

3.6.1 Input from the Computer Science Research
Community

1 Introduction
Computer Science (CS) research plays a central role in providing the underlying
technologies that enable advances in computational science. CS research includes a broad
set of topics ranging from computer architecture to parallel programming models to
performance and data analysis. Computational science is the process of conducting
scientific research using computing technology as a supplement or surrogate for
experiments and is a “consumer” of the results of CS research. Elements from both
programs result in scalable and distributed technologies of the type needed to address the
challenges posed by modern computational science and distributed scientific research
teams. The information that follows describes current Computer Science research,
development and deployment activities along with the facilities and infrastructure
requirements needed to support those activities at a production supercomputing center
like NERSC. The information was obtained from a sampling of both DOE and non-DOE
sponsored Computer Science and Visualization research efforts.

CS research projects involve conceiving, developing and deploying the technology that
underpin subsequent advances in modern computational science applications. At the
beginning of the day, a scientific researcher has an idea they would like to develop
theoretically, prototype, and test. At the end of the day, computational science is about
producing scientific results in a reliable and consistent manner in order to serve the needs
of domain scientists. Between the two are a myriad of challenging technical problems
that stem from the activities of creating, debugging, tuning, and maintaining complex
scientific software that runs on highly parallel computer systems. The CS research
community faces a gap between the research prototypes and the production results.
NERSC can play a pivotal role in bridging the gap between research and production –
creating a conduit for advanced CS research that will have broad impact on how scientists
approach computational science in the future.

Like a finished building, the most visible aspect of computational science is on the
outside - the research results. The research and development needed to create the
technologies as well as the myriad details of infrastructure that make computational
science possible are all too easy to overlook when planning a large computer center.
These applications, which typically run on hundreds or thousands of processors, must
first undergo development, testing, debugging, performance analysis and tuning prior to
be put “into production.” The general theme of our findings is that computer centers like
NERSC tend to craft policies and procurements at the finished, production-ready
computational science applications. However, the needs of the CS research programs are
much different than those required for “production computational science.” This singular

Page 1 of 16

focus supplies little middle ground for shepherding innovative research into the
production setting. Therefore, the general theme of our findings is that NERSC is in an
excellent position to propel significant advances in CS research through a relatively
minor shift in programmatic focus.

2 Overview of CS Research Areas

During the course of all the steps leading up to production, having access to the actual
production machine for interactive use is a crucial part of the research, hardening and
deployment process. Debug and performance analysis tests of new ideas take place on
sets of processors ranging in number from one up to thousands. Such tools form the basis
of future scientific applications only after requisite hardening on target production
systems.

The DOE MICS office supports a multi-faceted research portfolio that impacts many
branches of computational science. One area of CS research creates new languages and
communication libraries that make it easier to express scientific problems and
parallelism. Another branch of CS research focuses on I/O technology for management
and storage of scientific data and the marshalling of distributed data storage and
computational resources. Performance analysis drives new machine architectures and
helps evaluate the potential of new computational architectures. The development of new
numerical algorithms can improve the quality of solutions or enable performance
improvements that exceed the growth in computational capability that can be derived
from hardware alone. The combined benefits derived from each of these areas of CS
Research enable more effective use of available supercomputing systems and greatly
improve the value derived from NERSC’s current and future supercomputer systems.

2.1 Parallel Languages and Programming Models
Computer programming languages are the vehicles for expressing algorithms.
Programming models are “theories of operation” that go beyond syntax and semantics to
describe high level approaches for using a computing language on a computer platform to
solve a class of problems. They typically define how data is distributed and managed, and
how processing work is managed and synchronized. The characteristics of both the
programming language and the programming model have a significant impact on the
class of algorithms they support. For example, a programming language well suited for
manipulation of strings will likely not be ideal for solving large systems of equations.

The Unified Parallel C project1(UPC), is an extension of the C programming language
designed for high performance computing on large-scale parallel machines. The language
provides a uniform programming model for both shared and distributed memory
hardware. The programmer is presented with a single shared, partitioned address space,
where variables may be directly read and written by any processor, but each variable is
physically associated with a single processor. UPC uses a Single Program Multiple Data
(SPMD) model of computation in which the amount of parallelism is fixed at program

1 http://upc.nersc.gov/

Page 2 of 16

startup time, typically with a single thread of execution per processor. In order to express
parallelism, UPC extends ISO C 99 with the following constructs: an explicitly parallel
execution model; a shared address space, synchronization primitives and a memory
consistency model; memory management primitives. The Titanium project2 has similar
goals, but is based upon Java rather than C.

