Implicit Heat Conduction in M3D
and Recent Scaling Results

J. Breslau, J. Chen
and the M3D Group

Sherwood CEMM Meeting
Seattle
April 18, 2010



Background

The parallel heat transport model in M3D has historically been the
“artificial sound wave”: the MHD-like energy equation
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Is supplemented by a pair of wave equations for temperature and an
auxiliary variable u:
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for sound speed s and artificial viscosity v.



Drawbacks of the Artificial Sound
Approach

e This model is not a part of standard MHD, and not directly
comparable to results from codes that implement the
standard model (unclear what the equivalent y, should be).

» Because the perpendicular operator is perpendicular to the
¢ direction rather than B, parallel and perpendicular
transport are not cleanly separated.

e The implementation of the parallel operator is explicit in
time, unlike the perpendicular one, and so can restrict the
time step when s is large.



Parallel Heat Diffusion

The MHD energy equation with anisotropic heat conduction can be
written op

E+V.vp+7/pv.v:-%V-q+heating terms

where the heat flux g is given by

q=-n[(z-2.)bb-VT+2,VT].

Straightforward solution of this equation using finite differences or low-
order finite elements is susceptible to numerical pollution of perpendicular
heat transport by parallel when z,/ ., >1, as is typical.

Glnter, et al., have a 2"-order scheme based on centered differences that
largely avoids this problem?.

1S. Ginter, K. Lackner, and C. Tichmann, J. Comp. Phys. 226 (2007) 2306-2316.



Gunter’'s Method for Finite
Elements

The Galerkin integral of the heat conduction term against a test function is
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Substituting in the expression for g, we rewrite the integral on the RHS as
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The key procedure is the replacement of the factor b-vT in the first
Integral with
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reducing the order of the representation by one, in this case from a C°
bilinear function to a C-! piecewise constant function over element m.




M3D Implementation

New routine advances

Ty (1 -2)86-VT 4 2,9T]) A
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with arbitrary source term T,; performs 3D numerica
Galerkin integration (3x7-point quadrature) using

trilinear test functions to construct global mass matrix \A(

M and heat conduction operator matrix Q; solves vertex values affect
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using GMRES, 6=1/2 for 2"d-order accurate implicit time advance.



Qualitative Comparison with
Artificial Sound Wave Method

» Use circular cross-section
equilibrium, aspect ratio 3;
1.33<q<4.79.

e Peak T = 3.1x107 near axis.

» Add temperature perturbation

Qo—r

jz _[(R—3.53)2 +(2-0.53)°

(0.04)°

ST =3x10°exp —(
0.07709

* Freeze density and B and v fields,
evolve T only;
2,=10-0 and either
s=6, =103
or
=60
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Artificial Sound Results

t=0.025 t=1.5




Implicit x, Results
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Late Time States
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Quantitative Test of Accuracy

The figure of merit is the normalized RMS parallel temperature gradient,

defined as
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2"d Test: Find steady state using
misaligned grid with inhomogeneous bcs

Start with circular cross-section equilibrium, aspect ratio three.

Add 1,1 helical perturbation to poloidal flux to shift surfaces away from
mesh.

Use boundary condition T=0 on outer surface; T=1 on inner surface defined
by y=-0.235.

Run to steady state using 32 planes, 141 radial zones.

Initial temperature distribution

Detail of misaligned mesh, surfaces

T=0




Extreme Cases
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Next: compare f history using other
conductivity ratios to determine effective
k', due to pollution from parallel
conduction.
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Summary

True implicit parallel and perpendicular heat conduction have
been implemented in M3D.

Use of Glinter’s method appears to allow high accuracy with
linear finite elements even when tensor is highly anisotropic
and mesh Is misaligned.

The new operator Is an improvement on the old one in some
respects.

Further verification is needed. Because cases with analytic
solutions are scarce, benchmarking with other codes would be
useful.



M3D Scales to 12k+ Franklin Processors

Wall Clock time for 100 timesteps
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* Algebraic multigrid
preconditioner used for
GMRES solves.

* Reverse Cuthill-McKee
(RCM) matrix re-ordering
used to reduce fill-in in
ILU preconditioning for
other linear solves.

» Base case Is nonlinear
C-Mod sawtooth with
24.000 vertices/CPU.

 ~200 toroidal CPUs, ~50
poloidal CPUS for largest
cases.
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