

= −γpe∇ ⋅ Ve = −γpe∇ ⋅ V −
1
ne

J
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    . (4g) 

Here   V  is the total bulk velocity of the momentum carrying component of the plasma, 
    V = Vi; it contains all the relevant drift motions.  In particular, when the Hall term 
(  J × B) is included in Ohm’s law, Equation (4d), the  E × B , diamagnetic, and 
polarization drifts are all contained in  V . 

We assume a uniform plasma with straight field lines and no zero-order gradients or 
current.  We choose a Cartesian coordinate system (x, y, z) with the z-axis positively 
aligned with the mean magnetic field   B0.  In this coordinate system, and under the 
assumption that   δ <<1, the components of the gyro-viscous stress tensor, Equation (1), 
are written5 

    Πxx = −Π yy = −η3Wxy    ,  (5a,b) 

    
Πxy = Π yx =

1
2

η3 Wxx −Wyy( )   ,  (5c,d) 

    Πxz = Π zx = −η4Wyz    ,  (5e,f) 

    Π yz = Π zy = η4Wxz    , (5g,h) 

    Π zz = 0    , (5i) 

where   η4 = 2η3, and the components of the rate of strain tensor, Equation (2), are given 
by 

      
Wij =

∂Vj
∂xi

+
∂Vi
∂x j

−
2
3

δij∇ ⋅ V    . (6) 

The (negative) components of the gyro-viscous force are then 



    
∇ ⋅ Π( )x = −η3∇⊥

2Vy −η4
∂
∂z

∂Vy
∂z

+
∂Vz
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    , (7a) 

    
∇ ⋅ Π( )y = +η3∇⊥

2Vx + η4
∂
∂z

∂Vx
∂z

+
∂Vz
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    ,  (7b) 

and 

    
∇ ⋅ Π( )z = −η4

∂
∂z

∂Vx
∂y

−
∂Vy
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    ,  (7c) 

where 

    
∇⊥

2 ≡
∂2

∂x2
+

∂2

∂y2
   . (8) 

We note that the perpendicular and parallel components of the (negative) gyro-viscous 
force can be written in vector notation as 

      
∇ ⋅ Π( )⊥ = η3∇⊥

2 + η4 b ⋅ ∇( )2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ b × V( )+ η4 b ⋅ ∇( ) b ⋅ ∇ × V||I( )[ ]   , (9) 

and 

    b ⋅ ∇ ⋅ Π( )= −η4 b ⋅ ∇( ) b ⋅ ∇ × V( )   . (10) 

The expressions given by Equations (7-10) assume that  η3 and  η4 are constant. 

The only assumptions made in obtaining Equations (4a-g) are: 1) quasi-neutrality; 2) 
ignoring electron inertia; and, 3) the form of the closure for the stress tensor (which 
assumes   δ <<1). 

We now linearize Equations (4a-g) about the uniform background state and assume 
plane wave solutions of the form    exp(iωt + ik ⋅ x).  We note that the last term in Equation 
(4d), the      − ∇pe / n  contribution to Ohm’s law, is annihilated by the curl operator even in 
the presence of density fluctuations because of the assumed uniformity of the background 
electron pressure.  Similar comments apply to the last term in Equation (4g), the 

      ∇ ⋅ J / n( ) contribution to the electron pressure.  We can therefore omit density evolution 
from the stability analysis; the perturbed density can be determined a posteriori directly 
from Equation (4a).  Equations (4f-g) can then be combined into the single equation 

      
∂p
∂t

= −γp∇ ⋅ V    ,  (11) 

where   p = pi + pe . 