Parallel languages are built atop lower-level constructs that provide interprocessor
communication (messaging) and memory management infrastructure. Projects in this
space include message passing interfaces (VIA, MPI) and higher-level interfaces to
message passing (Global Arrays). Global Arrays3 provides an efficient and portable
“shared-memory” programming interface for distributed-memory computers. Each
process in a MIMD parallel program can asynchronously access logical blocks of
physically distributed dense multi-dimensional arrays, without need for explicit
cooperation by other processes. The Message Passing Interface (MPI)4 is the de-facto
standard low-level messaging interface. It provides an API that allows developers to
explicitly control data management, movement and synchronization in parallel programs,
as well as to explicitly manage interprocessor synchronization. While typically used in
distributed memory environments, it is also used in shared memory systems.
GASNet5provides a standard low-level interface for messaging that lies beneath high-
level languages like UPC and Titanium. A wider range of communication semantics than
can be expressed with less overhead than is possible with MPI. Past experiments with
low-overhead communication, such as MVIA/MVICH6 have continued to have an impact
on modern cluster designs. For instance, MVICH forms the core of the MPI
implementation used by the Virginia Tech Apple cluster and even NERSC’s new
jacquard system.

A central, time-proven tenant of software engineering is “modular design.” Extending
this concept to parallel, distributed, multi-language computational science applications
spans a large sector of DOE's Computer Science research portfolio, and is something not
provided by industry (see the HECRTF). The Common Component Architecture7
SciDAC ISIC aims to define a minimal set of standard interfaces that a high-performance
component framework has to provide to components, and can expect from them, in order
to allow disparate components to be composed together to build a running application.

Many of the enabling technologies from the CS research community are developed first
in a workstation environment. As they evolve, they are adapted for use in other
environments and purposes. These might include massively parallel environments, or use
for a specific computational science application. Since there are relatively few locations
where one can perform porting and testing on thousands of processors, the CS research
community naturally looks to centralized computing facilities – like NERSC – to provide

2 http://titanium.cs.berkeley.edu/
3 http://www.emsl.pnl.gov/docs/global/ga.html
4 http://www.mpi-forum.org/docs/docs.html
5 http://www.cs.berkeley.edu/~bonachea/gasnet/
6 http://old-www.nersc.gov/research/FTG/via/
7 http://www.cca-forum.org/

Page 3 of 16

the resources needed to support research objectives. Many problems with parallel
programming models become visible only at the largest scales – levels of parallelism that
the language and library designers do not have access to outside of centralized computing
facilities that can provide access to thousands of processors. However, the testing and
performance analysis of parallel programming models at large scale can sometimes
require interactive access for periods of time because many debugging solutions cannot
be executed in batch mode.

The products from the CS research community often share a common interest: garnering
the attention of the wider HPC community as well as encouraging widespread adoption
and use where appropriate. There is often a huge gap between the individual CS
researcher and the ultimate consumer of the technology. To help bridge this gap, the
central computing facility can play a crucial role. Namely, the center can make available
to its users the products from the CS research community. In many cases, such
deployment will require adaptation for use in a specific environment. Advanced
deployment activities are beyond the reach of the individual CS researcher, but are
required in order for the technology to be used successfully on production systems. In
bridging the gap, an increased level of interaction between CS researcher and production
facility will be beneficial to the center, to the CS research and to the computational
science users.

Central production facilities typically have uniquely strong relationships with hardware
vendors. Smaller CS research groups typically are not in a position to have such
relationships since they do not have the large hardware budget that garners the attention
of the vendors. Central facilities like NERSC can play an important role in helping the
language and library developers to establish closer relationships with the vendors who
supply the production systems in order to get early access to specifications for new
systems, and to help drive the design process within the vendors to better accommodate
advanced concepts in parallel programming exposed by these languages and libraries.
This very idea is consistent with the recommendations of the High End Computing
Revitalization Task Force8 (HECRTF) and NERSC’s vision of “science-driven
computing.” Without such relationships, the primary driver on vendors for supporting the
needs of the computational and computer science research communities will be the
limited set of benchmarks that are used for procurements. Status quo in this regard will
not produce the desired, long-term results: growth and innovation in all of computer and
computational science, as well as the strength and vitality of the HPC market.

2.2 Profiling and Performance Analysis
Due to the inherent complexity of today’s large parallel platforms, computational science
applications benefit from careful performance and profiling analysis9. Such analysis helps
to detect “hot spots” in code where optimization will result in a dramatic performance
improvement on a particular platform or architecture. In some cases, computational
science applications benefit from using specially optimized libraries that are well tuned

8 http://www.itrd.gov/hecrtf-outreach/
9 Products conceived, developed and maintained by centers like ACTS, PERC, and TOPS; performance
analysis tools with unique capabilities not provided by industry, e.g., PAPI.

Page 4 of 16

for a particular architecture10. In addition to profiling and performance analysis,
debugging large parallel codes is a significant challenge. All these areas – performance
analysis, profiling and debugging – are significant CS research activities. The breadth and
depth of performance analysis requirements tend to not be fulfilled by products from the
computer vendors due the absence of strong economic incentive in the scientific
computing marketplace.

To achieve a high level of success, which could mean broad impact on multiple
computational science communities, centers like NERSC play a key role in the
development and deployment of new technologies. CS researchers require access to
detailed documentation for system interfaces and characterizations that are not typically
readily available through “public channels.” Such access is required so that performance
analysis, profiling and debugging tools work effectively. NERSC should leverage its
close relationship with vendors to provide such information to the CS research
community.

