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Motivation

« The impulse heat flux associated with large ELMs becomes
unacceptably high for ITER

« The application of resonant magnetic perturbations (RMP) to DIII-D
plasmas at low collisionality has achieved ELM suppression,
primarily due to a pedestal density reduction

« The mechanism for the enhanced particle transport (without
significantly enhanced heat transport) is unclear

« Stochastic transport theory applied to vacuum field calculations has
not explained experimental observations

 NIMROD simulations allow both the calculation of the plasma
response to the RMP fields, and the inclusion of additional transport
due to macroscopic MHD motion

— Clearly, other transport mechanisms associated with small scale
turbulence are possible, but neglected in these simulations




Initial Conditions(1)
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Initial Conditions(2)
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 Applied fields associated with
DIII-D I-coils, C-Coils, and
intrinsic error fields. (C-Coil
fields are for error correction)

* Total perturbing field includes
n=1,2,3 components, with n=3
being the largest
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Initial Conditions(3)

» Three rotation profiles
simulated include no rotation,
and two profiles shown at left
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Less stochasticity with higher rotation

Plasma response
(no rotation)
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Plasma response amplifies resonant

components of the field

Normal component of the n=3 B-fields (T)

White line on each plot is the resonant line m=-3q
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Without rotation, resonant components

amplified by a factor of 2-5

/Amplitude and phase for each m are 5
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*All Nn=3 modes with m<-4 are amplified for no
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Rotation affects evolution of n=1, n=3

kinetic energy

Magnetic Energy (J)
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* n=3 flows are
suppressed at
high edge
rotation

* 5.8kHz n=1
oscillation at low
rotation,
comparable to
difference in g=1,
g=2 rotation

 (Left) n=3 energy on expanded scale for
high rotation exhibits ~10kHz oscillation,
PR equal to 3 times plasma rotation frequency

» Two energies oscillate 120° out of phase




Fitzpatrick™ error field theory

Reconnected flux Vacuum flux
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Boundary layer response to the
applied error fields at the mode
rational surface

- Without rotation, error fields are amplified
in tearing stable plasmas with -A’<2m
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*Fitzpatrick, Phys. Plasmas 5 (1998) 3325.
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(no amplification)




ExB convection across the separatrix

reduces edge density

Poloidal Velocity Density (no rotation) Density (high rotation)
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High edge rotation reduces ExB Motion,

eliminates enhanced transport

Normal velocity along separatrix
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Temperature evolves similarly at high,

no rotation

Temperature Profiles @ 0.6 ms « Heat transport at the edge is

enhanced in all cases, unlike
DIlI-D experiments
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Transition from un-reconnected to

reconnected state

Simulations begins at final state of Magnetic fields again become
high rotation case, but with the stochastic throughout much
rotation turned off of the volume
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Heat and particle flux near the x-point

Locations
corresponding to y-axis
in plots on next 2 slides

(arbitrary units)
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Heat flux near divertor is reduced by

rotation

» Splitting of outer strike-point and no rotation %10
n=3 structure is evident

* In both rotating cases, the peak
heat flux is reduced by a factor of 2,
as is the integrated heat flux over
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Rotation reduces n=3 variation of

particle flux

. . . . no rotation
» Strong n=3 variation in particle flux
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rotation
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Conclusions

Applied RMP fields in DIII-D NIMROD simulations are
amplified by the ideal plasma response

Rotational screening reduces resonant field amplitude, in
some cases below the vacuum level

Applied n=3 fields produce ExB convection cells at the
separatrix which enhance particle transport

Sufficiently high rotation eliminates the enhanced particle
transport

Present NIMROD heat transport model gives pedestal
temperature gradient reduction, in contrast with
experiments




Future Work

Scaling of rotation screening with plasma
resistivity is most important factor to determine if
ExB mechanism is operative in real DIII-D
plasmas

Simulation of particular DIlII-D RMP discharges
with real rotation profiles, to make direct
comparisons with data

Modify the heat transport model to determine
what model will reproduce the temperature
pedestal gradient increase




The Rutherford Regime

In the non-linear “Rutherford” regime, Fitzpatrick’s solution has a frequency of
Fitzpatrick* has the island width evolution 2w (=2nQ2), whereas our n=3 oscillation
equation: has a frequency of .
o dW 2mWV2rS But suppose we assume W=W, when
W = coS wt _ .
dt 0.82277, t=0. Then we get:
Which he solves with the W= (W, +Wo¥(sin o))
assumption W=0 when t=0 to get: Provided W, >W, (it is in our case for all

W, >~10-°m), we get ¢=ot (no weird

. 1/3
W(t) = Wolsin o phase jumps) and:
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