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•  External three-dimensional magnetic perturbations have 
become a principal means of mitigating or suppressing edge-
localized modes (ELMs) in tokamaks 

•  Sophisticated magnetohydrodynamics (MHD) modeling is 
required to understand how the plasma responds to these 
perturbations 

•  M3D-C1 is used to model the plasma response in a variety of 
plasma and magnetic perturbation configurations 

•  Results compared to 
–  Experimental data and observations 
–  Numerical results from IPEC and MARS-F 

Introduction 
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•  DIII-D has demonstrated complete suppression of ELMs using 
externally-applied 3D magnetic perturbations 
–  Evans, T.E. et al.  Nat. Phys.  2, 419 (2006). 
–  Among others 

•  Results motivated installation of coils on several machines 
–  ASDEX Upgrade 
–  KSTAR 
–  MAST 
–  NSTX-U 
–  ITER (planned) 

ELMs can be mitigated or suppressed by external 3D 
magnetic fields 
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Plasma response can greatly alter perturbed 
magnetic spectrum 

•  SURFMN-like field decomposition 
•  Resonant response at rational surfaces (m=nq) 

–  Tearing enhances 
–  Screening suppresses 

•  Kink response amplifies non-resonant fields with m>nq 

Equations for CEMM 3/2015

B.C. Lyons

General Atomics

δBr(ψ) =
∑

m,n
Bmn(ψ) exp [i (mθ − nφ)]

kink 

tearing 

screening 

m=nq m=nq 
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•  M3D-C1 [1] is a sophisticated extended MHD code 
–  Fully three-dimensional 
–  Two-fluid 
–  Linear and nonlinear modes 
–  EFIT Grad-Shafranov equilibrium recomputed on adaptive mesh 

with high-order finite element representation  

•  Plasma response calculations 
–  Linear (single toroidal mode number) 
–  Mostly time-independent, but some time-dependent 
–  Single- and two-fluid  

•  Single-fluid presented here 

–  Experimental kinetic & rotation profiles 
•  Extended beyond separatrix 

–  Resistive wall model 

M3D-C1 allows for extended MHD simulations of the 
plasma response to applied 3D fields 

[1] S. C. Jardin, et al., Comput. Sci. Discovery 5, 014002 (2012).  
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•  Plasma response calculations for a variety of devices 
–  DIII-D 
–  ASDEX Upgrade 
–  KSTAR 
–  NSTX-U 

•  At General Atomics 
–  Multimode response (C. Paz-Soldan, S.R. Haskey, N.C. Logan) 

•  Cross-code verification with IPEC and MARS-F 
•  Experimental validation in various plasma conditions 

–  Field line tracing with TRIP3D (W. Wu, T.E. Evans, D.M. Orlov) 
–  Divertor footprint analysis with MAFOT (A. Wingen) 
–  Impact of multiple toroidal mode numbers and sidebands with 

PROBE_G fields (D.M. Orlov) 
–  Bifurcation dynamics (R. Nazikian, A. Wingen) 

•  Island penetration time 
•  HFS phase shift 

M3D-C1 is being used for many 3D field applications 
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ELM suppression bifurcation 
dynamics 
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Bifurcation observed in fluctuations at top of pedestal prior to 
significant change in pedestal pressure  

ELM-free 	ELM Suppressed 	Based on R. Nazikian, 
MHD Stability Control 
Workshop, 11/2015 

•  Doppler backscatter at 
top of pedestal reveals 
–  Increased fluctuations 

during ELM suppression 
–  Abrupt rotation shift 

during transition from 
suppressed to ELM-free 

•  Slow temperature 
(equilibrium) variation 
compared to bifurcation 
timescale 
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Detailed analysis reveals HFS magnetic phase shift prior to 
significant change in pedestal pressure/equilibrium 

ELM Free 	
ELM Suppressed 	

•  Bifurcation and rotation 
profile evolution occur on 
millisecond timescale 

•  Phase shift observed on 
high-field side magnetics 
on same timescale 

•  Delay on magnetics 
possibly due to time 
required for island 
penetration 

Based on R. Nazikian, 
MHD Stability Control 
Workshop, 11/2015 
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M3D-C1 equilibration time of resonant field consistent 
with timescale of bifurcation dynamics 

•  Linear, time-dependent calculations performed with M3D-C1 

•  Initial condition is fully-penetrated, 3D vacuum field 
•  Resonant field equilibrates after thousands of Alfven times 

–  Island is partially screened over ~2 milliseconds 
–  Roughly consistent with experimental observations  
–  Nonlinear simulations of resonant penetration are planned 
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Resonant penetration permitted by zero in ExB rotation 
profile at q=4 surface 

•  Fix equilibrium, as largely unchanged across bifurcation 
•  Rotation profile varied as this changes on bifurcation time scale 
•  Resonant field at q=4 greatly amplified with ELM-suppressed 

rotation profile 
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M3D-C1 simulations of screened versus penetrated 
states reveal phase shift on HFS wall 

