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Application of DCON to Resistive Instabilities

» DCON is widely used for computing the ideal MHD stability of
axisymmetric toroidal plasmas.

» It is thoroughly verified and validated, robust, reliable, easy to use.

> It has also been applied to determination of ideal region matching
conditions for resistive and related singular modes, A'-like quantities.
But despite many efforts, the matching data are noisy and unreliable.

» The cause of this problem has recently been identified: the method used
1s similar to a shooting method, and 1s subject to a numerical instability.

» We are replacing this with the method of Pletzer & Dewar, using a
Galerkin basis function expansion to discretize the 1 dimension and
compute the matching data by linear system solution.

» The new method makes extensive use of the existing DCON code.
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Ideal DCON

» Axisymmetric toroidal plasma, linear ideal MHD perturbations: 2D PDE.

e Previous codes, e.g. PEST, ERATO, GATO:
expand in 2D basis functions, convert to large matrix eigenvalue problem.

* Problems: resolution near singular surfaces and separatrix, slow convergence,
excessive human and computer time.

* Newcomb, 1960: marginal ideal internal stability of cylindrical plasma reduced to
numerical solution of 2nd-order ODE, initial value problem, crossing condition.

* DCON: generalization of Newcomb to axisymmetric toroidal plasma, numerical
solution of 2M-order ODE. 5 seconds on a fast workstation for toroidal mode
number n=1, high f3, tight aspect ratio, separatrix.

» Extension to free-boundary modes, plasma + vacuum, Morrell Chance.

» Interfaces to 28 Grad-Shafranov solvers, both direct and inverse, fit to bicubic
splines.

» Reports equilibrium properties, Mercier & high-n ballooning stability, fixed
and free boundary ideal MHD modes.

» Widely used around the world, extensively verified and validated.
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Formulation of Ideal MHD DCON

Ideal MHD Energy Principle

SW = % / dx [Q+J - & x Q+ (- VP)(V - &) +7P(V - )]
Q

Fourier Representation

Mhigh

,S . V.Q’s(u‘y, 3_\ g) — Z gm(y{,)ci(me—-nC)

m=milow

E(Y) = {&m(¥) | m € [Mumins Mmax] }
Euler-Lagrange Equation

1
SW = / ay [21F’ + 21K + EIKTE + 21 GE]
0

DO | =

LZ = —(FZ' + K&)' + (KTZ' + GE) = 0
Ordinary Differental Equation
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Frobenius Expansion

Singular Surface Equations

(= [ —F'k  F! ,
u= (FE’+KE) L:(G—KTF‘IK KTF-I) il
Qmm' = (m—nq)0mm, F=QFQ, G=G, K=QK
mp —nq(¢Yr) =0, z2=v—1g
Flaz? FIK~KF'oz! GoKF'K~1

Convergent Power Series Expansion

N
= 2P Z €n2"
n=0

(1]

1
p= ) + /=Dy, large and small Mercier resonant powers
p=0, nonresonant powers

g2, Solved to arbitrarily high order N; automated using matrix formulation.
N Essential for larger values of |Dj|; generally improves convergence.

Plag,
25
Jone™

Glasser, Resistive DCON, CEMM/Sherwood 2013 Slide 5
PSI-Cente!




PJa,

‘\e“ce ang 4
o2 ”/;o

PSI-Cen‘ier

uoW

Asymptotic Coefficients

Numerical Solution

U'=LU

Power Series Solutions

Asy =g, Uy = LU4

Asymptotic Coefficients

U=U4C4s, Cs=U3'U
Asy > g, C4—0

Asymptotic coefficients are used
to construct matching conditions.
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Effect of Increasing Power Series Order
Convergence of Asymptotic Coefficient Near Singular Surface
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Initial Conditions at the Axis

» The equations have a regular singular point at the axis 1y =0, just as they do at
each resonant surface.

» DCON uses a numerical Grad-Shafranov solution fit to bicubic splines, with
one edge of the bicubic splines near the origin. This introduces noise and
inaccuracy into the ODEs.

» Newcomb proves a theorem that the small solution at the axis is the limit a
simpler initial condition at a point near the axis, in the limit as that point
approaches the axis.

» DCON uses Newcomb’ s procedure and gets clean, accurate results for ideal
MHD stability.
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Fixups

» Each independent solution grows from the axis as r ~ 1 ™2,
» r?0 grows much faster than r'.

> If nothing is done about this, the higher m’ s swamp the lower m’ s. Instead of following
M solutions, we follow 1 solution M times.

» Determinants approach zero, results turn to mush.
» Fixups
¢ Keep track of the factor by which each independent solution grows.
% Let unorm = ratio of the fastest to the slowest growth.
*¢ When unorm exceeds a specified threshold ucrit:
* Subtract a multiple of the fastest-growing solution from each other solution

* Repeat for each successively smaller solution

» Similar to Gaussian elimination. Triangularizes solution matrix, maintains linear
independence.

» If ucrit is too large, noise develops. If it is small enough, the solutions are clean.
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Crossing a Resonant Surface

» On approach to each resonant surface, each of the M independent solutions
contains a linear combination of large, small, and non-resonant solutions.