NERSC can also engage the MICS research community to push software architectures
that cover gaps in the production infrastructure. One area in particular that continues to
fall well short of meeting the needs of CS and computational science research is high
quality parallel debugging systems. NERSC can take a proactive role by providing to CS
researchers and developers the same special access to NERSC hardware and technical
support that matches the level of “red-carpet treatment” given to the largest scientific
users. NERSC has shown examples of this kind of work with the development of non-
invasive performance data collection tools like POE+ and IPM11. These tools would not
have come into being without the detailed knowledge of the machine acquired by the
NERSC consultants who developed them. It is important that the same kind of support be
extended to particular projects in the CS research community that cover other gaps in the
NERSC software infrastructure. Without strong relationships between centers like
NERSC and CS research programs, there is a very real risk that new technologies may
never reach a level of maturity such that they can be deployed at the scale present in
NERSC-like environments.

2.3 Algorithm and Machine Architecture Performance
Characterization

Still other areas of CS research focus on characterizing algorithm performance on current
and potential future architectures12. These projects can similarly benefit from the facilities
and expertise at centers like NERSC. NERSC has developed considerable internal
expertise on benchmarking and performance evaluation for procurements, but little of this
analysis or expertise is shared outside of procurement activities. NERSC has the

10 Automatically optimizing libraries originate from various CS research programs, including SciDAC
ISICs and joint efforts with other research areas (Math, for example). Examples include Atlas and Optimal
Solver Libraries.
11 http://www.nersc.gov/projects/ipm/
12 Examples include: the Earth Simulator/Vector evaluation project; PERC activities such as APEX-Map;
NERSC activities such as IPM and workload characterization project; Early architecture evaluation
activities like the multi-laboratory X1 evaluation.

Page 5 of 16

resources and knowledge to contribute to performance evaluation as evidenced by many
years of operations and procurements. The combination of resources at NERSC and
accumulated knowledge and expertise would be beneficial to CS research projects. CS
research communities need access to such resources and expertise to help propel research
forward.

A logical next step in providing support for CS research would be for NERSC to
intersperse large-scale systems procurements with smaller procurements of experimental
and evaluation systems. The smaller experimental systems would benefit NERSC users
as well as the research communities. While there is a clear benefit to the general CS
research community of such an approach, there are longer-term benefits to NERSC as a
center and DOE computational science projects as well. At any given time, the NERSC
user base is to a large degree determined by the capabilities of NERSC’s production
facilities. NERSC’s production facilities are procured on the basis of current workload
characterization. Not having access to evaluation/early-release systems forces NERSC
into a narrowing spiral where a new system’s effectiveness is evaluated on the basis of a
limited set of performance benchmarks deemed to be representative of the current user
base.

The narrow scope of vision in procurement activities exacerbates the narrowing spiral,
which effectively inhibits the emergence of new user communities. For example, the data
intensive computing community remains under-served at NERSC because there are few
systems of scale at NERSC that can meet their requirements. Because that community
remains small at the present time, it does not offer a significant target for new NERSC
procurements. Emerging architectures like the TSI Cell processor, or FPGA-based
computing lack the software tools at this time necessary to make them effective for
production science. Such missing tools will likely originate from the DOE CS research
community. Those tools will only come to fruition if experimental systems of
considerable scale can be set up side-by-side with a production scientific computing
environment. In many cases, significant infrastructure is needed to support these
emerging architectures, and such infrastructure is well outside the reach of individual
research programs. Keeping emerging systems in non-production/research facilities will
encourage insulation of important new technologies and concepts from use in production
environments. The experimental machines also provide a substrate that encourages the
development of new and alternative user communities who have requirements that are not
governed by the forte of NERSC’s primary computing environment. An increase in
available systems, and the research they support, will in turn likely influence decisions
for subsequent NERSC procurements.

2.4 Data Management Research and Associated
Infrastructure

CS research topics in the areas of Distributed Computing and Data Management
Infrastructure are diverse and have a broad impact on nearly all aspects of computational
science applications. The topics range from high performance I/O infrastructure to
efficient storage and retrieval of data to enabling use of multiple, distributed computing
resources.

Page 6 of 16

As many computational science projects collect and/or generate data that is then shared
amongst multiple, distributed researchers or research teams, several CS research projects
focus on basic or applied research in the area of distributed data management, which is a
central pillar in computational and experimental sciences. During early stages of
development, computational science researchers benefit from having access to centrally
located data repositories where users and developers alike have access to reference data
used to validate new techniques, benchmark applications and so forth. Such data depots
benefit the communities of users that perform analysis, including visualization, on data
located at NERSC that is simply too large to move. As science projects evolve, data
depots serve large distributed communities who need to perform analysis on community-
generated or –gathered data. MSDPlus13 is an example of a community-centric data
storage and access facility used to share data amongst a distributed team of researchers.
Storage Resource Managers14 extend the idea of remotely located storage so that it is
location-transparent, and may consist of many individual data stores in multiple
locations. Logistical Networking15 also refers to data store idea, but includes the ability to
migrate data between storage caches. Application-level projects, like the Earth System
Grid16 and Particle Physics Collaboratory Pilot17 build higher-level services atop the
lower-level distributed computing infrastructure to deliver functionality to distributed
teams of scientists.

