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The Pfirsch-Schlüter flows in toroidal geometry can be derived from the 3 equations: 
 

p J B∇ = ×                                                                     (1) 
E V B Jη+ × =                                                                (2) 

0E∇× =                                                                    (3) 
 
It is easiest to work in the axisymmetric flux coordinate system ( , , )ψ θ ϕ  so that the 
magnetic field and Jacobian can be written as: 
 

( )B gϕ ψ ψ ϕ= ∇ ×∇ + ∇                                                       (4) 
and 

[ ] 1J ψ θ ϕ −≡ ∇ ×∇ ∇i                                                          (5) 
 
Note that 2 21 Rϕ∇ = .  Combine (3) and (2) to rewrite (2) in the form: 
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∇Φ + ∇ + × =                                                  (2)’ 

The first term in (2)’ is the gradient of a single valued scalar potential, and the second 
term represents the electric field due to an applied loop voltage (it is necessary in order to 
make Φ single valued). 
 
Equation (1) gives the perpendicular part of the current density, but it is not divergence 
free.  The condition that the current be divergence-free and consistent with (2)’ gives: 
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Note that if we take the dot product of (6) and then surface average, it is consistent with 
taking the dot product of (2)’ and surface averaging, using the fact that 0B ∇Φ =i . 
 
Now, we can use Eq ations (2)’ and (6) to solve for the perpendicular velocity.   Take 
both  and 

u
Bψ∇ × i Bi  of Equation (2)’, perform appropriate surface averages, eliminate 

the first term (scalar potential), and solve for the cross field particle flux: 
 
Thus,  
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Now we need to eliminate the last term.  This is done by taking another projection of (2)’: 
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Now use (6.2) to eliminate the scalar electrostatic potential from (6.1) and surface 
average: 
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where 2 2

TB g R≡ 2 . The first term in brackets in (7) is the Pfirsch-Schlüter diffusion 
term, and the second is the classical pinch.  Note that we can define: 
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In the large aspect ratio, circular limit, q* reduces to the safety factor.  Then (7) becomes: 
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T  to his particle flux zero would be to replace (2) with 

 and set V
he only way  make t

)0(E V B J Jη+ × = − L=0, where 0J  is EXACTLY given by (6).  It is unlikely 
that any physical current drive source will be of this exact form. 



 