» For ideal MHD, DCON eliminates the large resonant solution and restarts a
new small resonant solution. This can be done with a fixup and without the
need to evaluate asymptotic coefficients. After crossing, there are again M
independent solutions.

» For resistive MHD, DCON evaluates the asymptotic coefficients. It imposes
continuity on all non-resonant displacements and launches two new resonant
solutions, large and small. After crossing, there are M+2 independent
solutions.

» The resistive crossing procedure provides just enough additional degrees of
freedom to match to arbitrary inner-region solutions a posteriori.
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Convergence Problems

» DCON solves an initial value problem to compute ideal MHD stability,
requiring only outward integration, and fixups to maintain linear
independence of solutions.

» Resistive stability calculation requires matching across the whole
domain, unwinding the fixups. This converts it from an initial-value
problem into a 2-point boundary value problem, solved by a shooting
method.

» Such methods are known to be numerically unstable because of
excessive sensitivity to initial conditions.

» This explains the failure of resistive DCON to find reliable and
accurate values of the matching data.

» Solution: replace the shooting method with a the method of Dewar &
Pletzer, a Galerkin expansion in basis functions, solve matrix equation
for matching data.
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» A.D.Miller & R. L. Dewar, “Galerkin method for differential
equations with singular points,” J. Comp. Phys. 66,356-390 (1986).
Introduces Galerkin method for singular ODEs, solves test problems.

» R.L.Dewar & A. Pletzer, “Two-dimensional generalization of the
Newcomb equation,” J. Plasma. Phys. 43, 2,291-310 (1990).
Derives 2D Newcomb equations, equivalent to DCON equation.

» A.Pletzer & R. L. Dewar, “Non-ideal Variational method for
determination of the outer-region matching data,” J. Plasma Phys.
45,3,427-451 (1991).

Solves cylindrical problem with non-monotonic g profile.

» A.Pletzer, A. Bondeson, and R. L. Dewar, “Linear stability of
resistive MHD modes: axisymmetric toroidal computation of the
outer region matching data,” J. Comp. Phys. 115, 530-549 (1994).
Solves toroidal problem, PEST 3, verified against MARS code.
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Galerkin Expansion

Euler-Lagrange Equation

LE= —(F2' + KE)' + (K'Z' + GE) =0
Galerkin Expansion

1
() = [ @)y

N

E(v) =Y Eiu(¥)

1=0

(O“i, LE) = (Q’i, L()“j)Ej =0

Lij = (ai, Fa‘;) + (i, Kay) + (ou, KTa;) + (i, Gay)

Finite-Energy Response Driven by Large Solution

Lijgj = —(O’i, Lé)
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Dewar and Pletzer:

Linear Finite Elements on a Packed Grid
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The choice of basis functions determines
the rate of convergence.
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Higher-Order Basis Functions

C? Jacobi Nodal Basis

p(x)
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e Lagrange
interpolatory
polynomials

* Nodes at roots of
(1-x?) P,V (x)

» Diagonally
dominant
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C! Hermite Cubics
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» Cubic polynomials on
(0,1).

« C! continuity:
function values and
first derivatives

e Useful for nonresonant

solutions across the

singular surface.
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Adjustable Grid Packing: Equations

Grid Packing Function

’+1 1+ A
Aa) = cotha = a1 a(\) = acoth A =1In (ﬁ)

tanh a& 1
x(E,N) = 3 > — X

3 — 3 o € I
lima(A) =2\, lim2(¢,\) = ¢
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Adjustable Grid Packing: Graphs
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Singular Elements

» Weierstrass Convergence Theorem:
Polynomial approximation uniformly convergent for analytic functions.

» Big and small resonant solutions are non-analytic near the singular
surface.

» Supplement polynomial basis with small resonant solution near
singular surface.

» DCON fits equilibrium data to Fourier series and cubic splines,
computes resonant power series to arbitrarily high order.

» Convergence requires that the large solution be computed to at least
n = 2*sqrt(-di) terms. PEST 3 is limited ton = 1.
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Status and Plans

» DCON processes data from 28 different Grad-Shafranov solvers, diagnoses them, computes the
F, G, and K matrices, and compute power series about singular surfaces. It accurately and
reliably computes ideal Mercier, ballooning, and low-n free and fixed boundary modes.

» We have supplemented the existing DCON infrastructure with the method of Dewar & Pletzer,
solving a set of inhomogeneous matrix equations for the outer region matching data, using the
existing F, G, and K matrices, solved with a complex banded LAPACK routine.

» Improved choice of Galerkin basis functions and packing algorithm should result in faster,
more reliable convergence, greater ease of use, compared to PEST 3.

» Solutions look good, but we have not yet achieved convergence with respect to the the rhs
cutoff function. We have successfully reproduced the test cases in Miller & Dewar 1986.

» We are working with Dylan Brennan to validate resistive DCON against PEST 3.

» A separate code DELTAR implements the inner region resistive MHD equations of Glasser,
Greene & Johnson, using the Fourier transform method of Glasser, Jardin & Tesauro, taking 35
microseconds of cpu time.

» Inner and out region solutions must be matched to form global eigenvalues and eigenfunctions.

e Future research will be devoted to improving the inner region model.
& %
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