While NERSC has provided some support in the past for “data depot” projects, such
support has been minimal, and falls well short of what is needed to help transition data
management infrastructure research into production quality, mature technology. For
example, the MDSPlus data repository is arguably the most widely used system for data
management – including distributed data management – in the magnetic fusion energy
program. It is currently installed at over 30 sites spread over 4 continents, including
NERSC. At the same time, some NERSC fusion users instead prefer to take advantage of
Logistical Networking to store and move simulation data. In both cases, NERSC
provided basic support services: a workstation, an operating system with current security
patches, and system administration. In both cases, the MDSPlus and Logistical
Networking developers could benefit from a deeper interaction with NERSC staff.
During early research and development, the MDSPlus servers were set up in an ad-hoc
fashion in small testbeds by the developers and participating scientists. To move to
production status at NERSC, MDSPlus needed a proper security model. The developers
of MDSPlus were not equipped to understand the security deficiencies and how to correct
them. Although NERSC’s security team understood the security policies and found
MDSPlus to be security-deficient, there is neither funding nor human resources available
to foster the type of relationship between CS researchers and NERSC staff to remedy the
situation. As a result, an opportunity to improve MDSPlus and better serve the scientific
research community has been missed.

13 http://www.mdsplus.org/
14 http://sdm.lbl.gov/
15 http://loci.cs.utk.edu/
16 http://www.earthsystemgrid.org/
17 http://www.ppdg.net/

Page 7 of 16

http://www.mdsplus.org/
http://sdm.lbl.gov/

For data that can be moved, current CS research projects that focus on distributed data
repositories (MDSPlus, SRB, and LN) and their respective user communities envision the
need to grow the existing 1GB data repositories set aside for testing at NERSC to grow
upwards past 10TB in the very near future. These needs will grow within the next few
years to well past 100TB of disk storage and 1PB in tape resources. In a related matter,
while initial code prototypes will be developed under funding to the CS research groups
who collaborate with application scientists, in the long term, there is an unmet need for
funding for additional developers that will adapt other codes to use those tools. Also,
future implementations of infrastructure like Logistical Networking will require the close
attention of and interaction with NERSC staff to develop and deploy appropriate policy
enforcement mechanisms that are compatible with the site-specific policies of NERSC.

At the filesystem level, several recent CS research projects have focused on wide-area
and high performance parallel filesystems. The vision of Lustre18 is a scalable file system
that can serve clusters with 10,000's of nodes, petabytes of storage, move 100’s of
GB/second. SDSC, IBM and NCSA demonstrated a wide-area GPFS deployment at
SC200319, while SDSC, NCSA and LLNL demonstrated a wide-area Lustre20deployment,
also at SC2003.

As a programmatic activity, both the CS research and computational science projects
hosted at NERSC will benefit greatly from a high performance, global-unified-parallel
filesystem that is accessible by all platforms within the NERSC center. In the near future,
the scientific community as a whole will benefit greatly from global filesystems that are
deployed across major centers in the DOE community. Projects like MADmap21 are
currently I/O bound, and envision the need to store and share upwards of 100TB among a
handful of participating sites using a wide-area filesystem. The software technology
required for wide-area global unified parallel filesystem, which is still in early research
and development phases, is not likely to emerge naturally from the commercial
software/hardware vendors. This means NERSC will need to play an expanded role in
wide-area filesystem testbeds with other centers and research groups. Participation in
development and deployment activities will accelerate technology hardening and also
provide developers better insight about the needs of HPC centers like NERSC. Without
direct NERSC involvement, solutions that emerge for wide-area filesystems may prove to
be unworkable either due to NERSC policy requirements that were not well understood
by the developers or by workload characteristics that were not well accommodated by the
developed solution.

18 http://www.lustre.org/
19 http://www.hoise.com/primeur/03/articles/monthly/AE-PR-12-03-40.html and
http://www.teragrid.org/news/apps/0312/hpcwire9.html
20 http://www.foundrynet.com/about/newsevents/releases/pr11_18_03b.html, and
http://www.clusterfs.com/pr/2003-11-12.html.
21 See http://www.lbl.gov/Science-Articles/Archive/sabl/2005/February/planck-satellite-map.html and
http://crd.lbl.gov/~cmc/MADmap/doc/.

Page 8 of 16

http://www.hoise.com/primeur/03/articles/monthly/AE-PR-12-03-40.html
http://www.foundrynet.com/about/newsevents/releases/pr11_18_03b.html
http://www.lbl.gov/Science-Articles/Archive/sabl/2005/February/planck-satellite-map.html

Complementary to file system and shared data resources is the need for effective I/O at
the application level. CS research projects in this area include MPI-IO22, Parallel HDF523
and pNetCDF24. The combination of filesystem and parallel I/O interfaces produce the
bandwidth capacity required by computational science and data intensive applications.
Having “real” parallel file systems is not only helpful for research, but also offers
opportunity for synergy between different groups of CS researchers: those working on
parallel code interfaces and those developing and deploying parallel file systems. Early
deployment, testing and feedback of evolving parallel I/O technologies at NERSC will
prove beneficial to the CS research groups as well as to early adopter computational
science projects, and help NERSC to better understand requirements of emerging
applications.

