
 

3.6.1 Input from the Computer Science Research 
Community 

 
 
1 Introduction 
Computer Science (CS) research plays a central role in providing the underlying 
technologies that enable advances in computational science. CS research includes a broad 
set of topics ranging from computer architecture to parallel programming models to 
performance and data analysis. Computational science is the process of conducting 
scientific research using computing technology as a supplement or surrogate for 
experiments and is a “consumer” of the results of CS research. Elements from both 
programs result in scalable and distributed technologies of the type needed to address the 
challenges posed by modern computational science and distributed scientific research 
teams. The information that follows describes current Computer Science research, 
development and deployment activities along with the facilities and infrastructure 
requirements needed to support those activities at a production supercomputing center 
like NERSC. The information was obtained from a sampling of both DOE and non-DOE 
sponsored Computer Science and Visualization research efforts. 
 
CS research projects involve conceiving, developing and deploying the technology that 
underpin subsequent advances in modern computational science applications. At the 
beginning of the day, a scientific researcher has an idea they would like to develop 
theoretically, prototype, and test. At the end of the day, computational science is about 
producing scientific results in a reliable and consistent manner in order to serve the needs 
of domain scientists. Between the two are a myriad of challenging technical problems 
that stem from the activities of creating, debugging, tuning, and maintaining complex 
scientific software that runs on highly parallel computer systems. The CS research 
community faces a gap between the research prototypes and the production results. 
NERSC can play a pivotal role in bridging the gap between research and production – 
creating a conduit for advanced CS research that will have broad impact on how scientists 
approach computational science in the future.  
 
Like a finished building, the most visible aspect of computational science is on the 
outside - the research results. The research and development needed to create the 
technologies as well as the myriad details of infrastructure that make computational 
science possible are all too easy to overlook when planning a large computer center. 
These applications, which typically run on hundreds or thousands of processors, must 
first undergo development, testing, debugging, performance analysis and tuning prior to 
be put “into production.” The general theme of our findings is that computer centers like 
NERSC tend to craft policies and procurements at the finished, production-ready 
computational science applications. However, the needs of the CS research programs are 
much different than those required for “production computational science.” This singular 
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focus supplies little middle ground for shepherding innovative research into the 
production setting. Therefore, the general theme of our findings is that NERSC is in an 
excellent position to propel significant advances in CS research through a relatively 
minor shift in programmatic focus.  
 
2 Overview of CS Research Areas 
  
During the course of all the steps leading up to production, having access to the actual 
production machine for interactive use is a crucial part of the research, hardening and 
deployment process. Debug and performance analysis tests of new ideas take place on 
sets of processors ranging in number from one up to thousands. Such tools form the basis 
of future scientific applications only after requisite hardening on target production 
systems. 
 
The DOE MICS office supports a multi-faceted research portfolio that impacts many 
branches of computational science.  One area of CS research creates new languages and 
communication libraries that make it easier to express scientific problems and 
parallelism.  Another branch of CS research focuses on I/O technology for management 
and storage of scientific data and the marshalling of distributed data storage and 
computational resources.  Performance analysis drives new machine architectures and 
helps evaluate the potential of new computational architectures. The development of new 
numerical algorithms can improve the quality of solutions or enable performance 
improvements that exceed the growth in computational capability that can be derived 
from hardware alone.  The combined benefits derived from each of these areas of CS 
Research enable more effective use of available supercomputing systems and greatly 
improve the value derived from NERSC’s current and future supercomputer systems. 

2.1 Parallel Languages and Programming Models 
Computer programming languages are the vehicles for expressing algorithms. 
Programming models are “theories of operation” that go beyond syntax and semantics to 
describe high level approaches for using a computing language on a computer platform to 
solve a class of problems. They typically define how data is distributed and managed, and 
how processing work is managed and synchronized. The characteristics of both the 
programming language and the programming model have a significant impact on the 
class of algorithms they support. For example, a programming language well suited for 
manipulation of strings will likely not be ideal for solving large systems of equations.  
 
