
CEMM Challenge Problems for Advanced Numerical Algorithms (Rev 2:  8/30/03) 
 
1.  Anisotropic heat conduction: 
 
We use a standard (R,ϕ , Z)  cylindrical coordinate system.  The solution domain is 
defined by: (R – R0)2 + Z2 < a2, where R0 is the major radius and a is the minor radius. 
 
Consider the anisotropic heat conduction equation: 
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where κ is the isotropic part of the thermal conductivity, κ| |  (which is normally much 
greater than κ) is the parallel thermal conductivity, and S(R,Z) is the source term. Take 
the magnetic field to be of the form: 
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where the axisymmetric field is given by 
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where r2 ≡ (R – R0)2 + Z2, /r r a≡% ,and ˆ Rϕ ϕ≡ ∇  is a unit vector in the ϕ direction.  Note 
that 
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 We take the function appearing in Eq. (1.2) as 
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where θ is the angle in a polar (r,θ ) coordinate system with origin at R=R0, Z=0 and m 
and n are integers.  For definiteness, let (r,θ,ϕ) form a right-handed system. Thus, once 
the geometry (R0 and a ) is specified, the magnetic field is completely specified by the 
constants q0, αmn, m and n.   We note here that 
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Note:  In the large aspect ratio approximation, the safety factor (or inverse winding 
number) at the plasma center and edge are: 0 0(0) , ( ) 2q q q a q; ; .  Also, if the rational 
number m/n lies between q0 and 2q0, ie, q0 < m/n < 2q0, then a magnetic island will be 
present with approximate normalized width of (αmn)1/2.  See Ref:  [2] 
 

 
 
 
(1a) Let the geometry and magnetic field be given by R0 = 3,  a = 1,  q0 = 1,  αmn=0.   
Let the initial conditions and the source term be defined as: 
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Keep the boundary temperature fixed at T=0 and plot the central temperature T(R0,0) as  
κ| |  is varied from 0 to a value  κ| |  >> κ  and verify to what degree it stays unchanged at T0 
as  κ| |  is increased to large values with ratios up to κ|| / κ⊥ = 108. 
 
 
 
(1b) As a initial condition, start with a localized Gaussian distribution: 
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Let the geometry and magnetic field be given by R0 = 3,  a = 1,  q0 = 1,  αmn=0.  As an 
initial condition, use Eq. (1.8) with R1=3.5, Z1=0, δ=0.1.  Integrate Eq. (1.1) with parallel 
heat conduction only, ie, κ = 0.  Compute to what degree <T>(r,t) remains unchanged 
after long times, where: 
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(1c) Let the geometry and magnetic field be given by R0 = 3,  a = 1,  q0 = 1.   Introduce a 
magnetic island by letting α32 be nonzero.   (note m=3, n=2 in Eq. (1.6))  
Apply the source term from (1a) only within the central section of the torus for which 

0.1r ≤% , ie 
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Start with the same initial condition as in Eq. (1.8) and solve for the steady-state 
temperature profile at long times.  Plot the temperature as a function of r%  along the ray 
(ϕ=0,θ=0).  Verify that the critical island size for which the temperature profile flattens 
and develops an inflection point within the island scales like αmn ~ (κ⊥ /κ| |)1/4 for ratios up 
to κ| | / κ⊥ = 108. 
 
 
 
2. Two Dimensional Tilt Mode: 
 
The incompressible ideal MHD equations in 2D can be written in terms of 2 scalar 
variables: the velocity stream function φ and the magnetic flux function ψ : 
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Where the two-dimensional Laplacian and commutation brackets are defined as: 
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Define the initial equilibrium state as: 
 

0 1

1

[2/ ( )] ( )cos , 1
(1/ )cos , 1

( ) 0.

kJ k J kr r
r r r

J k

θ
ψ

θ
<

=  − >
=

                                                  (2.3) 

where the computational domain is -2 < x < 2, -2 < y < 2, and (r,θ) is a standard polar 
coordinate system such that x = r cos θ, etc.  The boundary conditions are φ = ∂ψ /∂t = 0 
at the boundary of the domain.  Take the viscosity coefficient to be µ=0.005. 
 
 



(2a) Give the equilibrium a small perturbation about 10-3 times smaller than the 
equilibrium and observe the growth rate and the log of the peak current density C.  See 
Ref. [3] 
 
 
 
3. Magnetic Reconnection in 2D (multiple time- and space-scales): 
 
Consider the 2D, resistive MHD equations in a two-dimensional slab: 
 
Consider the following [SI units except for temperatures, in eV] equations in Cartesian 
geometry (x, y, and z), with y assumed to be a periodic direction with periodicity length 
2πR0: 
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(3a) Apply the initial and boundary conditions of the cohelicity case described in Secttion 
IIB of Ref. [5]. 

 
 
 
 
 

The equations (1.0) – (1.5) are the single fluid approximation to the MHD equations.  A 
considerable amount of literature exists on the generalization of these equations to a more 
complete set of Extended-MHD equations.  For our initial studies, we consider the 
following set of 2-fluid equations [11].  These need to be extended in subsequent editions 
of these notes to include a more complete description of the gyro-viscous and parallel 
transport terms. 
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These equations again assume quasi-neutrality throughout, so that ne = ni = n. The 
electron and ion temperatures are given by B e enk T p=  and B i i enk T p p p= = − , 

where kB = 1.602 × 10-19 J/eV.  The electron velocity is defined by eV V J ne= −
r r r

.   
 
(3b) Reproduce the co-helicity case in Section V of Ref. [5]. 
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