The linearized gyro-viscous equations then become 

    
iωmnVx = −ikx p +

iB0
µ0

kzBx − kxBz( )−η3k⊥
2Vy −η4kz

2Vy −η4kykzVz    , (12a) 

    
iωmnVy = −ik y p +

iB0
µ0

kzBy − kyBz( )+ η3k⊥
2Vx + η4kz

2Vx −η4kxkzVz    ,  (12b) 



    iωmnVz = −ikz p −η4kykzVx + η4kxkzVy    , (12c) 

    
iωBx = ikzB0Vx +

B0
µ0ne

kz k yBz − kzBy( )   ,  (12d) 

    
iωBy = ikzB0Vy +

B0
µ0ne

kz kzBx − kxBz( )   ,  (12e) 

    
iωBz = −ik yB0Vy − ikxB0Vx +

B0
µ0ne

kz kxBy − k yBx( )   ,  (12f) 

and 

    iωp = −iγp0kzVz    , (12g) 

where     k⊥
2 = kx

2 + ky
2. 

Solutions of Equations (12a-g) for the special cases of parallel and perpendicular 
propagation are discussed in the next sections. 
3. Parallel Propagation 

For the case of parallel propagation we set   kx = ky = 0 in Equations (12a-g).  The 
result is 

    
iωVx =

iB0kz
µ0mn

Bx −
η4kz

2

nm
Vy    , (13a) 

    
iωVy =

iB0kz
µ0mn

By +
η4kz

2

nm
Vx    , (13b) 

    
iωBx = iB0kzVx −

B0kz
2

µ0ne
By    ,  (13c) 

    
iωBy = iB0kzVy +

B0kz
2

µ0ne
Bx    ,  (13d) 

    
iωVz = −

ikz
mn

p    , (13e) 

and 

    iωp = −iγp0kzVz    . (13f) 

Equations (13e-f) describe parallel sound waves, and provide no new modes.  The 
remaining analysis is simplified by defining new variables   V± = Vx ± iVy  and 

  B± = Bx ± iBy .  Then adding and subtracting Equations (13a-b) and (13c-d), respectively, 
we find 

    
iωV± =

iB0kz
µ0ne

B± ±
iη4kz

2

nm
V±    ,  (14a) 



    
iωB± = iB0kzV± ±

iB0kz
2

µ0ne
B±    . (14b) 

Equations (14a-b) are two sets of coupled equations, one for the pair (  V+ ,  B+ ), and the 
other for the pair (V− , B− ).  They represent right (-) and left (+) polarized waves.  
Defining 

    
ω A =

B0 kz

µ0mn
= VA kz    ,  (15) 

    
ω4 =

η4kz
2

mn
=

Vthi

2

2Ω
kz

2 =
1
2

ρikz( )2Ω    , (16) 

and 

    
ωW =

B0kz
2

µ0ne
=

ω A
Ω

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2
Ω =

1
β

ρikz( )2Ω    ,  (17) 

the parallel dispersion relation is obtained as 

    ω ± ω4( ) ω ± ωW( )= ω A
2    , (18) 

where the + (-) sign refers to the solution corresponding to  V−and  B−  (  V+  and   B+ ), and 
ρi = Vthi

/ Ω is the ion Larmor radius.  There are thus four independent solutions, two for 
the left polarized wave, and two for the right. 

Assuming ρikz <<1, as is required for the gyro-viscous closure, the solutions for the 
left and right polarized waves can be written as  

    
ωL± = VAkz ±1+

1+ β
2 β

ρikz( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    , (19a,b) 

and 

    
ωR± = VAkz ±1−

1+ β
2 β

ρikz( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    . (20a,b) 

The whistler result is obtained by setting  1+ β →1 in the numerator of the last terms.  
The gyro-viscosity thus gives an   O(β )  correction to the parallel whistler branch. 

4. Perpendicular Propagation 
For the case of perpendicular propagation we set   k y = kz = 0 in Equations (12a-g).  

We now obtain 

    
iωmnVx = −ikx p −

iB0kx
µ0

Bz −η3kx
2Vy    , (21a) 

    iωmnVy = η3kx
2Vx    , (21b) 



    iωp = −iγp0kxVx    , (21c) 

and 

    iωBz = −iB0kxVx    . (21d) 

The dispersion relation is easily found to be 

    

