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Abstract

We attempt to verify the NIMROD code by direct comparison with ana-
lytic solutions for the case of a plasma with uniform equilibrium density and
electron temperature, but with a gradient of the equilibrium ion tempera-
ture, in Cartesian slab geometry. Local analytic solutions of the two-fluid
equations are developed. It is found that the system is unstable if the gyro-
viscous stress is included, but the results to not agree with the predictions
of kinetic theory. Agreement requires that the ion diamagnetic heat flux
also be included in the model. Presently, the NIMROD code has imple-
mented the full gyro-viscous stress tensor, but the model for diamagnetic
heat flux is still undergoing testing and debugging. Therefore, NIMROD
solutions can only be compared with the analytic model that ignores the
diamagnetic heat flux. Good agreement is found between these analytic
and computational solutions. However, the model is incomplete and neither
solution agrees with the results of kinetic theory. Therefore, NIMROD has
been verified but not validated by this exercise. More physically realistic
tests require completion of the implementation of the diamagnetic heat flux
in NIMROD.
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1 Introduction

The ion temperature gradient mode, or ITG, is a parallel sound wave that becomes
unstable in the presence of an ion temperature gradient and relative drifts between
the ions and the electrons. It was first derived from kinetic theory [1, 2], and also
from the moment, or fluid, equations by several authors, [2, 3, 4]. It has been
reviewed in the context of a cause of anomalous transport in tokamaks [5], and it
has become a textbook problem in kinetic theory [6].

The ITG is most virulent in regions where the equilibrium plasma density is
almost spatially uniform and the ion pressure is almost all due to the equilibrium
ion temperature gradient. With slab geometry, a uniform magnetic field B0 in the
z-direction, a static electric field, and constant density and electron temperature,
this theory leads to an approximate cubic dispersion relation of the form

(

ω2 − ω2
s∗

)

ω − ω2
seω∗T i = 0 , (1)

where ωs∗ = kzCs∗ is the total parallel hybrid sound frequency (using the ion and
electron temperatures and the ion mass), ωse = kzCse is the parallel electron sound
frequency, and ω∗T i = (ky/eB0)dTi0/dx , which has the form of the perpendicular
ion drift velocity, but enters the theory in completely different way [3]. When
ω∗T i << (C2

s/C
2
∗
)ω, the balance between the cubic and linear terms leads to a

stable parallel sound wave. When ω2
s∗ << ω2 << (C2

∗
/C2

s∗)ω
2
∗T i, the balance is

between the cubic term and the linear term. Then

ω3 =
kyk

2
zTe0

eB0M

dTi0

dx
, (2)

which has three roots ωn = |A|1/3e2πin/3, n = 0, 1, 2, and ω2 has a negative imagi-
nary part. This is the growth rate γ of the ITG; the real part of ω2 gives the real
frequency of the mode. It is customary to write dTi0/dx ∼ ηiTi0, so that γ ∼ η

1/3
i .

The ITG is also called the “ηi mode”. “The [last] term in [Equation (1)] repre-
sents an additional pumping of temperature in the ion waves due to transversal
[sic] transport of heat in a nonuniform plasma . . . The unstable root corresponds
to the possibility of always having the additional pumping . . . in phase with the
growing temperature for the ion sound waves”[2].

The ITG mode is stable with the context of ideal, resistive, and Hall MHD.
Instability requires finite Larmor radius (FLR) effects. In contrast, interchange-
like modes (e.g., the g-mode) are ideal MHD modes that are stabilized by two-fluid
(i.e., Hall) and FLR effects in slab geometry.
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1.1 The Extended MHD Model

In terms of non-dimensional variables, the extended MHD equations are

∂n

∂t
= −∇ · (nV) , (3)

Mn
dV

dt
= J×B− 1

2
β∇p− 1

2
βiδi∇ ·Πgv , (4)

∂B

∂t
= −∇× E , (5)

E = −V ×B+
1

n
δi

(

J×B− 1

2
βe∇pe

)

, (6)

dpi
dt

= −Γipi∇ ·V − (Γi − 1)
1

2
βiδi∇ · qi

gv , (7)

and
dpe
dt

= −Γepe∇ ·Ve , (8)

where d/dt = ∂/∂t + V · ∇V is the advective derivative. Length is measured in
terms of a characteristic system size a, density is measured in terms of a character-
istic (or mean) density n0, the magnetic field in terms of the characteristic value
B0, and the species pressure is measured in terms of the characteristic pressure ps0,
s = e, i. The equation of state for each species is ps = nTs. The species velocity
is measured in units of the Alfvén speed VA = B0/

√
µ0n0M , and time in units of

t0 = a/VA, so that frequency is measured in units of ωA = 1/t0 = VA/a. The total
pressure is p = pi + pe, βs ≡ 2µ0ps0/B

2
0 , β = βe + βi, and δi ≡ di/a = c/(ωpia).

Current density is measured in units of B0/(µ0a), so that J = ∇ × B and
δiJ = n(V − Ve). In general, V is the center of mass velocity, but in this
form me = 0, so V is the (non-dimensional) ion velocity. The electron veloc-
ity Ve = V − δiJ/n is used in Equation (8), including the advective derivative of
pe.

The non-dimensional gyro-viscous stress tensor is

Πgv =
η3
2

[

b̂×W ·
(

I+ 3b̂b̂
)

+ transpose
]

≡ η3
2
F ·W(V) , (9)

where F is a tensor operator of rank four (the elastic constant tensor), η3 = pi/2B,
b̂ = B/B, and

Wi,j(V) =
∂Vj

∂xi
+

∂Vi

∂xj
− 2

3
δi,j∇ ·V , (10)

is the rate of strain tensor. The ion diamagnetic heat flux is

qi
gv = κi

gvb̂×∇Ti . (11)
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where κi
gv = (5/2)(pi/B). In unsheared slab geometry, the divergence of Eq. (11)

can be written as

∇ · qi
gv =

5

2

1

B0

b̂ · (∇Ti ×∇pi) , (12)

=
5

2

Ti

nB0

b̂ · (∇pi ×∇n) . (13)

The parameters Γi and Γe are the “adiabatic” contants for the ions and elec-
trons. Since the characteristic time scale for the ITG is assumed to be long com-
pared with 1/Ω, it is customary to assume that the electrons are isothermal, i.e.,
Γe = 1. However, direct comparison between the theory and the computations
require Γe = 5/3. We always take Γi = 5/3.

Equations (9 - 13) describe to lowest order the collisionless “transport” aris-
ing from the small but finite ion Larmor radius; they represent a non-dissipative
transport of momentum and energy due to the spatial variation of the magnetic
moments of the gyrating ions[11]. Since this “transport” is not a result of particle
collisions, its effects are completely reversible. Equations (3 - 8) reduce to ideal
MHD in the limit δi → 0.

Various forms of Equations (3 - 8) are now commonly used in linear and non-
linear numerical simulation of tokamak plasmas [8, 9]. An important step in the
verification of these computational models is to test their ability to detect accu-
rately instabilities such as the ITG that depend intrinsically on two-fluid and FLR
effects.