CS research in filesystems would benefit from having access to NERSC’s accumulated
base of filesystem knowledge and expertise. NERSC filesystem characterization activities
performed over the past few years in ASG, for example, represent a wealth of
information and data on the performance of real hardware that would benefit CS research.
More broadly, there are many areas where the data gathered in order to qualify equipment
procurements are invaluable to research efforts, so a coordinated effort to disseminate
this information in a coordinated manner would prove beneficial to CS research
activities.

2.5 Distributed Computing Research and Infrastructure
Another element of distributed computing infrastructure is middleware and tools for
designing and creating reusable software for high-performance, parallel applications. The
CCA project25 aims to conceive, develop and deploy a number of related technologies
aimed at providing the infrastructure for creating reusable software components for use in
large-scale parallel codes, including distributed computing applications. Higher-level
application frameworks, like SCIRun226, support creation of distributed, parallel
applications from reusable software components built atop varying types of component
interfaces (CCA, CORBA). DiVA27 focuses on methodology for achieving a high degree
of interoperability at all levels of the software stack in high performance, parallel and
distributed visualization and analysis. Both SCIRun2 and DiVA must address remote
component invocation, data marshaling and task scheduling within processors on a single
machine as well as between distributed, parallel resources. Distributed computing
technologies are predicated upon the ability for distributed software components to be
launched and to communicate with one another. Furthermore, the distributed resources
should be schedulable for testing and debug use as well as for full production use.
Researchers and users of such technologies often must navigate through a maze of
security and access policies that are different at each site, thereby compounding the
complexity of research, early deployment and production use. While NERSC and other

22 http://www-unix.mcs.anl.gov/romio/
23 http://hdf.ncsa.uiuc.edu/Parallel_HDF/PHDF5/ph5-status.html
24 http://www-unix.mcs.anl.gov/parallel-netcdf/
25 http://www.osti.gov/scidac/computing/projects/armstrong.html
26 http://www.llnl.gov/CASC/calendar/parker.012704.html
27 http://vis.lbl.gov/Research/DiVA/

Page 9 of 16

centers can help by migrating towards unified access policies that eliminate these
barriers, a program-wide mandate and support for implementing such a mandate will
likely be required to achieve the desired results.

During the production phase, parallel codes need direct access from the parallel nodes
directly to storage (scratch disk and/or mass storage) and in other cases, other machines
on the network. Another need is the ability to access all nodes on the parallel computer
from the outside world, that is, an externally visible and accessible IP address for each
node. While the absence of global visibility is not a complete showstopper, when
connecting two distributed components, each consisting of a large set of parallel
processes, at least one of the components needs to have IP address visibility. Going
through a small set of head nodes is not scalable.

2.6 Scientific Visualization
A direct by-product of the growth in size and speed of computational systems is a
proportional growth in size and complexity of the resulting data. Visualization, which is
the transformation of abstract scientific data into readily comprehensible images, is the
most effective medium for presenting large amounts of complex scientific data to a
human for interpretation and understanding. Generally speaking, the visualization
techniques that were adequate 10 or 20 years ago - when machines were slower and data
smaller and less complex - are often inadequate for use on today's data and on today's
computational platforms. The gamut of visualization and computer graphics research
aims to address many challenges posed by the need for understanding data produced on
the world’s largest machines. The topics include algorithmic research and development
on parallel and distributed platforms, delivery of visual and analysis content to remote
users, effective visual presentation, and techniques that either reduce data size and/or
complexity as well as leverage human intuition to help to “find needles in haystacks.”

A fact of life in modern computational science is the distributed nature of the resources
and consumers. When data “is small,” it is simply and easily transferred to the remote
location where it then undergoes local analysis and visualization. For the largest
problems, however, moving data is not an option. Furthermore, it is a much more
efficient use of resources to “move the analysis close to the data” for such problems.
Presenting the results of such analysis and visualization to the remote user is the domain
of remote and distributed visualization research. Emerging research in remote and
distributed visualization relies upon the presence of fundamental infrastructure: fast and
reliable networks, the ability to log in to remote machines, and so forth.

In nearly all cases, visualization and rendering algorithms substantially benefit from
modern graphics hardware. Case in point – software rendering techniques reach
asymptotic performance levels of 100s/K triangles/second on modern microprocessors,
while a $300 graphics accelerator is capable of throughput levels on the order of
50M/triangles a second – two orders of magnitude difference. Some visualization and
graphics research efforts focus on techniques that leverage GPU programs for performing
vertex or fragment operations. These approaches are often used for vector and tensor field

Page 10 of 16

visualization where texture/color combining operations are more effectively performed
on the GPU than in host memory. Even though centers like NERSC typically do not
accommodate local viewing of visualization output (e.g., at a local console or display
wall), some visualization and rendering software is quite capable of leveraging graphics
hardware to accelerate processing. The resulting images may then be delivered to a
remote viewer using one a variety of different techniques. For example, hardware-based
image compositing28 or tiling systems provide the means for low-latency image
combination to support either sort-first29 or sort-last30 parallel algorithm architectures,
both of which are intended to provide increased capacity and throughput for visual data
analysis. Overall, the key idea is that a highly capable visual analysis resources located
near the data will serve the analysis needs of computational science projects. As with
other areas of CS research, research will benefit from access to such a resource that is
located close to the data source but remote from the ultimate user.

