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Outline

• Development status

• Two-fluid slab-geometry tearing with guide field

• Matrix reordering



Temporally differenced equations provide details of the centering.
• NIMROD’s implicit leapfrog separates pressure evolution into number 
density and temperature equations.
• The implementation now includes implicit advection with 3D coupling.
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• The T and B advances can be predicted and corrected to center all 
coefficients in time.



Linear Tearing in Slab Geometry
• V. Mirnov, C. Hegna, and S. Prager apply asymptotics to sheared 
slab configurations over a wide range of parameters.  [Phys. Plasmas 
11, 4481 (2004)]
• The study extended and connected previous research on linear two-
fluid tearing with a large guide field (Bz component).
• The sheared equilibrium component is 
• The equilibrium has finite pressure (plasma β), but it is uniform, so 
drift effects are not considered.
• The perturbed magnetic flux in the outer ideal region has solutions
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A schematic of the parameter space shows where different 
effects become important.  (Based on discussion in Mirnov, et al.)
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NIMROD computations of the linear slab tearing mode use 
conditions that approximate the analytical problem. 
• The NIMROD computations necessarily have boundaries at a finite
distance (>>L) from the tearing layer.  Wall locations that do not influence 
results are determined empirically.
• The size of the periodic direction of the slab is used to set k.
• The NIMROD computations have me=0, so

• The scales shown on the parameter-space schematic ‘move’ for 
results with different growth rates.

• Nonlinear terms are not used, so results are amplitude-independent.
• Numerically:

• The linear modes are computed in a plane that is represented by finite 
elements (Fourier index n=0 for  the perpendicular direction).
• Meshes have 24×6 to 48×8 bicubic and biquartic elements with 
packing at the tearing layer.
• The implicit leapfrog algorithm allows time-steps that are orders of 
magnitude greater than explicit limits.
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Tests have been computed over a large extent of the two-
fluid parameter space.  (See the corresponding letters on 
the schematic).

*The analytical results for Γ use the numbered equations from 
Mirnov, Hegna, and Prager.  See the next slide.
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Notes Regarding the Analytical Growth Rates
• Eq. (54) covers moderate to large β for small Δ′δ, but its evaluation for A uses 
the numerical Γ and δ on the rhs:
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• Eq. (55) is for the limit of small Δ′δ and β << (Δ′δ)2, whereas β ≅ (Δ′δ)2 in A.  
However, (55) can be arranged to provide a computation of Γ for me=0 that is 
independent of the numerical result without root-solving:
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• Eq. (56) is for the limit of β >> (Δ′δ)2 and small Δ′δ.  It is correctly applied for 
B, and it too is independent of the numerical result:
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• Like (54), Eqs. (68) for large Δ′δ and (73) for all Δ′δ have been applied without 
root-solving.  Numerical results are used for the argument of G and for δ.
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Eigenfunctions of the numerical computations emphasize 
the multi-scale nature of magnetic tearing.
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Results from case A with small Δ′δ and moderate β reflect nearly constant 
Bx across the tearing layer (δ = 6.12×10-3, and L = 3.33×10-2).

The expanded-scale plot on the right also shows locations of nodes for the 
finite-element expansion with quartic polynomials.



Convergence testing shows that the implicit leap-frog 
reproduces accurate growth rates for two-fluid tearing at 
large time-step.

The numerically computed growth rate for case B is accurate to within 
17% with four time-steps per growth time.  The CFL number based on the
compressional wave is 8×106.
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The linear tearing tests have uncovered a problem with 
the grad(pe) term. 

• The background number density is uniform and the EOS is adiabatic, so 
this term should have no contribution to Ohm’s law.
• In some of the tests, a numerical mode would develop, apparently from 
the walls.
• Tests without pressure or sufficiently large Δ′ ran without difficulty.
• The remaining tests ran with the grad(pe) term commented out of Ohm’s 
law.
• We will look for an alternative representation for pe that avoids this 
problem.



Matrix Reordering
• Multiple Minimum-Degree ordering is implemented in 

SuperLU
• Applying Nested Dissection order before calling SuperLU 

• Predicted to give performance gains for large 
problems

• The METIS package developed by Karypis and Kumar at 
the University of Minnesota uses nested dissection 



Nested Dissection
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Nested Dissection

=

A1,1

A2,2

A3,3

A2,3

A1,3

A3,2A3,1

● The first dissection leaves the connectivity matrix with a dense 
diagonal and sparse pattern else where.
● Subsequent dissections repeat this pattern for the diagonal sub-
matrices Ai , i



Factoring time is improved with Metis ordering for 
large problems.
• Soft scaling with Reversed Field Pinch calculation

• Biquartic elements
• 1 Fourier component in toroidal direction
• Blocks of 12 x 12 elements
• 1 block per processor on Seaborg SMP at NERSC

• Improvement in factoring time observed for grids larger than 8064 elements
• Nested dissection leaves more nonzeros than MMD, however.



More work must be done to fully implement Metis
reordering in NIMROD.

• SuperLU is currently reordering matrix on every time 
step, increasing runtime.

• Options in Metis could be tuned to improve ordering 
for the NIMROD finite element mesh.

• Implementation of SuperLU in NIMROD must be 
changed to facilitate scaling up to very large 
problems.

• Currently all processes receive all non-zeros in matrix before 
factorization.

• This is very memory intensive for large grids.