The specific computational model used in this work [8] solves the “primitive”
form [10] of Equations (3 - 8) in specified geometry without further assumptions.
Verification of these computational results requires direct comparison with the pre-
dictions of a theory that makes the minimum number of assumptions. Nonethe-
less, the complexity of the mathematics involved in solving the analytic model
still dictates a number of simplifying assumptions. In particular, the equilibrium
in slab geometry has a unidirectional magnetic field B(x) = B0(x)êz that varies
only in the x-direction. Perturbations to the equilibrium are assumed to vary as
f = f̂ ei(ωt+kyy+kzz), where f̂ is independent of x. This “local approximation” re-
duces the problem to algebra. (However, x-derivatives of equilibrium quantities
must be included.) Further, since for fusion applications we are primarily inter-
ested in frequencies that are comparable with or less than the Alfvén frequency
ωA = VA/a and parallel wavelengths that are much longer than perpendicular
wavelengths, we can introduce a small parameter kz/ky ∼ ǫ2 << 1, and assume
ω/ωA ≤ 1. This “ballooning ordering” further simplifies the algebra, but in most
cases we can obtain a dispersion relation only to lowest order in ǫ. We also take
Te0 = constant and n0 = constant.
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1.2 FLR Cancellations

The collisionless, reversible “transport” embodied in the ion gyro-viscous stress,
Equation (9), and the ion diamagnetic heat flux heat flux, Equation (11), represent
the lowest order (in k⊥ρi) effects of finite ion Larmor radius (FLR) when βi > 0.
These terms cancel, either whole or in part, the terms describing advection by the
ion diamagnetic drift velocity V∗i ·∇. This has a significant effect on the stability
properties of the extended MHD model.

The first of these occurs within the ion momentum equation, and can be writ-
ten, in SI units, as MnV∗i · ∇V + ∇ · Πgv

i ≈ 0. This is called the gyro-viscous

cancellation, because it involves the ion gyro-viscous force. This is motivated by
the form of the gyro-viscous stress, Equation (9); in cartesian coordinates, the rel-
evant terms of the x-component of the ion momentum equation are (in SI units)

i

(

ω +
ky

n0eB0

dpi0
dx

)

Vx = − 1

Mn0

∂Πgv
xx

∂x
≈ ikyVx

2n0eB0

dpi0
dx

+ . . . . (14)

The gyro-viscous force therefore cancels at least part (∼ 1/2) of the advection
from the diamagnetic drift. In analytic work the cancellation is often assumed to
be complete, i.e., MnV∗i · ∇Vi + ·Πgv

i = 0. This assumption greatly simplifies
both the equations and the ensuing algebra (see Ref. [11] for a more thorough
discussion). Clearly the situation is more complicated.

The second cancellation, arising from the ion diamagnetic heat flux, involves
the ion energy equation, Equation (7), and the ion continuity equation, Equation
(18): (3/2)∇ · qgv

i cancels the advection of density by the ion diamagnetic drift
V∗i · ∇n. This can be seen as follows.

Decompose the (nonlinear) velocity as V = Vi + V∗i, where V∗i = b̂ ×
∇pi/(neB) is the diamagnetic drift velocity. The velocity Vi contains all the
dynamical parts of the ion flow plus the E × B drift. Solve Equation (18) for
∇ ·Vi (using ∇ ·V∗i = 0), and substitute this expression into Equation (7). The
result is

∂pi
∂t

+ (Vi +V∗i) · ∇pi =
5

3

pi
n

∂n

∂t
+

5

3

pi
n
Vi · ∇n

+
5

3

pi
n
V∗i · ∇n− 2

3
∇ · qgv

i . (15)

We concentrate on the last two terms on the right hand side. From the definition
of V∗i and pi = nTi, we have

V∗i · ∇n =
1

neB
b̂×∇pi · ∇n

=
1

eB
b̂ · (∇Ti ×∇n) . (16)
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Then using Equation (12),

5

3

pi
n
V∗i · ∇n− 2

3
∇ · qgv

i =
5

3

Ti

eB
b̂ · (∇Ti ×∇n)

−
(

2

3

)(

5

2

)

Ti

eB
b̂ · (∇Ti ×∇n)

= 0. (17)

Unlike the gyro-viscous cancellation, this cancellation is complete (i.e., exact) for
electrostatic modes in unsheared slab geometry where ∇ × b̂0 = 0; in the more
general case the right hand side is −(2/3)(pi/eB)∇Ti · ∇ × b̂. To our knowledge,
this cancellation has no special name in the literature, although it is widely used.
For lack of a better term, we refer to it as the diamagnetic heat cancellation.

We shall see that both the gyro-viscous cancellation and the diamagnetic heat
flux cancellation must be included in the two-fluid model to obtain results consis-
tent with kinetic theory, where they arise naturally.

2 Analytical Model

The theory of the ITG is well-known [1, 2], and has been extended to include the
effects of magnetic shear and toroidal geometry [12, 13]. Computational results
for the ITG have used gyro-fluid models [14] and gyro-kinetic models [15]. To
the best of our knowledge, ITG-like modes have not been previously calculated
with an extended MHD model. In order to verify the computational results, it
is desirable to have an appropriate analytic solution of these equations. Ideally,
this theory would provide an exact solution of the same equations as solved in
the computational algorithm. This is impractical, if for no other reason that the
resulting analytic model would be a set of differential equations that would need to
be solved numerically. Here we attempt to find an approximate analytical solution
of the extended MHD equations, or their equivalent set of two-fluid equations, that
requires as few assumptions as possible while retaining algebraic tractability. We
emphasize that we do not intend to present a new theory of the ITG; rather, we find
approximate solutions of the extended MHD equations (i.e., the equivalent two-
fluid equations) that are as close as practical to those solved in the computational
model, and compare them with the numerical solutions.

For the analysis, we use a two-fluid model in which the ions and electrons have
individual velocities, temperatures, and pressures, and obey separate continuity,
momentum and energy equations. Assuming quasi-neutrality, so that ni = ne = n,
neglecting the electron mass (me = 0), and using the same normalization as in
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Equations (3)-(8), these equations are ion continuity,

∂n

∂t
= −∇ (nVi) , (18)

electron continuity,
∂n

∂t
= −∇ (nVe) , (19)

ion momentum,

δin
dVi

dt
= n (E+Vi ×B)− 1

2
βiδi (∇pi − δi∇ ·Πgv

i ) , (20)

and electron momentum,

0 = −n(E+Ve ×B)− 1

2
βeδi∇pe , (21)

along with Equations (7) (with V = Vi) and (8). The electric field is

E = E0 −∇φ− ∂A

∂t
, (22)

where E0 is a constant externally applied field, A is the vector potential, B =
∇×A, and φ is the scalar potential. (Here, E is measured in units of VAB0, φ is
measured in units of φ0 = Ωa2B0 and A is measured in units of A0 = B0a = E0t0.)
These must be supplemented by Ampére’s law, Equation (5), and Faraday’s law

δiJ = n (Vi −Ve) , (23)

= δi∇×B. (24)

These equations are equivalent to the extended MHD equations, Equations
(3-8). Identifying V = Vi, Equation (18) becomes Equation (3); subtracting
Equations (18) and (19) yields ∇·J = 0, consistent with Equations (23) and (24).
Adding Equations (20) and (21) eliminates E and, using Equation(23), and divid-
ing out a common factor of δi, yields Equation (4), while using Equation (23) in
Equation (21) yields the extended Ohm’s law, Equation (6). (These manipulations
also require the electron pressure to be expressed in the ion frame of reference; we
omit the details. Further, the required division by δi precludes setting δi = 0; ideal
MHD is obtained directly from Equations (18) - (24) only in the limit δi → 0.)