Computational platforms are now sufficiently powerful to generate data faster than users
can visually inspect the results. Users are simply not capable of viewing all the data in all
its detail. Instead, new avenues in visualization and analysis research leverage advances
in data analysis and scientific data management to focus analysis on specific subsets
within larger data. The result is a reduced load on the end-to-end visualization process,
from less visualization processing time to a reduced visual load on the viewer who must
interpret and analyze the results. Query-driven visualization31, data mining, and visual
analytics are all labels for this kind of activity. All are amenable for deployment in either
interactive or offline processing modes. Applications in this area will by definition make
use of multiple resources, some of which may be geographically distributed. As with
other areas of CS research, there is a very real need to be able to use such resources for
algorithmic development, testing, debugging, and profiling/performance analysis. Such
resources will need to be provisioned for interactive as well as ultimate production use.

In contrast to simulation codes, applications that can be classified as visualization, data
analysis, visual analytics and so forth are often characterized as data intensive
applications32. The balance of machine characteristics required to support data intensive
applications differs from that required for the leading-edge computing resources at
NERSC. Whereas the primary computational platforms tend to be biased towards raw
CPU performance, a resource more suitable for data intensive applications should be
biased more towards I/O throughput and large memory. As with earlier statements to the

28 Much work has been done in research (e.g., http://portal.acm.org/citation.cfm?id=827060) and product
development (http://www.sgi.com/products/visualization/onyx4/modules.html#compositor) for hardware-
and software-based hardware compositing and image manipulation systems.
29 For example, see http://www.cs.princeton.edu/omnimedia/papers/piwalk.pdf,
http://www.r3vis.com/Downloads/OpenRM-Chromium-WhitePaper-July2003.pdf and
http://citeseer.ist.psu.edu/kutluca97imagespace.html.
30For example, see http://spire.stanford.edu/raptor/,
http://csdl.computer.org/comp/proceedings/pvg/2001/7223/00/72230085abs.htm and
http://www.ccs.lanl.gov/ccs1/projects/Viz/pdfs/99sgexampl.pdf.
31 http://crd.lbl.gov/~kewu/fastbit/
32 W.T Kramer et al. “Deep Scientific Computing Requires Deep Data,” IBM J. Res. & Dev., Vol 48, No.
2, March 2004. (http://www.research.ibm.com/journal/rd/482/kramer.pdf)

Page 11 of 16

http://portal.acm.org/citation.cfm?id=827060
http://www.cs.princeton.edu/omnimedia/papers/piwalk.pdf
http://www.r3vis.com/Downloads/OpenRM-Chromium-WhitePaper-July2003.pdf
http://spire.stanford.edu/raptor/
http://csdl.computer.org/comp/proceedings/pvg/2001/7223/00/72230085abs.htm

effect that CS research needs access to the large platforms at NERSC as part of the
ongoing research efforts, the visualization research community needs access to such
platforms that are part of larger facilities in order to conceive, develop and deploy end-to-
end solutions in the environments where they will be ultimately used.

If we assume that the largest production machines will not be used for interactive analysis
- continuing the current policy and reflecting a choice to run applications on the most
appropriate platform given performance requirements and system balance - the most
promising approach will be to first provide a deep, high-bandwidth I/O capability for
those large machines. Such an infrastructure will help to move simulation data out as
efficiently as possible. On the outside, a production, data-intensive machine that is
specifically designed and used for post-simulation analysis and visualization will be
brought to bear. These secondary computing resources often need to be of a capacity and
performance nearly on the order of the original simulation machine, though perhaps with
more emphasis on memory and the bandwidth to parallel I/O systems and archival
tape/disk farms. The ASCI roadmap from 199833 spells out a Center balance where 10%
of the Center's resources (measured in processors or flops) should be dedicated to
interactive analysis. The High End Computing Revitalization Task Force (HECRTF)34
raises that ratio to 25%. In contrast to these recommendations, NERSC’s current
allocation of resources for data analysis, including visualization, is approximately 1.3%
in FY04 and 3.0% in FY0535.

While size and machine balance are important considerations in data intensive
computing, it is equally important to point out that data intensive platforms are often used
interactively. Interactive use tends to be “bursty,” where the platform will transition from
being “idle” to “fully loaded” and back to “idle” within the span of a few seconds. Such a
load pattern reflects interactive use patterns: generate some visual results, look at the
results for a brief period of time, change the parameters to the visualization or analysis
software, generate new results, look at new results, etc. While it is tempting to “backfill”
these “idle” machines with batch jobs to use the cycles, doing so will have adverse
impacts on interactive users. There will be a noticeable delay to the interactive user as
batch jobs are paged out of the system. This effect will be more pronounced if batch jobs
are paged back in and resumed while an interactive job is running, but temporarily idle
during an examination phase. A good compromise is to temporally partition the machine
so that periods of time are dedicated exclusively to interactive use, and other periods may
be shared by batch and interactive jobs.

