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Background
The parallel heat transport model in M3D has historically been the 
“artificial sound wave”: the MHD-like energy equation
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is supplemented by a pair of wave equations for temperature and an 
auxiliary variable u:
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for sound speed s and artificial viscosity ν.



Drawbacks of the Artificial Sound 
Approach

• This model is not a part of standard MHD, and not directly 
comparable to results from codes that implement the 
standard model (unclear what the equivalent χ|| should be).

• Because the perpendicular operator is perpendicular to the 
φ direction rather than B, parallel and perpendicular 
transport are not cleanly separated.

• The implementation of the parallel operator is explicit in 
time, unlike the perpendicular one, and so can restrict the 
time step when s is large.



Parallel Heat Diffusion
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1S. Günter, K. Lackner, and C. Tichmann, J. Comp. Phys. 226 (2007) 2306-2316. 

where the heat flux q is given by

The MHD energy equation with anisotropic heat conduction can be 
written

Straightforward solution of this equation using finite differences or low-
order finite elements is susceptible to numerical pollution of perpendicular 
heat transport by parallel when               , as is typical.

Günter, et al., have a 2nd-order scheme based on centered differences that 
largely avoids this problem1.
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Günter’s Method for Finite 
Elements

Substituting in the expression for q, we rewrite the integral on the RHS as

The Galerkin integral of the heat conduction term against a test function is
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reducing the order of the representation by one, in this case from a C0

bilinear function to a C-1 piecewise constant function over element m.



M3D Implementation
New routine advances
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with arbitrary source term T0; performs 3D numerical 
Galerkin integration (3×7-point quadrature) using 
trilinear test functions to construct global mass matrix 
M and heat conduction operator matrix Q; solves
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using GMRES, θ=1/2 for 2nd-order accurate implicit time advance.

Vertex values affect 
function over 12 
adjoining triangular 
prisms



Qualitative Comparison with 
Artificial Sound Wave Method

• Use circular cross-section 
equilibrium, aspect ratio 3;
1.33 < q < 4.79.

• Peak T = 3.1×10-7 near axis.

• Add temperature perturbation

• Freeze density and B and v fields, 
evolve T only;
χ⊥=10-50 and either

s=6, ν=10-3

or
χ||=60
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Initial State

Field line passing through
temp. peak

Ψ contours for orientationOrange isosurfaces indicate
temperature peaks:
65%, 75%, 85%, 95%



Artificial Sound Results 

t = 0.025 t = 1.5



Implicit χ|| Results

t = 0.025 t = 0.15



Late Time States
Artificial sound, t = 9.0Implicit χ||, t = 15.0

Numerical instability



Quantitative Test of Accuracy
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The figure of merit is the normalized RMS parallel temperature gradient, 
defined as

Artificial sound method 
goes unstable here



2nd Test: Find steady state using 
misaligned grid with inhomogeneous bcs
• Start with circular cross-section equilibrium, aspect ratio three.
• Add 1,1 helical perturbation to poloidal flux to shift surfaces away from 

mesh.
• Use boundary condition T=0 on outer surface; T=1 on inner surface defined 

by ψ=-0.235.
• Run to steady state using 32 planes, 141 radial zones.

Initial temperature distribution Detail of misaligned mesh, surfaces

T=1

T=0



Extreme Cases
Final profile

κ||=1, κ⊥=10-60

κ||=0, κ⊥=2

Next: compare f history using other 
conductivity ratios to determine effective 
κ⊥ due to pollution from parallel 
conduction. 



Numerical κ⊥/κ||< 10-10



Summary
• True implicit parallel and perpendicular heat conduction have 

been implemented in M3D.

• Use of Günter’s method appears to allow high accuracy with 
linear finite elements even when tensor is highly anisotropic 
and mesh is misaligned.

• The new operator is an improvement on the old one in some 
respects.

• Further verification is needed.  Because cases with analytic 
solutions are scarce, benchmarking with other codes would be 
useful.



M3D Scales to 12k+ Franklin Processors
M3D 3D Weak Scaling Study
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• Algebraic multigrid 
preconditioner used for 
GMRES solves.

• Reverse Cuthill-McKee 
(RCM) matrix re-ordering 
used to reduce fill-in in 
ILU preconditioning for 
other linear solves.

• Base case is nonlinear  
C-Mod sawtooth with 
24,000 vertices/CPU.

• ~200 toroidal CPUs, ~50 
poloidal CPUS for largest 
cases.
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