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e Development status
e Two-fluid slab-geometry tearing with guide field

» Matrix reordering



Temporally differenced equations provide details of the centering.

« NIMROD’s implicit leapfrog separates pressure evolution into number
density and temperature equations.

* The implementation now includes implicit advection with 3D coupling.
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» The T and B advances can be predicted and corrected to center all
coefficients in time.



Linear Tearing in Slab Geometry

* V. Mirnov, C. Hegna, and S. Prager apply asymptotics to sheared
slab configurations over a wide range of parameters. [Phys. Plasmas
11, 4481 (2004)]

 The study extended and connected previous research on linear two-
fluid tearing with a large guide field (B, component).

e The sheared equilibrium component is By (X)=By_ tanh(x/L)

 The equilibrium has finite pressure (plasma £), but it is uniform, so
drift effects are not considered.

 The perturbed magnetic flux in the outer ideal region has solutions

W~ e$kx[1+ltanh(ixﬂ x>0
kL L | X <0
A=Y= 2 k=2xlL,
Vo x=0 kL




A schematic of the parameter space shows where different
effects become important. (Based on discussion in Mirnov, et al.)
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NIMROD computations of the linear slab tearing mode use
conditions that approximate the analytical problem.

» The NIMROD computations necessarily have boundaries at a finite
distance (>>L) from the tearing layer. Wall locations that do not influence
results are determined empirically.

 The size of the periodic direction of the slab is used to set k.
» The NIMROD computations have m=0,s0 & =./n/yu

 The scales shown on the parameter-space schematic ‘move’ for
results with different growth rates.

* Nonlinear terms are not used, so results are amplitude-independent.
* Numerically:

» The linear modes are computed in a plane that is represented by finite
elements (Fourier index n=0 for the perpendicular direction).

» Meshes have 24x6 to 48x8 bicubic and biquartic elements with
packing at the tearing layer.

» The implicit leapfrog algorithm allows time-steps that are orders of
magnitude greater than explicit limits.



Tests have been computed over a large extent of the two-
fluid parameter space. (See the corresponding letters on
the schematic).

input output
CASE AL kL p plL | S=t./7, o/ L I'=yz, lkp, | P
A 028 | 093 | 0.002 | 056 | 6.7x10° | 0.184 | 851x10” |[s4=9.04x107
['s5=1.30x10
B 028 | 093 | 0083 | 36 | 67x10° | 0.172 | 1.50x10° |Tise=1.61x10"
C 53 | 033 | 0083 | 3.6 670 0.11 0.106 | 73=0.109
D 53 | 033 | 0083 | 3.6 67 0.25 0203  |[3=0.221
E 53 | 033 | 0083 | 3.6 6.7 0.65 0.297  |T,3=0.379
F 24 | 0.083 | 0.083 | 3.6 6.7 1.11 0401 | Ty5=0.550
G 53 | 033 | 083 | 114 6.7 0.48 0.169 | [73=0.0928

*The analytical results for I' use the numbered equations from

Mirnov, Hegna, and Prager. See the next slide.

Also, the definition of S used here iIs
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Notes Regarding the Analytical Growth Rates

 Eq. (54) covers moderate to large g for small A’6, but its evaluation for A uses

the numerical I" and ¢ on the rhs: Jar(/4+a/4) «—
[y =A7 5 G(T//) @) 2I'(3/4+al4)

* Eq. (55) is for the limit of small A’6 and S << (A'6)?, whereas S= (A’6)? in A.

However, (55) can be arranged to provide a computation of I for m_=0 that Is

Independent of the numerical result without root-solving:
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* Eq. (56) is for the limit of #>> (A’6)? and small A’6. It is correctly applied for
B, and it too IS independent of the numerical result:
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* Like (54), Egs. (68) for large A’o'and (73) for all A’6 have been applied without
root-solving. Numerical results are used for the argument of G and for 6.
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Eigenfunctions of the numerical computations emphasize
the multi-scale nature of magnetic tearing.

Results from case A with small A’ and moderate g reflect nearly constant
B, across the tearing layer (0=6.12x1073, and L = 3.33x10?).

The expanded-scale plot on the right also shows locations of nodes for the
finite-element expansion with quartic polynomials.



Convergence testing shows that the implicit leap-frog
reproduces accurate growth rates for two-fluid tearing at
large time-step.
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The numerically computed growth rate for case B is accurate to within
17% with four time-steps per growth time. The CFL number based on the
compressional wave is 8x106,



The linear tearing tests have uncovered a problem with
the grad(p,) term.

» The background number density Is uniform and the EQOS is adiabatic, so
this term should have no contribution to Ohm’s law.

* In some of the tests, a numerical mode would develop, apparently from
the walls.

* Tests without pressure or sufficiently large A’ ran without difficulty.

 The remaining tests ran with the grad(p,) term commented out of Ohm’s
law.

» We will look for an alternative representation for p, that avoids this
problem.



Matrix Reordering

* Multiple Minimum-Degree ordering is implemented in
SuperLU

* Applying Nested Dissection order before calling SuperLU
» Predicted to give performance gains for large
problems

« The METIS package developed by Karypis and Kumar at
the University of Minnesota uses nested dissection

Example sparsity pattern for a
small mesh of biquartic elements—
after static condensation but before
reordering.




Nested Dissection
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Nested Dissection

. The first dissection leaves the connectivity matrix with a dense
diagonal and sparse pattern else where.

. Subsequent dissections repeat this pattern for the diagonal sub-
matrices A.

X X X
X X X X
XX XX B
XXX X X
XX XX
X XX X X A A
X X XX
X XX X X
XX x 1,1 1,
X X X X
X X X
x| = A, A
XX XX
XXX X X 2,2 2
XX XX
X XX X X
X X XX
X XX X X A A A
XX X
X X X X 351 3,2 3,
X X X B
X X X
X X X
X X X
X X X




Factoring time Is improved with Metis ordering for
large problems.
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« Biquartic elements

Soft scaling with Reversed Field Pinch calculation

* 1 Fourier component in toroidal direction

* Blocks of 12 x 12 elements

* 1 block per processor on Seaborg SMP at NERSC
« Improvement in factoring time observed for grids larger than 8064 elements
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Nested dissection leaves more nonzeros than MMD, however.

Improvement with METIS ordering
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More work must be done to fully implement Metis
reordering in NIMROD.

* SuperLU is currently reordering matrix on every time
step, increasing runtime.

* Options in Metis could be tuned to improve ordering
for the NIMROD finite element mesh.

* Implementation of SuperLU in NIMROD must be
changed to facilitate scaling up to very large

problems.

« Currently all processes receive all non-zeros in matrix before
factorization.

« This is very memory intensive for large grids.