3 Summary of Recommendations and Requirements for

NERSC from CS Research Programs

The high performance networking community has long recognized the gap exists
between the promising prototypes of revolutionary technologies demonstrated by the

33 http://www.cacr.caltech.edu/Publications/DVC/
34 http://www.itrd.gov/hecrtf-outreach/
35 Assuming a $10M/yr budget for computational platforms, NERSC spent about $130K in FY04 and will
spend about $300K in FY05 on data analysis platforms for its user community.

Page 12 of 16

research community and production networking requirements. In the 2001 NSF/ANIR
workshop on Grand Challenges in E-Science36 and subsequent DOE report on the future
of DOE Scientific Networking,37leading members of the scientific networking
community grappled with this issue by created distinct definitions for research,
experimental, and production networks where the experimental networks provide missing
link that supports examination of the most promising research concepts at a production
scale and thereby forming a more robust conduit between innovative research and
production. This conduit has fostered the rapid emergence of advanced networking
services involving that exploit user-controlled switched light-paths – concepts that had
been formerly marooned in research laboratories due to uncertainties about their
feasibility and robustness for large-scale deployment. A similar situation exists in the
area of high performance computing. The missing link between CS research and
NERSC’s production supercomputing capabilities is an expanded role to support
experimental systems that foster closer ties between research and production. There is an
element of risk involved in increasing support for immature CS technology -- the success
of any given technology is not pre-ordained. But the benefits for advancing technology
far outweigh these costs.

3.1 Proactive Deployment of CS Research
Become a part of the research cycle rather than a consumer of finished, mature products.
CS research is an evolutionary process that requires synergistic relationships with
consumers (computational science applications) and the centers where the technology is
ultimately deployed. Without direct NERSC involvement, solutions that emerge from CS
research may prove to be unworkable either due to NERSC policy requirements that were
not well understood by the developers or by workload characteristics that are not well
accommodated by the solution. NERSC should be proactive about deploying, with the aid
of CS researchers, new technologies before they reach maturity so that the research
community has an opportunity to test and harden those systems. Waiting for CS research
technology to mature before production deployment will not help it to mature, and such
delays effectively act as in impediment to the evolution of computer and computational
science. To achieve this objective, NERSC may consider extending the same “red carpet”
treatment afforded to the largest science projects to CS research.

Increase program focus on deploying results from CS research on NERSC platforms. As
CS research technologies mature, NERSC should be proactive about deploying these new
technologies developed for its user community on its machines. The Center should be a
delivery vehicle for CS research products to the ultimate beneficiaries – the
computational science projects hosted at NERSC. Deployment of these technologies will
require adaptation and tuning by NERSC staff, possibly with the involvement of the CS
researchers and developers. Deployment may include providing consulting services to
users to help adapt technologies into their applications and workflows. Such deployment
and “technology transfer” from research into production is an activity that is, generally
speaking, not funded under CS research projects.

36 http://www.evl.uic.edu/activity/NSF/index.html
37 W.E Johnston, W.T. Kramer, J.F. Leighton, C. Catlett, A Vision for DOE Scientific Networking Driven
by High Impact Science", March 15, 2002. (http://www.sc.doe.gov/ascr/high-performance_networks.pdf)

Page 13 of 16

http://www.sc.doe.gov/ascr/high-performance_networks.pdf

3.2 Expand Program Focus to Support CS Research
Embrace a flexible and adaptive approach to system configuration. Unlike many
production activities that may work well when the center uses a “set and forget” approach
to system configuration, many CS research programs require variation in system
configuration parameters for the purpose of research, development, analysis, testing and
related pre-production activities. While the CS researcher does not necessarily require
“root access,” having the ability to work closely with NERSC staff who can be perform
such configurations will be immensely useful.

Embrace a more flexible and accommodating policy for investigative runs, even on large
numbers of processors. Testing, debugging, and performance analysis of parallel
programming models at large scale often require interactive access for periods of time
because many debugging activities cannot be conducted in batch mode.

Provision systems for debug, test, and analysis runs. With debug queue wait times
currently in excess of six hours as of the time of this writing, the present approach to
provisioning is not viable for CS research. In many cases, debug/test runs are not
computationally intensive, but sometimes require the use of large numbers of nodes for
relatively short periods of time. Another distinctive need of this type of work is access to
platforms for routine regression testing. This is critical to insure the quality of the
software being developed, and as testing suites increase in size, the computational
requirements grow, and it needs done frequently. Many projects run regression tests on a
daily basis. Such patterns do not fit well in the model of computation currently used as
the basis for NERSC allocation requests.

