CEMM Challenge Problems for Advanced Numerical Algorithms (Rev 2: 8/30/03)
1. Anisotropic heat conduction:

Weuseastandard (R,j , Z) cylindrical coordinate system. The solution domain is
defined by: (R—Ry)? + Z2 < a2, where Ry is themajor radius and a isthe minor radius.

Consider the anisotropic heat conduction equation:
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where k is the isotropic part of the thermal conductivity, k; (which is normaly much

greater than k) is the parallel thermal conductivity, and S(R,Z) is the source term. Take
the magnetic field to be of the form:

B=B,+N" aB, (1.2)
where the axisymmetric field is given by
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wherer?°® (R—Ry)?+ Z%, 7°r/a,and j"° RNj isaunitvectorinthej direction. Note
that
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We take the function appearing in Eq. (1.2) as
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where q isthe anglein apolar (r,q ) coordinate system with origin & R=R), Z=0 and m
and n are integers. For definiteness, let (r,q,j ) form aright- handed system. Thus, once
the geometry (Ry and a) is specified, the magnetic field is completely specified by the
constants do, amn, m and n.  We note here that
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Note: In the large aspect ratio approximation, the safety factor (or inverse winding
number) at the plasma center and edge are: q(0) =q,, q(a) = 2q,. Also, if therational
number m/n lies between g and 2qp, i€, go < NMVn < 2qo, then amagneticisland will be
present with approximate normalized width of (@mn)*?. See Ref: [2]
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(1a) Let the geometry and magnetic field be givenbyRy = 3, a= 1, go = 1, am=0.
Let the initial conditions and the source term be defined as:
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Keep the boundary temperature fixed at T=0 and pIot the central temperature T(Ry,0) as
kj isvaried from O to avaue k; >>k and verify to what degree it stays unchanged at To
as k| isincreased to large valueswith ratios up to ky / kr = 10°,

(1b) Asainitial condition, start with alocalized Gaussian distribution:
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Let the geometry and magnetic field be givenbyRy =3, a= 1, o= 1, amp=0. Asan
initial condition, use Eq. (1.8) with Ri=3.5, Z;=0,d=0.1. Integrate Eq. (1.1) with parallel
heat conduction only, ie, k = 0. Compute to what degree<T>(r,t) remains unchanged
after long times, where:
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(1c) Let the geometry and magnetic field be given byRy = 3, a= 1, o= 1. Introduce a
magnetic island by letting as, benonzero. (note m=3, n=2 in Eq. (1.6))

Apply the source term from (1a) only within the central section of the torus for which
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Start with the same initial condition as in Eqg. (1.8) and solve for the steady-state
temperature profile at long times. Plot the temperature as a function of f along the ray
( =0,g=0). Verify that the critical island size for which the temperature profile flattens
and develops an inflection point within the island scales like am ~ (k» 7k for ratios up

tok) / ke = 108.

2. Two Dimensional Tilt Mode:

The incompressible ideal MHD equations in 2D can be written in terms of 2 scalar
variables: the velocity stream function f and the magnetic flux function y :
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Where the two-dimensional Laplacian and commutation brackets are defined as:
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Define the initial equilibrium state as:

_i1[2/kJ, (k)3 (kr)cosq, r<1
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J,(k) =0.

where the computational domainis-2< x< 2,-2< y< 2,and (r,q) isastandard polar

coordinate system such that x = r cosq, etc. The boundary conditionsaref =y /ft = 0

at the boundary of the domain. Take the viscosity coefficient to be m=0.005.
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(2a) Give the equilibrium a small perturbation about 10 times smaller than the
equilibrium and observe the growth rate and the log of the peak current density C. See
Ref. [3]

3. Magnetic Reconnection in 2D (multiple time- and space-scales):
Consider the 2D, resistive MHD equations in a two-dimensional slab:
Consider the following [SI units except for temperatures, in eV] equations in Cartesian

geometry (X, y, and z), withy assumed to be a periodic direction with periodicity length
2pRo:
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(3a) Apply theinitial and boundary conditions of the cohelicity case described in Secttion
1B of Ref.[5].

The equations (1.0) — (1.5) are the single fluid approximation to the MHD equations. A
considerable amount of literature exists on the generalization of these equations to a more
complete set of Extended-MHD equations. For our initial studies, we consider the
following set of 2-fluid equations [11]. These need to be extended in subsequent editions
of these notes to include a more complete description of the gyro-viscous and parallel
transport terms.
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These equations again assume quasi-neutrality throughout, so that i = n=n. The
electron and ion temperatures are given by NK;T, = p, and nk;T. = p= p- p,,
whereks = 1.602° 10™° JeV. The dectron velocity is defined by V, =V - J/ne.

(3b) Reproduce the co-helicity case in Section V of Ref. [5].
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