The equation for the electromagnetic field is found by introducing B = ∇×A

into Equation (24), using Equation (23), and imposing the gauge condition ∇·A =
0:

δi∇2A = −n (Vi −Ve) . (25)
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This couples the ion and electron dynamics.
We will determine the stability of the system by considering the evolution of

small perturbations about a steady equilibrium (force balance) state. We work in
simple slab geometry (x, y, z), where equilibrium quantities can vary in x; y and
z are periodic coordinates. (In the computations, there are perfectly conducting
walls at x = ±a.) We will denote equilibrium quantities by the subscript (. . .)0.
The equilibrium is characterized by ∂/∂t = 0 but Vs0 6= 0. The magnetic field is
B0 = B0(x)êz. The condition for force balance is

d

dx

[

B0(x)
2 + βipi0(x) + βepe0(x)

]

= 0 , (26)

where B0(0) = pi0(0) = pe0(0) = 1. The remaining equilibrium conditions are
given by the ion and electron drift velocities

Vsy0(x) = − Ex0

B0(x)
± 1

2

βsδi
B0(x)

dps0(x)

dx
, (27)

where the (+) sign is for ions, the (−) sign is for electons, ps0(x) = n0(x)Ts0(x) ,
and Ex0 is a constant applied electric field whose value can be chosen arbitrarily
(and for convenience), and determines the frame of reference.

In this work we chose the particular functional dependence n0 = constant,
Te0(x) = 1, and Ti0(x) = eηix, where ηi ≡ a/LT i, and LT i is the scale length for
variations in the ion temperature. Then

B0(x) =
√

1− βi [eηix − 1] , (28)

Viy0(x) = − Ex0

B0(x)
+

βiδiηi
2B0(x)

eηix , (29)

and

Vey0(x) = − Ex0

B0(x)
. (30)

From Equation (29), Ex0 ∼ O(δi), and we will sometimes write Ex0 = Ex0δi. This
equilibrium is stable in ideal MHD.

We note that Equation (28) requires that

ηi < ln

(

1 + βi

βi

)

. (31)

The linearized non-dimensional two-fluid equations are elucidated in Appendix
A. These comprise sixteen equations in the sixteen unknowns n (1), Vi (3), Ve (3),
φ (1), pi (1), pe (1), A (3), andB (3). These [i.e., Equations (53) - (60) of Appendix
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A] are differential equations, and are the equations solved in the computational
model [8]. They can be reduced to an algebraic system of equations by assuming
the perturbed quantities vary as f = f̂ei(wt+αyy+αzz), where w = ω/ωA is the
non-dimensional frequency, αy = kya and αz = kza are non-dimensional wave

numbers, f̂ is assumed to be independent of x, accounting for the x-dependence
of the equilibrium quantities, and evaluating the resulting expressions at x = 0.

Most analytical studies of two-fluid instabilities such as the ITG proceed by
algebraic manipulation of the individual equations of the model, with appropriate
approximations made at crucial points in the calculation. In this work we retreat
behind formalism. The individual algebraic equations, with isothermal electrons
(Γe = 1) are elucidated in Appendix B. These are a homogeneous algebraic system
in the unknowns (n, Vxi, Vyi, Vzi, Vxe, Vye, Vze, pi, pe, φ, Ax, Ay, Az, Bx, By, Bz). Non-
trivial solutions require that the determinant of the system vanish. This yields an
eighth order algebraic equation F (w) = 0 for the non-dimensional frequency w;
there are eight roots. The system is stable if all the roots are real.

The equation F (w) = 0 can be solved without further approximation in some
simple cases. When ηi = 0 (a uniform medium), βi = βe = 0, and αy = 0,
F (w) = 0 is a quadratic equation in w2. There are no FLR effects. When αz = 0,
the roots are w2

±
= α2

y, which are compressional Alfvén waves. When αy = 0, the
roots are

w2
±
= α2

z



1 +
1

2
α2
zδ

2
i ± αzδi

√

1 +
1

4
α2
zδ

2
i



 . (32)

The first term is the shear Alfvén wave, the second term is the whistler wave,
and the last terms are two fluid corrections (∼ αzδi = kzdi). At finite β, when
αy = 0 the roots are the usual parallel sound waves w2

±
= (2/3)α2

z, and four more
complicated roots that contain two fluid and FLR corrections. When αz = 0, the
roots are

w2
±
= α2

y

(

1 +
2

3
β +

1

64
α2
yβ

2δ2i

)

. (33)

The first two terms are magneto-acoustic waves, and the last term is an FLR
correction (∼ αyβδi = kyρi), where ρi = Vthi/Ω is the ion gyro-radius.

For other situations the solvability condition is more complicated. We are inter-
ested in solutions corresponding to long parallel wavelength, short perpendicular
wavelength, and relatively low frequency, on the order of ωA or less. We therefore
introduce a small parameter ǫ << 1, and order αy ∼ 1/ǫ2 >> 1, αz ∼ 1, and
w ∼ 1. We also order Ex0 ∼ ǫ2 and δi ∼ ǫ2. All other parameters are O(1) or less.
Then the solvability condition contains only even powers of ǫ, and can be written
as

F (w) = F0(w) + F2(w)ǫ
2 + F4(w)ǫ

4 + . . . , (34)
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so that, to lowest order in ǫ, the solvability condition is F0(w) = 0. This is generally
a simpler equation (i.e., lower order in w) than F (w) = 0, and possibly easier to
solve.

2.1 Electrostatic Modes

2.1.1 The Cubic Dispersion Relation

We first consider the electrostatic case, E = −∇φ. Then F0(w) = 0 is a quartic
equation in w, which factors as

w = Ex0δiαy , (35)

times a cubic f3(w) = 0 of the form

a3w
3 + a2w

2 + a1w + a0 = 0 . (36)

Equation (35) depends explicitly on the equilibrium electric field (the frame of
reference) and vanishes when Ex0 = 0; it is just the zero frequency mode ω −
kyVE = 0 in the Doppler shifted reference frame. In Equation (36), the individual
coefficients ai are complicated functions of the non-dimensional parameters, and
provide little insight. Unlike Equation (1), this equation contains all powers of
w up to three. However, the coefficient of the quadratic term, a2, is linear in
the electric field Ex0, and we take advantage of the arbitrariness of the frame
of reference by choosing Ex0 so that a2 = 0. The specific expression for Ex0 is
complicated, and is not given here. (The stability properties of the system are
independent of the choice of reference frame, i.e., of Ex0, as will be demonstrated.)
Then dividing by the coefficient of the cubic term, the equation is of the form1

w3 + a
′

1w + a
′

0 = 0 , (37)

which is now in the same form as Equation (1). The new coefficients a
′

i are still
complicated, and depend on specific assumptions, such as the presence, absence,
or completeness of the FLR cancellations discussed in Section 1.2.

