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We have developed a new numerical approach to solving the extended
MHD equations using a compact representation that is specifically

designed to yield efficient high-order-of-accuracy, implicit solutions of a
the Extended-MHD equations.

The representation is based on a triangular finite element with fifth
order accuracy that has continuous derivatives [C!] across element
boundaries, allowing its use with systems of equations containing
spatial derivative operators of up to 4th order. The final set of equations
IS solved using the parallel sparse direct solver, Super-LU. The
magnetic and velocity fields are decomposed in a potential, stream
function form.

Subsets of the full set of 8 equations describing 2-fluid extended MHD
yield (1) the 2-field reduced MHD equations, (2) the 4-field Fitzpatrick-
Porcelli equations, and (3) the 6-field constant density, cold-ion model.
Applications are presented showing the effect of "two-fluid" terms,
compressibility, and a background "guide field" on 2D magnetic
reconnection.



6-fleld model has now been implemented in 2D
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Projections of the momentum equation:
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Scalar Field Equations:
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Derivation of Implicit Equations

Taylor expand in time to get derivatives at advanced time. Use
field equations to eliminate field time derivatives from momentum
equation. For example:
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Multiply by the time step, &, and center the time derivatives about time
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Expand everything in C! finite elements: U(x,y,t") = i‘/ (x,y)U"
' ’ - J ' J

j=1

Multiply by each test function, integrate over domain, shift derivatives as
needed, collect terms
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Two systems of sparse matrix equations can
be solved sequentially each time step
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Linear analysis shows this to be
stable for arbitrary time step



Tilting cylinder with 6-field 2-fluid model
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Linear eigenmode of tilting cylinder in 6-field 2-fluid model

vau Y
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Non-linear evolution of tilting cylinder in full 6-field 2-fluid model




Energy error decreases with increasing number of
nodes for sequence with hyper coef. H = C (Ax)?
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Linear Growth Rate y
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square of the ion skin depth: d;?

4-field (2-fluid) model predicts that growth rate of tilt mode
increases linearly with the square of the ion skin depth d.



Magnetic Reconnection

Modified GEM Challenge Problem:

W(z) = 4log| cosh (22) |

+ &cos(k,x) cos(k,z)

P.(z) =0.6 — +tanh (2z)
P(z)=0.
B, =B,

constant density n,

= Full 6-field model gives lower
reconnection rates than does
reduced 4-field Fitzpatrick-
Porcelli model
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Magnetic Reconnection 6-field 2-fluid model
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Relative energy error decreases with increasing number of
nodes for sequence with hyper coef. H = C (Ax)?
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Near-Term Plans

Additional error checking and benchmarking
Add density and ion pressure equation

Add electron thermal conductivity

Add Braginskii ion-gyroviscosity

Mesh adaptation

Physics studies of the GEM reconnection with different
2-fluid models and quantify the effect of compressibility

Extend to toroidal system, and non-axisymmetric modes



Summary and Conclusions

Cl finite element method has been extended to
o-field 2-fluid MHD

Uses a split semi-implicit time advance to give
unconditional (linear) numerical stability

Gives convergent results for tilt-mode problem:
linear growth rate increases with d?

Applied to GEM reconnection, shows that
compressibility reduces the reconnection rate



Divide domain into triangular regions:
solution as a quintic polynomial within each region
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general quintic has 21 terms.

n

Ay

&, are local
orthogonal
coordinates

PZ(XZ’yZ)

The function and it’s first and
second derivatives at the 3 nodes
are the global unknowns (6 per 21

node) (¢, ¢x’ ¢y’ ¢xx’ ¢XY’ ¢W)

constraints to
match the function and
derivatives at nodes

constraints on quintic
coefficients to enforce
C1 continuity at edges

coefficients of the
quintic polynomial

Error ~ h> (since complete Taylor series through h?)

represent
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C! continuity allows treatment of 4t spatial derivatives (Galerkin Method)

Most compact representation for this accuracy “reduced quintic”
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