•  Phase shift also seen in divertor footprint calculations with MAFOT 
•  Qualitative agreement between M3D-C1, MARS-F, and data 
•  Ongoing verification and validation effort 
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Dissipation levels may be important for plasma 
response calculations 

•  Varying viscosity (along with density diffusivity and thermal 
conductivity) can change phase and amplitude of response 

•  Still verifying numerical convergence 
•  For validation, may be important to match experimental dissipation 
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New ways to run M3D-C1 
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•  M3D-C1 has been installed 
and tested on Iris, the new 
cluster that will become the 
base for computing at GA 

•  A new Python script has 
been developed to run 
linear M3D-C1  
–  Routine parameters and 

templates 
–  Works on GA and PPPL 

clusters 
–  Allows for straightforward 

analysis of new kinetic EFITs 
(g-, p-, and a-files) 

M3D-C1 runs on GA cluster and with automated script 

5 
D.P. Schissel/January 2016 

MFE Cluster (Iris) is Installed, Being Configured, 
and Will be Released Soon (~week or so) 

•  Advanced Clustering Inc. 
–  Integrated solution 

•  Our usage on Venus 
–  Avg 80 users at once 
–  Suggest ~1.5 cores/user 

•  Interactive Nodes 
–  Human interaction 
–  Not CPU “intensive” 

•  Batch Nodes (fire & forget) 
–  Serial code: requirements 

hard to quantify  
–  MPI is supported 

Iris cluster. D.P. Schissel. 
GA Friday Science Meeting. 1/29/16 
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•  Tasks that can be run with script 
–  Preprocess kinetic EFIT files into M3D-C1 readable formats 

•  Includes extending density & temperature profiles beyond separatix 

–  View EFIT equilibrium within M3D-C1  
–  Recompute equilibrium on uniform finite element mesh 

•  Can iterate on this step for better equilibrium matching 

–  Adapt finite element mesh to equilibrium 
–  Compute equilibrium on adapted mesh 
–  Compute linear stability for arbitrary toroidal mode number 
–  Compute linear, time-independent response to external 3D magnetic 

perturbations for arbitrary toroidal mode number 

•  Currently used to provide quick turnaround for experimental analysis  
•  Available on GitHub:  https://github.com/bclyons12/autoC1 

•  Default parameters, of course, don’t always work, so some expertise 
required 

New script allows for simple running of linear M3D-C1 
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Plans for DK4D 
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•  Developed for purpose of extended MHD coupling 
•  Solves ion and electron DKEs for non-Maxwellian part of 

distribution function  
•  Uses linearized Fokker-Planck-Landau collision operators 
•  Chapman-Enskog-like formulation ensures self-consistency 

with extended MHD equations 
•  Encouraging initial results 

–  Benchmarked to Sauter model, along with NIMROD, NCLASS, and 
NEO codes2 

–  Coupling to reduced MHD code has produced self-consistent 
simulations of dynamic bootstrap current formation3 

DK4D1 is a time-dependent, axisymmetric  
drift-kinetic equation (DKE) solver  

1B.C. Lyons, S.C. Jardin, & J.J. Ramos. Phys. Plasmas 22, 056103 (2015). 
2E.D. Held et al. Phys. Plasmas 22, 032511 (2015). 
3B.C. Lyons.  Doctoral dissertation. Princeton University 2014. 



19 

•  M3D-C1 can calculate steady-state, axisymmetric equilibria 
–  Sources included in two-fluid MHD equations (e.g., particle source) 
–  Transport model assumed (Spitzer resistivity, Braginskii pressure tensor) 
–  Evolve to steady-state to predict axisymmetric equilibria (e.g. NSTX1)  

•  DK4D could be used to provide neoclassical transport model 
–  Friction force and pressure anisotropy close momentum equations 
–  Parallel heat flux closes temperature equation (if needed) 

•  Instability with heat flux term in DKE may complicate this 

–  Self-consistent neoclassical resistivity and bootstrap current would develop 

•  Would require code development on both ends 
–  DK4D 

•  Read M3D-C1 equilibria (easy; already done for related NIES code) 

•  Fix or find workaround for heat flux instability 

–  M3D-C1 

•  Add new closure terms based on moments of drift-kinetic solution 
•  Possibly generate equilibrium in flux coordinates without post-processing 

–  May require more tightly-coupled implementation for efficiency 

Coupling M3D-C1 & DK4D would permit realistic 
transport-timescale simulations 

1Ferraro, N.M. and S.C. Jardin.  J. Comput. Phys.  228 (2009) 7742–7770. 
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•  New coupled drift-kinetic MHD formulation derived by Ramos 
–  Chapman-Enskog-like for self-consistency 
–  Fokker-Planck-Landau collisions 
–  Rotation of order the sound speed 
–  Two-fluid effects 
–  Zero-Larmor-radius limit 

•  Linearized about an axisymmetric, single-fluid, collisionless 
equilibrium with Maxwellian distribution function 