The Unified Parallel C project1(UPC), is an extension of the C programming language 
designed for high performance computing on large-scale parallel machines. The language 
provides a uniform programming model for both shared and distributed memory 
hardware. The programmer is presented with a single shared, partitioned address space, 
where variables may be directly read and written by any processor, but each variable is 
physically associated with a single processor. UPC uses a Single Program Multiple Data 
(SPMD) model of computation in which the amount of parallelism is fixed at program 

                                                 
1 http://upc.nersc.gov/ 
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startup time, typically with a single thread of execution per processor. In order to express 
parallelism, UPC extends ISO C 99 with the following constructs: an explicitly parallel 
execution model; a shared address space, synchronization primitives and a memory 
consistency model; memory management primitives. The Titanium project2 has similar 
goals, but is based upon Java rather than C. 
 
Parallel languages are built atop lower-level constructs that provide interprocessor 
communication (messaging) and memory management infrastructure. Projects in this 
space include message passing interfaces (VIA, MPI) and higher-level interfaces to 
message passing (Global Arrays). Global Arrays3 provides an efficient and portable 
“shared-memory” programming interface for distributed-memory computers. Each 
process in a MIMD parallel program can asynchronously access logical blocks of 
physically distributed dense multi-dimensional arrays, without need for explicit 
cooperation by other processes. The Message Passing Interface (MPI)4 is the de-facto 
standard low-level messaging interface. It provides an API that allows developers to 
explicitly control data management, movement and synchronization in parallel programs, 
as well as to explicitly manage interprocessor synchronization. While typically used in 
distributed memory environments, it is also used in shared memory systems. 
GASNet5provides a standard low-level interface for messaging that lies beneath high-
level languages like UPC and Titanium. A wider range of communication semantics than 
can be expressed with less overhead than is possible with MPI.  Past experiments with 
low-overhead communication, such as MVIA/MVICH6 have continued to have an impact 
on modern cluster designs.  For instance, MVICH forms the core of the MPI 
implementation used by the Virginia Tech Apple cluster and even NERSC’s new 
jacquard system. 
 
A central, time-proven tenant of software engineering is “modular design.” Extending 
this concept to parallel, distributed, multi-language computational science applications 
spans a large sector of DOE's Computer Science research portfolio, and is something not 
provided by industry (see the HECRTF). The Common Component Architecture7 
SciDAC ISIC aims to define a minimal set of standard interfaces that a high-performance 
component framework has to provide to components, and can expect from them, in order 
to allow disparate components to be composed together to build a running application.  
 
Many of the enabling technologies from the CS research community are developed first 
in a workstation environment. As they evolve, they are adapted for use in other 
environments and purposes. These might include massively parallel environments, or use 
for a specific computational science application. Since there are relatively few locations 
where one can perform porting and testing on thousands of processors, the CS research 
community naturally looks to centralized computing facilities – like NERSC – to provide 

                                                 
2 http://titanium.cs.berkeley.edu/ 
3 http://www.emsl.pnl.gov/docs/global/ga.html 
4 http://www.mpi-forum.org/docs/docs.html 
5 http://www.cs.berkeley.edu/~bonachea/gasnet/ 
6 http://old-www.nersc.gov/research/FTG/via/ 
7 http://www.cca-forum.org/ 
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the resources needed to support research objectives. Many problems with parallel 
programming models become visible only at the largest scales – levels of parallelism that 
the language and library designers do not have access to outside of centralized computing 
facilities that can provide access to thousands of processors. However, the testing and 
performance analysis of parallel programming models at large scale can sometimes 
require interactive access for periods of time because many debugging solutions cannot 
be executed in batch mode.  
 