Equations of the form
x3 − 3Ax+B = 0 (38)

are called deficient cubics because of the absence of the quadratic term. They can
be solved by using the substitution x =

√
A(z + 1/z), which transforms Equation

1The general cubic can always be reduced to this form by means of the substitution w =
(z − a2)/a3, see Ref. [7], Chapter 5.
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(38) into a quadratic equation for z3 whose roots are2

zl =



− B

2A3/2
+

√

B2

4A3
− 1





1/3

e2πil/3, l = 0, 1, 2 . (39)

When B2/4A3 < 1, the values of z lie on the unit circle, so that z∗ = 1/z, x is
real, and the solutions are stable. When B2/4A3 > 1, the values of z do not lie on
the unit circle, one root is real and two are complex conjugates. The root l = 2
has a negative imaginary part3 which indicates instability.

Specific cases are considered below.

2.1.2 Complete FLR Cancellations

We now assume, as in most previous analyses, that both the gyro-viscous can-
cellation and the diamagnetic heat cancellation are complete. In this case, this
assumption is exact for the diamagnetic heat flux but only approximate for the
gyro-viscosity. The coefficients of Equation (37) remain complicated, but to lowest
order in the small parameter δi, the dispersion relation reduces to

w3 − 1

2
α2
z

(

βe +
5

3
βi

)

w − 1

4
αyα

2
zβiβeδiηi = 0 , (40)

which is just the non-dimensional form of the standard result, Equation (1). The
“full” cubic contains terms that higher order in k⊥ρi ≡

√
βiαyδi. Equation (40)

has the property that its solutions are stable when either βe = 0 or βi = 0.
The balance of the first two terns in Equation (40) give parallel sound waves,

w2 =
1

2

(

βe +
5

3
βi

)

α2
z , (41)

while the balance of the second (linear) and third (constant) terms yields a low
frequency drift-like wave,

w = −2βi

(

1 +
1

6
βi

)

ηiδiαy , (42)

that propagates in the perpendicular (drift) direction. Instability results when the
cubic term is balanced by the constant term.

2While the cubic has three solutions, the sixth order equation has six solutions. However,
three of them are duplicates[7], and the cubic has only three unique roots.

3Recall that we use time dependence of eiwt.
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We have seen that the condition B2/4A3 > 1 is necessary for instability, where
A and B are the coefficients appearing in Equation (38). Applying this to Equation
(40), the instability condition is

27

8

α2
yβ

2
i β

2
eδ

2
i η

2
i

α2
z

(

βe +
5
3
βi

)3 > 1 . (43)

The system will become unstable when ηi > ηcriti , where

ηcriti =
(

2

3

)3/2 αz

αy

(

βe +
5
3
βi

)3/2

βiβeδi
. (44)

The condition for instability can also be written as k⊥ρi > g(βi, βe)kzLT i0.
There is a threshold in k⊥ρi for the onset of instability, and instability is facilitated
by long parallel wavelength (αz/αy << 1).

In deriving Equation (40), we chose the constant electric field Ex0 so that the
coefficient of the quadratic term vanished, leading to a deficient cubic. If instead
we do not specify Ex0, but leave it arbitrary, then to lowest order in ǫ and δi we
obtain4

w3
E − 1

2
α2
z

(

βe +
5

3
βi

)

wE − 1

4
αyα

2
zβiβeδiηi = 0 , (45)

where wE = w − αyδiEx0. (Setting wE = 0 is the same as Equation (35).) This is
identical to Equation (40), so the stability properties of the system are indepen-
dent of Ex0, as claimed previously5. The electric field produces a Doppler shifted
frequency because it is equivalent to a coordinate transformation.

The first two terms in Equation (40) (or Equation (45)) produce a parallel
sound wave. The constant term, which is responsible for the instability, has its
origin in the term Vi ·∇pi0 in the ion energy equation. This describes advection of
the equilibrium pressure by the perturbed ion flow (Vxidpi0/dx ∼ ηi). It is abetted
by the z-component of the electron momentum equation (parallel Ohm’s law),
which leads to a Boltzmann distribution of electron pressure and electrostatic
potential along the magnetic field if βe > 0. This couples the electron and ion
dynamics. These effects can conspire to be in phase with, and reinforce, the
pressure perturbations of the sound wave. If dpi0/dx (i.e., ηi) is large enough, and
βe > 0, this can lead to instability.

4The equation is actually a full cubic, but the coefficient of the quadratic term is O(δ3
i
).

5This is expected, as the extended MHD equations, which are mathematically equivalent to
the two-fluid equations, are independent of E0, but it is good to show it.
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2.1.3 Incomplete Gyro-viscous Cancellation

We now consider the case when the gyro-viscous cancellation in the ion momentum
equation is incomplete, but the diamagnetic heat cancellation remains complete.
This is the most “physically realistic” case for the unsheared slab geometry under
consideration. To lowest order in ǫ and δi, the dispersion relation is

w3 − 1

2
α2
z

(

βe +
5

3
βi

)

w − 1

4
αyα

2
zβi

[

βe

(

1 +
1

6
βi

)

+
5

18
β2
i

]

δiηi = 0 , (46)

This apparently allows the possibility of instability when βe = 0. However, in that
case the constant term is O(β3

i ) << 1 for βi < 1. The critical value of ηi for the
onset of instability is

ηcriti =
(

2

3

)3/2 αz

αy

(

βe +
5
3
βi

)3/2

βi

[

βe

(

1 + 1
6
βi

)

+ 5
18
β2
i

]

δi
. (47)

This differs from Equation (44) by the factor in brackets in the denominator, which
is ∼ βe when βi << 1. While this allows the possibility of instability when βe = 0,
it requires ηcriti ∼ 1/β3

i >> 1. When βe > 0, Equation (47) agrees very well with
Equation (44).

2.1.4 Incomplete Gyro-viscous Cancellation, No Diamagnetic Heat Flux

The goal of the present work is to verify the numerical solution of the two-fluid
model in NIMROD by comparison with analytical solutions of the same equations
under the same conditions. At the present time, the implementation of the ion dia-
magnetic heat flux in the NIMROD code has not been fully tested and debugged.
Therefore, for comparison with numerical calculations, we consider the analytical
solution of the two-fluid model with incomplete gyro-viscous cancellation and no
diamagnetic heat flux. In this case, the dispersion relation to lowest order in ǫ and
δi is

w3 − 1

2
α2
z

(

βe +
5

3
βi

)

w − 1

4
αyα

2
zβi

(

βe +
5

3
βi

)(

1 +
1

6
βi

)

δiηi = 0 . (48)

There is clearly the possibility of instability when βe = 0, for then the constant
term is O(β2

i ) >> O(β3
i ). The value of ηcriti is

ηcriti = 2
√
2
αz

αz

(

βe +
5
3
βi

)1/2

βi

(

1 + 1
6
βi

)

δi
, (49)

which is minimum when βe = 0. The properties of the system without diamagnetic
heat flux are both quantitatively and qualitatively different then the properties
when it is included.
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2.1.5 No Gyro-viscosity, No Diamagnetic Heat Flux

For completeness, we also consider the case with neither gyro-viscosity nor dia-
magnetic heat flux. This corresponds to the Hall MHD model; it contains two-fluid
effects but no FLR effects. The dispersion relation is a quadratic, whose solution
at lowest order in ǫ and δi is

w2 =
1

2
α2
z

(

βe +
5

3
βi

) [

1 +
3

2
α2
y

(

βe +
5

3
βi

)

δ2i

]

. (50)

This is a stable parallel sound wave with two-fluid corrections at second order in
δi. For the ITG-like mode, gyro-viscosity is destabilizing.