Increase dialogue between NERSC experts and CS researchers. Parallel language
researchers in particular can benefit from a close relationship with NERSC consultants so
that architectural details and performance analysis details of the production computing
systems are available to CS research.

3.3 Break the Narrowing Spiral that Inhibits Innovation
Broaden the vision for procurements. When procurement evaluations and requirements
for new platforms are based on current user requirements, the result is a platform that at
best serves the need of established users bases. It takes a while for CS tools to catch up
with hardware and architectural innovations, so operating innovative or new
hardware/software architectures is essential for fostering new user communities and
accelerating innovation in computing for the domain sciences. These new communities
have little voice in new procurements until the software methods for properly exploiting
new technology enable them to reach critical mass. Reaching critical mass requires
leading-edge CS research on innovative systems that are operated at scale that is relvant
for evaluating high-end science applications. However, the CS research community is not
equipped to set up and front such systems. Likewise, the research community is not
equipped to provide user management systems like NIM in order to manage an kind of a
user community.

Page 14 of 16

NERSC offers the most appropriate venue for operating novel/new technologies at a
larger/experimental scale because it leverages core capabilities in systems infrastructure,
expertise, and user management that are required for NERSC’s production operations.
The CS research community would benefit greatly if NERSC could open up the
procurement process to new user and research communities by using smaller
procurements to provide early access for CS researchers and new user communities so
they can become established. A logical next step in providing support for CS research
would be for NERSC to intersperse the procurements of large-scale systems with smaller
scale procurements of experimental/evaluation systems that are made available to
NERSC users as a service to both the research and the computing science communities.

Procure and provide emerging architectures and evaluation systems. The experimental
machines provide a substrate that encourages the development of new/alternative user
communities who have requirements that are not governed by the forte of NERSC’s
primary computing environment. Early progress on emerging platforms by new user
communities may have a positive, long-term impact on subsequent NERSC procurement
choices.

3.4 Facilities Requirements
Provide capable systems suitable for data-intensive computing research and production.
Unlike production computational science - where the emphasis is typically upon
flops/byte - the needs of data-intensive algorithmic research is different, placing the
architectural balance point more in the direction of greater amounts of memory visible to
the application, and greater I/O capacity.

Strive for better architectural balance within the center. The ASCI roadmap called for a
center balance where data analysis platforms accounted for about 10% of center
resources; the HECRTF calls for a ratio of about 25%. The reasoning is to prevent
another “Earth Simulator data bottleneck” as well as starvation of data analysis
infrastructure. If analysis resources do not meet the needs of the computational science
community, they will not be utilized because they are ineffective.

Increase capacity and capability of secondary storage to better support research and
production activities in both CS and computational science. CS research and
computational science projects have identified near-term needs for 10s of TB of spinning
disk, with 100s of TB of disk and better than 1PB of tape storage within the next couple
of years.

Increase I/O capability on largest production platforms. If we assume that the largest
production machines will not be used for interactive analysis - continuing the current
policy and reflecting a choice to run applications on the most appropriate platform given
performance requirements and system balance - the most promising approach will be to
first provide a deep, high-bandwidth I/O capability for those large machines.

Page 15 of 16

3.5 Local Resource Requirements
Provide high quality parallel debugging systems. Useful software tools like POE+ and
IPM were created by NERSC consultants who have an in-depth knowledge of the
hardware. These kinds of activities should be encouraged and supported.

Increase the architectural diversity of resources at NERSC. A theme common to many
domains of CS research is the need for access to a broad range of architectures, and at a
scale larger than is possible in an individual research program. The CS research
community is dependant upon centralized computing facilities like NERSC to provide the
resources needed to support research objectives.

3.6 Leverage NERSC Expertise and Stature to Strengthen CS
Research Programs

Leverage NERSC relationships with vendors for CS research. Center can play role by
helping language & library developers to establish closer relationships with vendors who
supply production systems in order to get early access to specs for new systems, and to
help drive the design process to better accommodate emerging concepts in parallel
programming exposed by new languages and libraries.

Provide system details and documentation to the CS research community. To achieve a
high level of success (broad impact), NERSC should play a key role in the deployment
and development of advanced technologies. This is a two way street: NERSC needs to
provide access to systems, system details & docs to researchers that they otherwise might
not have access to via “public channels” – NERSC is and should be a resource center.
This is a two way street: NERSC needs to provide access to systems, system details &
docs to researchers that they otherwise might not have access to via “public channels” –
NERSC is and should be a resource center.

Page 16 of 16

	Introduction
	Overview of CS Research Areas
	Parallel Languages and Programming Models
	Profiling and Performance Analysis
	Algorithm and Machine Architecture Performance Characterizat
	Data Management Research and Associated Infrastructure
	Distributed Computing Research and Infrastructure
	Scientific Visualization

	Summary of Recommendations and Requirements for NERSC from C
	Proactive Deployment of CS Research
	Expand Program Focus to Support CS Research
	Break the Narrowing Spiral that Inhibits Innovation
	Facilities Requirements
	Local Resource Requirements
	Leverage NERSC Expertise and Stature to Strengthen CS Resear

