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Differential Approximation – DA  (Caramana Method)

Split θ-implicit Method

Two Implicit Time-Advance 
Algorithms are being evaluated



3D finite elements are constructed with a Reduced 
Quintic in (R,Z) and with a Hermite Cubic in ϕ
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Each toroidal plane has two Hermite 
cubic functions associated with it

Solution for each scalar function is represented in each triangular wedge as the 
product of Q18 and Hermite functions.

Continuous first derivatives in all directions and all DOF are  
located at nodes: => very efficient representation

• Unstructured in (R,Z)
• Structured in ϕ



Linear and Non-linear modes in same code

Linear Mode
• All variables complex

• Single 2D plane

• Factor once:  
• Each time-step only 

involves matrix-vector 
multiply and back-
substitution

• Very efficient
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Non-Linear Mode
• All variables real
• Hermite cubic finite 

elements in ϕ
• Many 2D planes  (P)

• X is P times larger
• Iterative solve with the P 2D 

L U factors used as 
preconditioners

• Uses most of same coding 
as in linear mode

• Good parallel scaling
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3D Nonlinear Solver Strategy
• In 2D, solve efficiently with direct solver up to (200)2 nodes
• In 3D, leads to block triangular structure
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Block Jacobi preconditioner corresponds to multiplying each row by                 

PETSc now has the capability of doing this using SuperLU_Dist on each block

-1
jB

, ,j j jA B C

are 2D sparse 
matrices at plane j 



Effective “upwind differencing” in pressure equation

• Pressure could become negative during severe events
• In finite differences, it is known that one-sided “upwind differencing” 

preserves positivity
• One way of viewing this is the diffusive first order truncation error in 

upwind differencing that is not present in central differencing
• We have added this diffusive term to the finite element equations:
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Exploratory studies on “CMOD” equilibria with q0<1 
unstable to a resistive (1,1) mode
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Relatively coarse mesh with ~ 1000 nodes per plane,  8-16 planes.    
Initial runs have spatially constant resistivity, viscosity, thermal conduc-
tivity, and have initial equilibrium subtracted out with no equilibrium flow. 

Poloidal Flux Ψ Toroidal Current Jφ Safety Factor 0.7 < q < 4.5



8

Linear Convergence Study

Time Step Δt  (Alfven Times)
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DA:  θ = 1.0
DA:  θ = 0.6
Split: θ = 0.6
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All the calculations are converging to the same point, but the DA 
(or Caramana) method converges quadraticly and θ=0.6 is best
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Calculation has long initial linear growth phase, then main 
reconnection event, then a series of smaller events



10

Growth rates vs. time for linear,  8 plane nonlinear, and 16 plane nonlinear
Shows nonlinear growth rate is correct and good convergence in # of planes.
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Kinetic Energy in the three velocity components
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The poloidal velocity decomposition used in M3D-C1 is 
very effective in capturing most of the poloidal flow in U.



Kinetic energy, KE,  and growth rate ,log(KE), for 20,000 τA
shows same basic behavior but stronger damping for θ=1

θ=1.0
θ=0.6



ϕ = 0 ϕ = π/2 ϕ = π ϕ = 3π/2

p

J

Pressure and toroidal current density do not completely re‐symmetrize at t=20,000 τA



Poincare plot after 20,000 τA
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Shows a stationary 3D equilibrium 
with two magnetic axis.

Postulate that lack of repeated 
sawteeth is due to the fact that the 
resistivity and other transport 
coefficients are constant.

Corrected in the next set of 
calculations.



Calculations including Equilibrium
In the calculations presented so far, we have subtracted the 
equilibrium quantities from all variables and assumed that a static 
initial equilibrium exists with no flow.

The actual equilibrium in a resistive plasma will have flows that will 
influence the stability.     To better represent a real tokamak, we 
started a series of runs in which the equilibrium is not subtracted.
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Also: 
• Loop voltage applied to fix total current
• Spitzer resistivity
• isotropic thermal conductivity ~ 1/T 

• In 2D (axisymmetry), current continues to peak 
and q0 continues to drop with these parameters.



Time evolution with and without equilibrium subtracted off is very different!
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• Equilibrium flow is stabilizing
• No linear phase!
• Growth rate exceeds linear rate

• Equilibrium quickly reaches quasi‐steady state
• But, large background flow still present
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2-D slices of pressure and current density at final time shows non-axisymmetry
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Stationary flows that exist at the final time in the 3D equilibrium.



Stationary non-axisymmetric 
equilibrium with q0 >1 at t=20,000 τA
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Near Term Physics Studies (extensions)

• Dependence of sequence on transport parameters
• resistivity, 
• cross-field thermal conductivity, 
• parallel thermal conductivity,
• viscosity

• Convergence study
• number of planes
• number of elements per plane

• Can we get recurring sawteeth to occur for some parameters?

• Inclusion of two-fluid terms in study
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M nodes in each 2D Plane
P  Planes (or blocks)

12 unknowns for each scalar for each node
NV  scalars in largest matrix (1, 2, or 3)

N = 12 x NV x M x P unknowns (or DOF)

Each node is coupled to 21 other nodes via the integrations:  k-1, k, k+1

Each matrix row has 21 x 12 x N V = 252 x NV nonzero elements 

N rows 3024 x NV2 x M x P = nonzero elements  

P matrices given to SuperLU
• each with 12 x NV x M Rows,   1008 x NV2 x M non-zero elements
• LU filling factor of 4 4032 x NV2 x M x P non-zero elements in LU

Each SCOREC word = 14 Bytes….each PETSc word = 25 Bytes

Memory Considerations

k k-1k+1
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NV
Nodes 
/ Plane PlanesNNZ

SCOREC 
GBYTES

PETSC 
GBYTES

LU‐NNZ
(FF = 4)

PETSC
 GBYTES Total GB

Hopper
Nodes

Hopper 
Cores

2 107 4 5177088 0.07248 0.12943 6902784 0.17257 0.37448 0.00585 0.14043
3 1000 8 2.2E+08 3.04819 5.4432 2.9E+08 7.2576 15.749 0.24608 5.90587
3 1000 32 8.7E+08 12.1928 21.7728 1.16E+09 29.0304 62.996 0.98431 23.6235
3 4000 64 7E+09 97.5421 174.182 9.29E+09 232.243 503.968 7.8745 188.988
3 16000 128 5.6E+10 780.337 1393.46 7.43E+10 1857.95 4031.74 62.996 1511.9

Memory Requirements for largest matrix.    Actual 
memory requirement for code may be twice this.
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Future  Computational Directions

• Need to get code fully operational on Hopper  
• Separate LU decomposition for each velocity component 
for the Block Jacobi preconditioner

• Multigrid in toroidal direction ?

• GPUs
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