2.1.6 Properties of the Solutions

Here we discuss the similarities and differences between the the solutions of the
three dispersion relations derived in Sections 2.1.2, 2.1.3, and 2.1.4. We use the
specific parameters B0 = 2 T, n0 = 2 × 1020 / m3, a = 1 meter, αy = 125.6, and
αz = 0.1 These result in δi = 0.0161 and satisfy the ballooning ordering discussed
in Section 1.1.

We first consider the values of ηcriti given in Equations (44), (47) and (49).
These are plotted in Figure 1 as functions of the electron temperature fraction
fe = βe/(βi + βe) for the case β = βi + βe = 0.05. The blue curve (Curve 1)
is Equation (44) (diamagnetic heat flux and complete gyro-viscous cancellation),
the red curve (Curve 2) is Equation (47) (diamagnetic heat flux and incomplete
gyro-viscous cancellation), and the gold curve (Curve 3) is Equation (49) (no
diamagnetic heat flux and incomplete gyro-viscous cancellation). Curve 1 is infinite
at fe = 0, indicating complete stability when βe = 0. Curve 2 is finite but large
(ηcriti = 18.6) in this limit, so that instability when βe = 0 is possible but the
threshold is large. (Recall that Curve 2 represents the most “physically realistic”
case.) All three curves are infinite when fe = 1 (βi = 0) indicating stability when
the ions are cold. Curves 1 and 2 are in agreement when fe > 0. For these
parameters, instability is most easily achieved when fe ∼ 0.7, or Te0/Ti0 ∼ 7/3.
The gyro-viscous cancellation is apparently an excellent approximation. Curve 3
(no diamagtnetic heat flux) has completely different behavior: it is most unstable
when fe = 0 (βe = 0), and is not even qualitatively similar to Curves 1 and 2 when
βe > 0. Clearly, the diamagnetic heat flux plays a crucial role in determining the
stability of the system.

In Section 2.1.1 we showed that the solution of the cubic dispersion relation
w3 − 3Aw +B = 0 is w =

√
A(z + 1/z), where z is given by Equation (39). Both

the growth rate of the instability and its real frequency can be written explicitly in
terms of the coefficients for each of the dispersion relations (40), (46), and (48), but
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ηi
crit

fe = βe/(βi + βe)

βi + βe = 0.05

αy = 125.6

αz = 0.1

δi = 0.0161

1: Complete FLR cancellation

2: Incomplete GV cancellation

3. No diamagnetic heat flux

1

2

3

Figure 1: The instability criterion ηcriti as a function of the electron β fraction for

β = βe + βi = 0.05, αy = 125.6, αz = 0.01 and δi = 0.0161. The blue curve assumes

complete FLR cancellation (Section 2.1.2, Equation (44)); the red curve has incomplete

gyro-viscous cancellation and complete diamagnetic heat cancellation (Section 2.1.3,

Equation (47)); and, the gold curve has incomplete gyro-viscous cancellation and no

diamagnetic heat flux (Section 2.1.4, Equation (49)). Curve 3 (gold) differs significantly

from Curves 1 and 2, which are in good agreement.
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the expressions are complicated and again yield little insight. Instead, we consider
the behavior of the growth rate as a function of ηi for the specific parameters of
Figure 1, and for different values of the electron β fraction fe. This is shown in
Figure 2a-d where we plot the growth rate γ = −Im(w) as a function of ηi for four
different values of fe = βe/(βi + βe). Except for the monotonic behavior, there is
little similarity between Curves 1 and 2, and Curve 3.

The behavior of the roots of the dispersion relation for the “most realistic” case
of Section 2.1.3 is illustrated in Figure 3. The blue curve is the locus of the roots of
Equation (46) in the (ηi, w) plane for the case βi = 0.01, βe = 0.04 (Te0/Ti0 = 4),
and the remaining parameters of this Section. Also shown for comparison is the
Doppler shifted zero frequency mode, Equation (35) (with Ex0 = −β2

i ηi/12, as
results at lowest order from reducing the dispersion relation to a deficient cubic),
and the “low frequency wave”

w = −1

2
αyβiδiηi

βe

(

1 + 1
6
βi

)

+ 5
18
β2
i

βe +
5
3
βi

, (51)

which is obtained by equating the linear and constant terms in Equation (46). This
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Figure 2: Growth rate of the electrostatic mode as a function of ηi for four different

values of the electron β fraction: a) fe = 0.2, b) fe = 0.4. c) fe = 0.6, and d) fe = 0.8.

In each case β = βi + βe = 0.05. The other parameters, and the labeling of the curves,

is the same as in Figure 1. Curves 1 and 2 are almost identical except at low fe.
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has the appearance of a drift wave, but with a correction depending on βe and βi.
When the medium is uniform (ηi = 0) this mode has zero frequency, and there two
stable sound waves propagating in the ±z-directions (three real roots); these sound
waves are indicated by the dots in the figure. When −ηcriti < ηi < ηcriti (where
ηcriti is given by Equation (47)), there are three real roots: Equation (51), the
low frequency drift-like mode, and the two sound waves modified by two-fluid and
FLR effects. When |ηi| > ηcriti there is one real root and two complex conjugate
roots, with the growth rate of the unstable mode given by Curve 2 in Figure 2d.
It is tempting to interpret the onset of instability as an “interaction” between the
sound wave and the drift-like wave when they have comparable frequency.

Figure 3: The locus of the roots of the dispersion relation with incomplete gyro-viscous

cancellation and diamagnetic heat flux (Section 2.1.3) in the (ηi, w) plane for βi = 0.01,

βe = 0.04 (Te0/Ti0 = 4), and the parameters of Figure 2. The red curve is the Doppler

shifted zero frequency wave, Equation (35), the gold curve is the “low frequency” drift

like wave, Equation (51), and the blue curve is the cubic dispersion relation, Equation

(46). This cubic is has three real roots and is stable in the range −ηcriti < ηi < ηcriti ;

outside this range there is one real root and two complex conjugate roots, one if which

is unstable with growth rate given in Figure 2d. The dots are the sound waves in a

uniform medium.
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2.2 Electromagnetic Modes

We now consider electromagnetic modes, so that E = −∇φ − ∂A/∂t. Here we
work in a reference frame in which the ions are stationary at x = 0, so that
Ex0 = βiδiηi/2. (Of course, the electrons drift in the opposite directon.) The
solvability equation has two large roots, ω2 >> ω2

A, which we take as unphysical.
The low order (in ǫ) solvability condition F0(w) = 0 is sixth order, and factors as

(w − 1

2
αyβiδiηi)f5(w) = 0 . (52)

The first factor appears as an ion drift wave, but is identical to the Doppler shifted
zero frequency wave discussed in Section 2.1.1. The second is a quintic equation
which has five roots: two shear Alfvén waves, two sound waves, and a low frequency
waves similar to Equation (51).