ω2

ωs
2 + ω A

2
=1+

ω3
2

ωs
2 + ω A

2
   , (22) 

where     ωs
2 = Cs

2kx
2,   Cs  is the sound speed, and  ω3 = ω4 / 2.  This is clearly a modification 

of the fast magnetosonic wave.  The frequency can be expressed as 

    
ω2 = VA

2kx
2 1+

γβ
2

+
β
16

ρikx( )2
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥    ,  (23) 

so that the mode is now dispersive.  From Equations (21b) and (23) we see that, to lowest 
order in   ρikx , 

    

iVy
Vx

= ±
1
4

β
1+ γβ / 2

ρikx    . (24) 

The mode is therefore elliptically polarized in the plane perpendicular to   B, with the 
major axis in the direction of   k and the minor axis perpendicular to both   k and   B.  The 
eccentricity of the ellipse is proportional to  ρikx . 

5. Discussion 
The gyro-viscous stress introduces new normal modes to the magneto-plasma 

system.  The form of Equation (19), (20), and (23) suggests that these modes are related 
to interactions between the electromagnetic field of the wave and the cyclotron gyration 
of the ions.  It is likely that a more complete kinetic treatment would indicate resonances 
near the ion cyclotron frequency.  The expressions reported here are the lowest order (in 
    ρi / λ) manifestations of these kinetic modes.  They appear at the same order as both the 
whistler and kinetic Alfvén waves, and so cannot be ignored in a two-fluid model. 

For the case of parallel propagation the new modes appear as   O(β )  corrections to 
the whistler branch.  This does not lead to any new dispersion.  However, for the case of 
perpendicular propagation new modes appear as dispersive modifications to the fast 
magnetosonic wave. 

Time step limitations due to dispersive modes must be dealt with (or at least 
recognized) in any time advance algorithm.  Semi-implicit formulations for the whistler 
and kinetic Alfvén branches are presently being implemented and tested2,3.  These 
treatments may be sufficient to stabilize also the gyro-viscous correction to the parallel 
whistler wave.  However, since the whistler and kinetic Alfvén modes do not propagate 
perpendicular to the magnetic field, it seems unlikely that the semi-implicit formulations 
presently under consideration will be sufficient to stabilize the gyro-viscous dispersive 
correction to the magnetosonic wave.  A new semi-implicit operator must be sought. 



One key to an accurate semi-implicit treatment is to construct the operator based on 
knowledge of the underlying equations that are to be advanced.  This suggests that semi-
implicit operator based on Equations (9) and (10) may be useful.  Note that purely 
parallel propagation results from the second term in Equation (9) (    η4 b ⋅ ∇( )2), while 

purely perpendicular propagation arises from the first term (  η3∇⊥
2 ).  Since the parallel 

waves may be stabilized by existing semi-implicit operators2,3, perhaps a new semi-
implicit method for stabilizing the dispersive magnetosonic wave could be based entirely 
on the first term, i.e., η3∇⊥

2 b × V( ).  (The last term in Equation (9) and Equation (10) 
affect oblique propagation, which has not been considered here.  It is possible (likely?) 
that this will complicate the relatively simple approach that has been suggested.) 

We remark again that, in this formulation, the bulk velocity  V  contains all the ion 
drifts.  In drift MHD one transforms to a frame of reference moving with just the 
common   E × B  (MHD) drift of the ions and electrons.  In that case the gyro-viscous 
cancellation eliminates almost all of the terms in the gyro-viscous force and results in an 
apparently greatly simplified form of the equations.  It is not clear (at least to me) how 
the gyro-viscous modes derived here survive this transformation.  However, if the gyro-
viscous cancellation is valid, one would think that it is implicitly contained in Equations 
(4a-g), and that these new modes are fundamental to both models.  Future work will 
investigate these modes in the context of the drift MHD model. 

Finally we note that the gyro-viscous modifications to the usual MHD equations 
were used by Roberts and Taylor6 in 1962 to describe the FLR stabilization of the 
gravitational interchange mode.  They point out that consistent (and correct!) results 
require the simultaneous inclusion of both the Hall term in Ohm’s law and the gyro-
viscous force in the momentum equation. 
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