•  Linear solution evolves time-dependently 
–  n=0 perturbation which corrects assumed equilibrium 
–  Single toroidal harmonic for stability analysis 

•  Structure of DKE is very similar to that used in DK4D, which 
should allow for relatively straight-forward implementation 

•  Can be coupled to M3D-C1 to study kinetic stabilization of 
resistive wall modes 

Modifications to DK4D would allow linear stability 
analysis of resistive wall modes 

As in DK4D 

New to model 
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DK4D 

New  

New DKE is very similar to the one already implemented 
in DK4D  
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•  Expand DKE in DK4D variables/representations (in progress) 
•  Modify DK4D implementation 

–  Change to complex variables for linear stability analysis (einφ) 
–  Ax=B system 

•  A will require some modification, but much can be reused 
•  B will be redone completely for new source terms 

•  Couple to M3D-C1  
–  Procedure may be similar to transport-timescale simulations 
–  Fast evolution of instability could introduce new complications 

•  Codes will likely need to be compiled together and run 
simultaneously 
–  Both codes would be linear 
–  Reuse matrices and LU decompositions for maximum efficiency 

Proposed plan of implementation 
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•  M3D-C1 is used to calculate the linear, plasma response to 
external 3D magnetic perturbations 

•  ELM suppression bifurcation dynamics 
–  DIII-D experiments reveal bifurcation in and out of ELM suppression 

with quickly evolving rotation profiles and magnetic signals 
–  M3D-C1 reveals island equilibration timescale and magnetic phase 

shift roughly consistent observed magnetic signal changes 
–  Initial results seem sensitive to dissipation levels 

•  M3D-C1 can now be run on Iris cluster at GA 
•  Automated python script written to facilitate new plasma 

response calculations 
•  Possible future work on DK4D 

–  Transport-timescale axisymmetric coupling to M3D-C1  
–  Solve new DKE for kinetic-MHD stability calculations 

Summary 
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Additional Slides 
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158103.03796 

DIII-D Reference Equilibrium  
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•  Three rows of six saddle coils 
–  Two in-vessel rows (I-coils) 
–  One external row (C-coils, not pictured) 
–  Toroidal mode number of perturbations up to n=3 

•  For n=2 fields, phasing                                can be varied 
between upper and lower coils sets 

External field coils on DIII-D 
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•  Reference equilibrium (shot 
158103 at 3796 ms) has 
–                 T and                MA 
–    
–    
–    

•  n=2 external 3D field 
applied with I-coils 
–  Phasing between upper 

and lower coil changed in 
piecewise fashion 

–  Phase of both coils flipped 
throughout shot for 
nonaxisymmetric diagnostic 
purposes 

Reference is ITER-similar shape, lower single null 
plasma 

BT =1.93 IP =1.36
βN = 2.2
νe* = 0.3
q95 = 4.15

LFS 
probe 

HFS 
probe 
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•  These plots show 
–  Magnitude of perturbed magnetic 

field as the phasing is varied 
–  Signal at low-field side (LFS) and 

high-field side (HFS) probes 
–  Field from plasma response only 
–  Null occurring where response from 

upper and lower coils cancels 

•  Signals at LFS and HFS have 
different phasing dependences 

•  Indicates multiple modes are 
being driven simultaneously in  
DIII-D with n=2 fields 

•  For more detail, see C. Paz-Soldan 
et al., PRL 114, 105001 (2015) 

LFS and HFS magnetic response measurements show 
multimode response on DIII-D 
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•  IPEC1 uses an ideal MHD model 
–  No rotation 
–  Perfect screening at rational 

surfaces 

•  MARS-F2 uses a single-fluid, 
resistive MHD model 
–  Simulations performed with 

carbon toroidal rotation profile 
–  Resistivity allows for tearing or 

imperfect screening 

•  Here, M3D-C1 use single-fluid 
model with ExB rotation profile 

Modeling of reference shows excellent agreement 
between experimental data and various codes 

1 J.-K. Park, A.H. Boozer, and A.H. Glasser,  
 Phys. Plasmas 14, 052110 (2007).  

2 Y. Q. Liu, et al., Phys. Plasmas 7, 3681 (2000).  
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Difference from MARS-F largely 
due to rotation profile choice 

Including two-fluid terms gives 
poorer agreement with data 

M3D-C1 results sensitive to changes in non-ideal effects 
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Carbon toroidal rotation results in reduced kink response 

reduced
kink 

3.5 4 q= 
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Enhanced tearing in two-fluid simulation due to electron 
rotation zero crossing near q=7/2 

3.5 4 q= 

enhanced 
tearing 

slightly 
modified 
kink 
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•  Parallel temperature gradient 
should develop if parallel heat 
flux does not have the Pfrisch-
Schulter-like return 
component 

•  Should require tight coupling 
to temperature equation 
–  Without:  exponential growth 
–  With: oscillatory, but 

exponential 

•  Unclear if the coupled system 
is still missing physics or, more 
likely, there’s a numerical 
instability 

Implicit heat flux causes instability  in DK4D 