The nature of the roots of the low order dispersion relation f5(w) = 0 are
illustrated6 in Figure 5, including gyro-viscosity, diamagnetic heat flux, Γe = 1,
and n0 =constant, for the parameters of Section 2.1. The low frequency roots,
including the drift wave (which in electrostatics appeared as the zero-frequency
wave) have similar qualitative behavior to the electrostatic case, although the
cubic behavior does not factor out of the quintic. The upper and lower branches
are modified sound and magneto-acoustic waves. The remaining root is similar
to the low frequency root given in Equation (51). The system is unstable when
|ηi| > ηcrit.

The electomagnetic mode is stable when βe ∼ 0. This is illustrated in Figure
5, where we plot the locus of the roots of the f5(w) = 0 in the (fe, w) plane for the
parameters indicated in the figure, where fe = βe/(βi + βe). There are five real
roots when fe → 0 and fe → 1. There is an unstable root when 0.225 < fe < 0.875.
The nature of the waves is indicated in the figure.

A comparison of the growth rate as a function of ηi for the electromagnetic
(blue) and electrostatic (red) cases is shown in Figure 6. They are almost identical;
the fluid ITG-like mode is essentially an electrostatic mode.

3 Computational Results

The computational algorithm for solving the extended MHD equations has been
described in detail elsewhere[17]. The algorithm used here has κgv

i = κgv
e = 0, and

assumes Γe = 5/3, but solves separate energy equations for the ions and electrons.
The full gyro-viscous stress tensor is implemented. It therefore corresponds with

6Equations of degree 5 or higher do not have solutions that can be expressed in terms of
radicals [7].
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Figure 4: The locus of the roots of the electromagnetic dispersion relation with incom-

plete gyro-viscous cancellation and diamagnetic heat flux (Section 2.1.3) in the (ηi, w)

plane for βi = 0.01, βe = 0.04 (Te0/Ti0 = 4), and the parameters of Figure 2. The red

curve is the ion drift wave. The blue curve is the quintic dispersion relation, f5(w) = 0.

The quintic is has five real roots and is stable in the range −ηcriti < ηi < ηcriti ; outside

this range there are three real roots and two complex conjugate roots, one if which is

unstable. The low frequency behavior is similar to the electrostatic case; however, the

cubic dies not factor out algebraically. The dots are the Alfvén and sound waves in a

uniform medium.
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Figure 5: The roots of f5(w) = 0 in the (fe, w) plane, where fe = βe/(βi + βe), for the

parameters listed in the figure. The system is stable when fe ∼ 0 and fe ∼ 1.

Figure 6: Comparison of the growth rate versus ηi for the electromagnetic (blue) and

electrostatic (red) cases for n0 =constant, Γe = 1, incomplete gyro-viscous cancellation,

and diamagnetic heat flux.
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the analytic results of Section 2.1.4 (but with Γe = 5/3), and should not be ex-
pected to agree with more the physically realistic models that include diamagnetic
heat flux, especially when βe → 0. We can seek verification, but further code
development is required for validation.

The linearized extended MHD equations are solved as an initial value problem
using the equilibrium described in Section 2. Perfectly conducting, impermeable
walls are placed at xwall = ±1 meter; this serves as the distance normalization a
used in the analytical results of Section 2: n0 = 1020/m3, B0 = 2 T, βi = 0.01, and
βe = 0.04. We take n0 =constant and Te0 =constant. The ion temperature varies
as Ti0 = Ti0(0)e

x/LTi , and define ηi ≡ a/LT i. We use the parameters of Section 2.
These lead to Te0 = 1.9 KeV, Ti0(0) = 0.5 KeV, VA ≡ B0/

√
µ0mpn0 = 3.08 × 106

m/sec, where mp is the proton mass (a hydrogen plasma), and di ≡ c/ωpi = 0.0161
m.

The equilibrium is then perturbed with disturbances of the form f(x, y, z, t) =
f̂(x, y, t)eikzz. The equations are solved on an (x, y) finite element grid, with pe-
riodic boundary conditions in y; the z-direction is assumed periodic and approx-
imated by finite Fourier transforms. The parallel wave number kz is a specified
parameter, while the perpendicular wave number is ky = 2π/(ymax − ymin). We
choose kz = 0.1/m and ymax = 0.025 m, so that the non-dimensional wave num-
bers are αz ≡ kza = 0.1 and αy ≡ kya = 126.5. The linearized extended MHD
equations are then integrated forward in time. The fastest exponentially growing
solution (if there is one) will emerge from the initial perturbations as t → ∞.

The computational algorithm solves the differential equations of the extended
MHD model including full x-dependence of the perturbations, and imposes bound-
ary conditions at x = ±xwall. Neither of these are included in the analysis of
Section 2; the local approximation is not assumed, and the solutions may have
rapid x-variation. Since the fundamental algorithm has very low inherent numer-
ical dissipation[8, 17], we have found it necessary to introduce a small amount
of dissipation in the form of electrical resistivity, viscosity, and isotropic thermal
conductivity. The particular values correspond to a Lundquist number S = 109,
magnetic Prandtl number PrM = 1. We have also found it useful to increase the
resistivity and viscosity by a factor of 102 is a small layer near ±xwall. A small
amount of hyper-diffusivity is used in the continuity equation: Dnh = 10−2 m4/sec.
The boundary conditions at ±xwall are: no-slip (V = 0), Bn = 0, Etan = 0, and
Dirichlet conditions (fixed values) for density and temperature. We make a series
of runs and keep all parameters fixed except LT i. The results are converged in time
and spatial resolution, and dissipation. If there is an unstable mode, we determine
its growth rate γ as a function of ηi ≡ a/LT i.

For the given parameters, the computational algorithm finds an unstable mode
with threshold ηcriti ∼ 0.7. These results are shown in Figure 7, where we plot
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the growth rate of the unstable mode (in units of sec−1) determined numerically
is plotted as a function of ηi for the given parameters. For comparison, we also
plot the predictions of the local electromagnetic theory described in Section 2.1.4,
evaluated with the parameters at x = 0, using Γe = 5/3, and κgv

i = κgv
e = 0 (as in

the numerical calculations). While there is fair agreement on the marginal point
ηcriti , NIMROD predicts consistently larger growth rates than the local theory.

Figure 7: Growth rate of the unstable mode determined by numerically (NIMROD)

compared with the predictions of the local theory for the given parameters. Both results

take Γe = 5/3 and κgvi = κgve = 0.

Figure 8: Variation of βi as a function of x for the equilibrium Ti0(x) = eηix, n0 =

constant, and βi(0) = 0.02, for three different values of ηi.
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In addition to the fixed parameters αy, αz, ηi, δi and βe, the theoretical growth
rate depends on the local value of βi, and the normalization on the local value
of ωA = VA/a. We emphasize that the analytic results plotted in Figure 7 were
obtained using parameters evaluated at x = 0. In fact, these parameters depend
on x: βi(x) = βi(0)pi0(x)/B0z(x)

2, and ωA(x) = B0z(x)/(a
√
n0). The variation of

βi(x) for ηi = 1, 2, and 3 is shown in Figure 8. (The parameters βe and δi = di/a
are constant if the density and electron temperature are constants.) Because of
the exponential nature of the equilibrium, regions near the outer boundary (x = 1)
can have βi ∼ 1 even for moderate ηi.

