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Resistive Wall Model In M3D-C1 Includes Wall

Inside Simulation Domain

3 regions inside domain:

— XMHD (Extended MHD, ”
includes open field-line
region)

— RW (E - HWJ) —1.35—

— Vacuum (J =0)

Boundary conditions:
— v, p,nsetatinner wall
— B set at outer (superconducting) wall

There are no boundary conditions on B or J at the
resistive wall

— Current can flow into and through the resistive wall

All regions advanced simultaneously with implicit time
step
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Linear Modeling of Edge Instabilities
in QH-Mode Dischar es X| Chen
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Linear Modeling of Edge Instabilities

in QH-Mode Discharges (Xi Chen)

* Eigenmode calculated by M3D-C1 agrees well with
experimental observations of EHO structure
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Nonlinear Disruption Modeling

(David Pfefferlé)

* Modeling seeks to explore magnitude and toroidal
distribution of currents in the wall

* Can run VDE simulation in 2D until g4, ~ 2, then

switch to 3D
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In “Hot VDE,” g4, Drops Until Plasma
Becomes Unstable to n > 0 MHD

* Two competing effects determine g,4,, once plasma is
limited:
1. 9 edge drops as plasma shrinks and is scraped off by limiter
2. {eqe. Fises because of resistive decay of /,

* In cold-VDE (TQ happens before VDE), resistive decay is
fast and g4, rises
— Plasma remains stable ton >0 MHD

* In hot-VDE (no TQ before VDE), resistive decay is slow
and ¢4, drops
— Plasma eventually becomes unstable to n > 0 MHD

— n > 0 instability potentially causes strong Halo currents, wall
forces, and TQ




In Hot-VDE Simulation of NSTX, ¢4, < 1
Before Non-Axisymmetry is Significant

* Non-axisymmetric modes start growing when
qedge=2, but are still at small amplitude when qedge=1

* g, Iis still > 1, so shear is reversed when qedge=1
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3D Perturbed Equilibria in Snowflake

« M3D-C1 Grad-Shafranov solver
was improved to allow good
snowflake equilibria
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more stochasticity, larger lobes
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* Effectis attributed to weaker
Bpol
— Smaller perpendicular part from
toroidal rotation

— Larger lobes for given '
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Accurate Free-Boundary NSTX(-U)
Equilibria Require Vessel Currents

J

4

* In NSTX(-U), eddy currents in vessel
strongly contribute to shape

* Snowflake equilibria are very sensitive
due to small B, over large area
— Also sensitive to SOL currents

I"

* We now read “coil” definitions and
currents from device & signal files
used by EFIT
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Understanding Penetrated Error
Fields Requires Nonlinear Modeling
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* DIII-D experiments highlighted s o™X
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— Island is large compared to resistive layer “

width

— Island size is observed to be essentially

independent of amplitude of error field

— Island appears to lock ion rotation, not
electron rotation
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* Nonlinear modeling of island
saturation is underway

— Finds saturated island size is independent
of error field

— Case also being investigated using Siesta
and HINT
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Pellet Modeling for ELMs and
Disruption Mitigation

* New capability to pack mesh toroidally to better
resolve pellet

— Demonstrated capability to resolve realistic pellet cloud
(~1cm)

* Initial calculations are underway

— Benchmarking evolution of cold particle cloud with PRL
code (S. Diem & L. Baylor)

— Implementation of P. Parks model of pellet ablation for
ELM triggering calculations (A. Fil)



Summary

e User base of M3D-C1 is now expanding rapidly, and
being applied to diverse set of problems

 Code development is focusing on ways to improve
disruption modeling

— Resistive wall, halo currents
— Pellets, radiation

* 3D response / equilibrium work is ongoing
— Linear response is mature but still improving
— Now exploring nonlinear response and penetration

* Lots of plans and data for validation; need some code
benchmarking too!






Full, Compressible, Two-Fluid Model is
Implemented in XMHD Region
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* (R, ¢, Z) coordinates = no coordinate singularities in plasma

* Three modes of operation:
* Linear, time-dependent (linear stability)
* Linear, time-independent (perturbed equilibrium)
* Nonlinear, time-dependent (nonlinear dynamics)



Resistive Model Verified Against
Analytic Resistive Wall Mode Result

* Circular cross-section, cylindrical plasma with constant ¢, current
density (J, ) and mass density (p,) (Shafranov equilibrium)

* Analytic thin-wall solution provided by Liu et al. Phys. Plasmas 15,
072516 (2008)
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RWM Benchmark: M3D-C1 Agrees
with Analytic Result

Growth rate calculated using linear, time-dependent calculation

M3D-C1 agrees with analytic growth rate in both resistive-wall (T, <<
Tw) and no-wall (ty << t,) limits
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M3D-C1 Model Verified For Arbitrary
Wall Thickness

Allowing arbitrary wall thickness leads to straightforward modification

of Liu et al. (thin wall) dispersion relation General solution

v 1 _01) 4 . 1,(B)K, ()1, (K, (f)
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v=sgn(m) p=~10+d/b)a F—_Vtw
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In thick wall, skin depth limits eddy current depth

— Weaker eddy currents than in thin wall approximation, | —— Feneral wall solution
which assumes radially uniform current in wall -, M3D-C1
f
M3D-C1 model in good agreement with analytic g
Its for arbitrary wall thickness < e
resu .
1
In ITER, (yTy)(d/b) ~ 0.2 * :
— Growth rates ~ 20—50% larger than thin wall solution - € Thin wall limit
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* F. Villone et al. Nucl. Fusion 50, 125011 (2010) d/ b



Rotational Stabilization of RWM
Observed

e Reduced-model calculations show stabilization of
RWM by toroidal rotation
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— Growth rate falls off
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