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STATUS AND PLANS FOR THEORETICAL MODEL DEVELOPMENT

DRIFT-KINETIC CLOSURE THEORY FOR LOW-COLLISIONALITY ELECTRONS
COMPLETED (TALK AT SHERWOOD CONFERENCE THIS WEEK):
e Rigorous account the electric field and consistency with the fluid system.
e First-order FLR magnetic gradient drifts and Fokker-Planck collision operators.
e Near-Maxwellian, Chapman-Enskog-like for slow dynamics. Non-Maxwellian
perturbation with automatically vanishing 1, v — u, and |v — u.|* moments.
e Compatible with the neoclassical theory in the electron banana regime. Yields

neoclassical banana results for odd equilibrium closures and bootstrap current.

NUMERICAL IMPLEMENTATION IN A DRIFT-KINETIC CLOSURE MODULE
FOR THE NIMROD CODE UNDER WAY (UPDATE BY E. HELD).



ON NUMERICAL IMPLEMENTATION OF THE ELECTRON DRIFT-KINETIC CLOSURE
FOR EXTENDED-MHD:

e ldeally framed as an integration project. Standard fluid and drift-kinetic interface desirable.
e 5D+-time dimensionality for data storage. 3D+time dimensionality for integration.
e Intrinsically implicit character of the time advance algorithm for the distribution function.
e Gyrophase-independent velocity coordinates in the moving reference frame of the mean
flow: magnitude of the random velocity and its pitch angle relative to the local magnetic
field direction, with a Legendre polynomial expansion of the pitch angle dependence.
Three distinct parts in drift-kinetic equation:
Collisionless streaming: band-diagonal with Legendre-/ coupled to [+ 1 and [ — 1.
Linear Fokker-Planck collision operator: diagonal in /.
Inhomogeneous drive: [ =0, [ =1 and [ = 2 components.
Needed fluid closure moments are pure [ =1 and [ = 2 Legendre components.

e Less clear choice for discretization of the dependence on the magnitude of the velocity.



ELECTRON DRIFT-KINETIC EQUATION

In polar random velocity coordinates (v =v'cosx, v} = v'siny):
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ELECTRON COLLISION OPERATORS

BASED ON THE COMPLETE LINEARIZED FOKKER-PLANCK-LANDAU OPERATORS and

using the electron collision frequency definition

elnln A,
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2,3
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The GYROPHASE AVERAGED COLLISION OPERATORS needed in the electron drift-kinetic

equation are:
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<Cee[fMeafNMe] + Cee[fNMe:fMe] + C@(?)[fNMeanLDa - Ce[fNMe] is Legendre diagonal:
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ON PLANNED THEORETICAL MODEL DEVELOPMENT WORK:

e Derivation of the corresponding low-collisionality model for the ions.

e Based on the same orderings and the same mean flow reference frame formalism used for
the electrons.

e Consistent with these same low-collisionality and mass ratio orderings, the ion theory
requires a second-order drift-kinetic equation in the gyroradius expansion.

e Departure from conventional ion banana neoclassical theory. (Recoverable as a subset).

e Well established groundwork in earlier fluid and collisionless drift-kinetic publications.



COMMENTS ON THE USE OF THE CEMM PLATFORM FOR TRANSPORT STUDIES

A CREDIBLE CONTRIBUTION IN THE TRANSPORT AREA COULD BE MADE WITH
THE MOST ADVANCED CEMM SYSTEM ENVISIONED:
e Fluid continuity, ion momentum, electron momentum and electron temperature equations.
e Particle-based kinetic ions contributing the full P, tensor.

e Drift-kinetic electrons contributing (p.| — p..), ¢, and FQT”-

FOR PROCESSES WHERE SUB-ION-LARMOR-RADIUS SCALES ARE NOT ESSENTIAL
(SUCH AS FLUID-ITG TURBULENCE), A CONTINUUM FLR ION DESCRIPTION MAY BE
SUFFICIENT. THIS WOULD STILL REQUIRE:

e A slow-dynamics ion stress tensor in the fluid system.

e A slow-dynamics ion drift-kinetic parallel closure.



ON THE VIABILITY OF TRANSPORT MODELS WITH REDUCED DIMENSIONALITY
(2-D AXISYMMETRIC, 1-D MAGNETIC SURFACE AVERAGED):

e These models must rely on phenomenological diffusive terms to represent the radial
transport (e.g. like in the TSC code).

e A self-consistent, first-principle description of the radial transport at realistically low
collisionality in an axisymmetric system seems very unlikely: the degeneracy of this
system is such that always some quantities are left undetermined within the orders
where an underlying self-consistent theory can be reasonably worked out.

e Rather than deriving and implementing the extraordinarily high-order theory needeed
to resolve the axisymmetric degeneracies, it appears more likely that computational

advances will allow to carry out 3-D, initial value simulations over transport times.



GENERALIZED SPITZER PROBLEM WITH FOKKER-PLANCK OPERATORS IN A LOW
COLLISIONALITY REGIME AND RELATED ISSUES IN THE NEOCLASSICAL THEORY
OF AXISYMMETRIC EQUILIBRIA

Using the following representation for the non-Maxwellian part of the distribution function:
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Changing variables to (¢, 0,7, \), with \(¢, 0, x) = sin® x B (1) /B, 0):
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FOLLOWING THE STANDARD SOLUTION METHOD OF NEOCLASSICAL THEORY:
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THIS HAS THE SOLUBILITY CONDITION THAT DETERMINES K.(y,v', \):
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THE SOLUTION K. (¢,v";\) OF THE ABOVE GENERALIZED SPITZER PROBLEM GIVES:

The electron poloidal flow (whence the electron contribution to the bootstrap current):
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The parallel collisional friction force:
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The magnetic surface averaged neoclassical parallel viscosity:
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SELF-CONSISTENT OHMIC AND BOOTSTRAP EQUILIBRIUM CURRENT:

The magnetic surface average of the V( component of the electron momentum equation,
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This, together with the previous U.(v), give the ohmic and bootstrap part of the current:
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OUTSTANDING ISSUE

The generalized Spitzer problem for K. (¢, v, \):
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that stems from the perturbative equation
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is subject to the boundary conditions:
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must be taken into account, either globally or in a boundary layer near \ = 1.

Simplified collision operator models yield 0K, (1),v',1)/0X # 0, but it is not clear whether a

satisfactory boundary layer solution exists that smooths this derivative jump.
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