As a result of this variation, the local theory developed in Section 2 predicts a
different local growth rate at each value of x. In contrast, the numerical algorithm
produces a single global eigenmode that varies with x and has a single growth rate.
These points are illustrated in Figure 9, where the local growth rate is plotted as a
function of ηi for different locations x of the equilibrium profile. The growth rate
of the global mode is also shown as a function of ηi. (These are the same data
plotted in Figure 7.) The connection between the single global growth rate and
the individual local growth rates is not obvious.

The structure of the global eigenfunction of the perturbed ion temperature is
shown in Figure 10 for a)ηi = 0.75, b) ηi = 1.0, c)ηi = 1.4 and d) ηi = 1.8. The
striated appearance is due to the shear in the drift velocity Viy0(x); see Equation

Figure 9: The local growth rate as a function of ηi for different values of x. The com-

putational results for the growth rate of the global eigenfunction are labeled NIMROD.

This case has an exponential ion temperature profile, αy = 125.6, αz = 0.1, βi = 0.01,

βe = 0.04, and δi = 0.0161.
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(29). These structures correspond to counter-rotating vortices. The eigenfunction
migrates toward the upper (high β) boundary as ηi increases.

The global eigenfunctions displayed in Figure 10a), b), and c) appear to be time
asymptotic states; they maintain the same spatial structure and continue to grow
exponentially for as long as the time-dependent calculation is continued. However,
the mode for ηi = 1.8, Figure 10d), eventually undergoes a transition to a faster
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Figure 10: The spatial structure of the global ITG eigenfunction for a) ηi = 0.75, b)

ηi = 1.0, c) ηi = 1.4, and d) ηi = 1.8, for the exponential case with f αy = 125.6,

αz = 0.1, βi = 0.01, βe = 0.04, and δi = 0.0161. The eigenfunction migrates toward the

upper (high β) boundary as ηi is increased.
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Figure 11: a) The log of the energy of the unstable mode as a function of time for the

low β parameters at x = 1. The slope (∼ γ) increase at t ∼ 3 × 10−4 seconds. b) The

growth rate γ = (1/2)d(lnE)dt corresponding to part a).
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growing mode at large time. This is illustrated in Figure 11a), where we plot the
logarithm of the energy in the unstable mode as a function of time. The slope
increases at t ∼ 3 × 10−4 seconds, but the mode continues to grow exponentially.
The growth rate of the modes is γ = (1/2)d(lnE)dt. In Figure 11b) we plot γ
as a function of time for this case. After settling into nearly exponential growth
at t ∼ 1 × 10−4 seconds, it makes a transition to a larger value at t ∼ 3 × 10−4

seconds, and then continues at this value.
The eigenfunction for t > 3× 10−4 seconds is shown in Figure 12. It is concen-

trated near x = 1. In spite of its pathological appearance, it appears to be well
resolved numerically.

In Section 2.1.4 we noted that the two-fluid model with gyro-viscosity but
no diamagnetic heat flux indicates that ITG-like electrostatic modes are unstable
when βe = 0. At the present time, the implementation of the diamagnetic heat flux
in NIMROD is still being tested and debugged. Therefore, the NIMROD results
should be compared with the theory of Section 2.1.4. In Figure 13 we plot the
growth rate as a function of the electron temperature fraction fe = βe/(βe + βi)
for fixed β = βe + βi = 0.05 and ηi = 1.2. The other parameters are the same
as used in Figure 9. The red curve is the solution of Equation (48); it is the
lowest order (in ǫ and δi) electrostatic solution in the local approximation with
gyro-viscosity but no diamagnetic heat flux. The blue curve is the full solution of

ηi = 1.8

βi = 0.01

βe = 0.04

αy = 125.6

αz = 0.1

δi = 0.061

Figure 12: The spatial structure of the global eigenfunction for ηi = 1.8 for t > 3×10−4

seconds. In spite of its localization near x = 1, the mode appears to be well resolved

numerically. It has a larger growth rate than the eigenmode shown in Figure 10.
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Figure 13: Growth rate as a function of the electron temperature fraction, fe = βe/(βi+

βe), for fixed β = βi+βe = 0.05 and ηi = 1.2. The other parameters are alphay = 126.5,

αz = 0.1, and δi = 0.0161. The red curve is the approximate local electrostatic solution

determined with Equation (48). The blue curve is the electromagnetic solution using

only the local approximation (ǫ = 1) that satisfies the quintic equation f5(w) = 0. The

dark black curve is the numerical results from the NIMROD code. We also display for

comparison the more accurate solution that contains diamatnetic heart flux, as given in

Equation (40).
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the electromagnetic dispersion relation f5(w) = 0, using the local approximation
but no further ordering (ǫ = 1). The dark black curve is the numerical solution
obtained with the NIMROD code. There is good agreement between these results.
More striking is the disagreement between these solutions and the solution of
Equation (40), which does not allow instability when fe = 0. While there is good
agreement between the analytic and computational results for the same parameters
(i.e., no diamagnetic heat flux), both disagree with the more realistic models (with
diamagnetic heat flux) across the entire range of βe. The computational model is
verified, but not validated. Clearly, the model of ion diamagnetic heat flux needs
to be refined and tested in the NIMROD code.

4 Discussion

The dynamics of a magnetized plasma are described by the evolution of the distri-
bution functions according to the plasma kinetic equation (PKE) for each species.
This kinetic model contains a large number of degrees of freedom. These can be
reduce by considering the evolution of the velocity moments of the distribution
functions and the corresponding PKEs. The two-fluid model considers the dy-
namics only a few of these lowest order moments that introduce the lowest order
corrections (in k⊥ρi) to ideal MHD. Here we are concerned with how well the so-
lutions of the two-fluid model correspond to the solutions of the underlying PKEs.

We have analyzed the stability of the two-fluid model for the case in Cartesian
slab geometry where there is no shear in the magnetic field and the equilibrium
density and electron temperature are spatially uniform, but there is a gradient
in the equilibrium ion temperature. There can be instability if the temperature
gradient is sufficiently large. This configuration is stable in ideal MHD; it is
destabilized by effects of finite ion Larmor radius (FLR). It s therefore a good
test case for judging the efficacy of using the two-fluid model for describing the
dynamics of highly magnetized, hot, nearly collisionless plasmas.

The two-fluid model contains terms in the ion momentum and energy equa-
tions, the gyro-viscous stress and the ion diamagnetic heat flux, that together
approximate the effects of finite ion Larmor radius on the global dynamics of the
plasma. The terms enter the theory at the same order (in k⊥ρi), and they should
both be included for the model to be consistent7. Together, their effect is to al-
most completely cancel the contributions of advection by the ion diamagnetic drift
velocity; see Section 1.2. If they are both excluded (so-called Hall MHD) the sys-
tem has stable solutions; see Section 2.1.5. If only the gyro-viscosity is retained

7There is another term, the diamagnetic heat stress, that also enters the ion stress tensor [11].
However, it is one order higher in k⊥ρi << 1 than the gyro-viscous stess and does not affect the
results to lowest order.
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the system is unstable, but the instability persists in the limit βe → 0; Section
2.1.4. When they are both retained, either exactly or approximately, the system
is unstable, but is stable when βe → 0; Sections 2.1.2 and 2.1.3. This latter result
is in agreement with the predictions of kinetic theory [2, 6].

The current version of the NIMROD code contains a complete implementation
of the ion gyro-viscous stress, but the implementation of the diamagnetic heat flux
is still undergoing testing and debugging. It is thus a numerical implementation of
the model of Section 2.1.4: incomplete gyro-viscous cancellation and no diamag-
netic heat flux. In this case, the computational solutions agree reasonably well
with the local analytic solutions. In particular, they both predict instability when
βe → 0, in disagreement with both kinetic theory and two-fluid theory that retains
the diamagnetic heat flux. Therefore, the computational solutions of the two fluid
equations are accurate, but the model is not correct (or, perhaps, is incomplete);
NIMROD has been verified but not validated for this problem. Completion of the
computational implementation of the diamagnetic heat flux in the NIMROD (and
other) extended MHD codes is therefore necessary to obtain a physically realistic
two-fluid model, and should be a development priority.

There is also a question of how well the full two-fluid model agrees with kinetic
theory over a range of parameters, i.e., βi, βe, k⊥ρi, etc. This can best be deter-
mined by running the same problem with a kinetic code (Lorentz ions, or possibly
gyro-kinetic) and comparing with the two-fluid (extended MHD) results in detail.

Progress in extending fluid models further into the kinetic regime requires the
implementation of more accurate (i.e., higher order in k⊥ρi) closure schemes for
the ion stress tensor and heat flux. (Implementing the diamagnetic heat stress
into the ion dynamics has not been addressed, either.) The problem of ITG-like
modes analyzed here is a good test case of these models.
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Appendix A: Linearized Two-fluid Equations

The non-dimensional linearized two-fluid equations are

∂n

∂t
= −∇ · (n0Vi + nVi0) , (53)

∂n

∂t
= −∇ · (n0Ve + nVe0) , (54)

δin0

(

∂Vi

∂t
+Vi0 · ∇Vi +Vi · ∇Vi0

)

= n (E0 +Vi0 ×B0)

+n0

(

−∇φ − ∂A

∂t
+Vi ×B0 +Vi0 ×B

)

− 1

2
βiδi (∇pi + δi∇ ·Πgv

i ) (55)

0 = −n (E0 +Ve0 ×B0)− n0

(

−∇φ − ∂A

∂t
+Vi ×B0 +Vi0 ×B

)

− 1

2
βeδi∇pe ,

(56)

∂pi
∂t

+Vi0 · ∇pi +Vi∇pi0 = −Γi (pi0∇ ·Vi + pi∇ ·Vi0)

− (Γi − 1)
1

2
βiδi∇ · qi

gv, , (57)

∂pe
∂t

+Ve0 · ∇pe +Ve∇pe0 = −Γe (pe0∇ ·Ve + pe∇ ·Ve0)

− (Γe − 1)
(

∇ · qe
u +

1

2
βiδi∇ · qe

gv

)

, (58)

δi∇2A = −n0 (Vi −Ve)− n (Vi0 −Ve0) , (59)

and
B = ∇×A , (60)

along with the condition ∇ ·A = 0.
The linearized gyro-viscous stress is

Π
gv
i =

1

2
[η30F ·W(Vi) + η3F ·W(Vi0)] , (61)

where η30(x) = pi0(x)/B0(x), and

η3(x) =
1

B0(x)

[

pi −
pi0(x)

B0(x)2
Bz

]

(62)
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is the perturbed gyro-viscous coefficient. The linearized gyro-heat fluxes are

qs
gv = ±

[

κs
gv0b̂0 ×∇Ts + κs

gvb̂0 ×∇Ts0 + κs
gv0b̂×∇Ts0

]

, (63)

where again (+) refers to ions (s = i), (−) refers to electrons (s = e), κs
gv0 =

(5/2)ps0(x)/B0(x),

κs
gv(x) =

5

2

1

B0(x)

[

ps −
ps0(x)

B0(x)
Bz

]

, (64)

is the perturbed gyro-conductivity, b̂0 = êz, and

b̂(x) =
1

B0(x)
(Bxêx +Byêy +Bzêz) , (65)

is the direction of the perturbed field. The perturbed temperature is Ts = [ps −
n/n0(x)]/n0(x). Finally,

qe
u = 0.71

[

peb̂0 · (Ve0 −Vi0) + pe0b̂0 · (Ve −Vi) + pe0b̂ · (Ve0 −Vi0)
]

. (66)

Since the the condition ∇ ·A = 0 must be enforced, only two components of
Ampére’s law, Equation (59), are required.
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Appendix B : Algebraic System of Equations

We display the individual equations of the algebraic system that are solved in
Section 2. We have assumed n0 = 1; when n0 is not constant it appears explicitly
in these equaitons, and the algebraic manipulations becomes more complicated.

The equations are: ion continuity,

wn+ αyVyi + αzVzi = 0 , (67)

electron continuity,

(

w − 1

2
αyβiδiηi

)

n + αyVye + αzVze = 0 , (68)

ion x-momentum,

−1

2
βiδiηin + iδi

[

w − 1

4
αyβi

(

1 +
1

2
βi

)

δiηi

]

Vxi

−
[

1− 1

4
βiδ

2
i

(

α2
y + 2α2

z

)

]

Vyi +
1

2
αyαzβiδ

2
i Vzi

−1

3
β2
i

(

1 +
3

2
βi

)

δ3i β
3
i pi + iwAx +

1

4
β2
i (1 + βi) δ

3
i η

3
iBz = 0, (69)

ion y-momentum,

[

1− 1

4
βiδ

2
i

(

α2
y + 2α2

z − 2η2i
)

]

Vxi

+iδi

[

w − 1

4
αyβi

(

1 +
1

2
βi

)

δiηi

]

Vyi

−iαyφ+ iwAy −
1

8
iαyβ

2
i δ

2
i η

2
iBz = 0, (70)

ion z-momentum,

−1

2
αyαzβiδ

2
i Vxi −

1

2
iαzβi

(

1 +
1

2
βi

)

δ2i ηiVyi

+iδi

[

w − 1

2
αyβi

(

1 +
1

2
βi

)

δiηi

]

Vzi

+iαzφ+
1

2
αzβiδipi + iwAz = 0, (71)

electron x-momentum,

Vye − iwAx −
1

2
βiδiηiBz = 0 , (72)
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electron y-momentum,

Vxe + iαyφ− 1

2
iαyβeδipe + iwAy = 0 , (73)

electron z-momentum,

iαzφ+
1

2
iαzβeδipe − iwAz +

1

2
βiδiηiBx = 0 , (74)

ion energy,

5

3
iαyβi

(

1 +
1

4
βi

)

δiηin+ ηiVxi +
5

3
iαyVyi +

5

3
iαzVzi

+i
(

w − 5

12
αyβ

2
i δiηi

)

pi −
1

3
iαzβiδiηiBy = 0, (75)

electron energy,

αyVye + αzVze +
(

w − 1

2
αyβiδiηi

)

pe = 0 , (76)

the x-component of Ampére’s law,

Vxi − Vxe − δi
(

α2
y + α2

z

)

Ax = 0 , (77)

the z-component of Ampére’s law,

Vzi − Vze − δi
(

α2
y + α2

z

)

Az = 0 , (78)

the gauge condition ∇ ·A = 0,

αyAy + αzAz = 0 , (79)

and the three components of B = ∇×A,

Bx + iαzAy − iαyAz = 0 , (80)

By − iαzAx = 0 , (81)

and
Bz + iαyAx = 0 . (82)
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