The products from the CS research community often share a common interest: garnering 
the attention of the wider HPC community as well as encouraging widespread adoption 
and use where appropriate. There is often a huge gap between the individual CS 
researcher and the ultimate consumer of the technology. To help bridge this gap, the 
central computing facility can play a crucial role. Namely, the center can make available 
to its users the products from the CS research community. In many cases, such 
deployment will require adaptation for use in a specific environment. Advanced 
deployment activities are beyond the reach of the individual CS researcher, but are 
required in order for the technology to be used successfully on production systems. In 
bridging the gap, an increased level of interaction between CS researcher and production 
facility will be beneficial to the center, to the CS research and to the computational 
science users.  
 
Central production facilities typically have uniquely strong relationships with hardware 
vendors. Smaller CS research groups typically are not in a position to have such 
relationships since they do not have the large hardware budget that garners the attention 
of the vendors. Central facilities like NERSC can play an important role in helping the 
language and library developers to establish closer relationships with the vendors who 
supply the production systems in order to get early access to specifications for new 
systems, and to help drive the design process within the vendors to better accommodate 
advanced concepts in parallel programming exposed by these languages and libraries. 
This very idea is consistent with the recommendations of the High End Computing 
Revitalization Task Force8 (HECRTF) and NERSC’s vision of “science-driven 
computing.” Without such relationships, the primary driver on vendors for supporting the 
needs of the computational and computer science research communities will be the 
limited set of benchmarks that are used for procurements. Status quo in this regard will 
not produce the desired, long-term results: growth and innovation in all of computer and 
computational science, as well as the strength and vitality of the HPC market. 

2.2 Profiling and Performance Analysis 
Due to the inherent complexity of today’s large parallel platforms, computational science 
applications benefit from careful performance and profiling analysis9. Such analysis helps 
to detect “hot spots” in code where optimization will result in a dramatic performance 
improvement on a particular platform or architecture. In some cases, computational 
science applications benefit from using specially optimized libraries that are well tuned 
                                                 
8 http://www.itrd.gov/hecrtf-outreach/ 
9 Products conceived, developed and maintained by centers like ACTS, PERC, and TOPS; performance 
analysis tools with unique capabilities not provided by industry, e.g., PAPI. 

Page 4 of 16 



for a particular architecture10. In addition to profiling and performance analysis, 
debugging large parallel codes is a significant challenge. All these areas – performance 
analysis, profiling and debugging – are significant CS research activities. The breadth and 
depth of performance analysis requirements tend to not be fulfilled by products from the 
computer vendors due the absence of strong economic incentive in the scientific 
computing marketplace.  
 
To achieve a high level of success, which could mean broad impact on multiple 
computational science communities, centers like NERSC play a key role in the 
development and deployment of new technologies. CS researchers require access to 
detailed documentation for system interfaces and characterizations that are not typically 
readily available through “public channels.” Such access is required so that performance 
analysis, profiling and debugging tools work effectively. NERSC should leverage its 
close relationship with vendors to provide such information to the CS research 
community. 
 
NERSC can also engage the MICS research community to push software architectures 
that cover gaps in the production infrastructure. One area in particular that continues to 
fall well short of meeting the needs of CS and computational science research is high 
quality parallel debugging systems. NERSC can take a proactive role by providing to CS 
researchers and developers the same special access to NERSC hardware and technical 
support that matches the level of “red-carpet treatment” given to the largest scientific 
users. NERSC has shown examples of this kind of work with the development of non-
invasive performance data collection tools like POE+ and IPM11. These tools would not 
have come into being without the detailed knowledge of the machine acquired by the 
NERSC consultants who developed them. It is important that the same kind of support be 
extended to particular projects in the CS research community that cover other gaps in the 
NERSC software infrastructure. Without strong relationships between centers like 
NERSC and CS research programs, there is a very real risk that new technologies may 
never reach a level of maturity such that they can be deployed at the scale present in 
NERSC-like environments. 

2.3 Algorithm and Machine Architecture Performance 
Characterization 

Still other areas of CS research focus on characterizing algorithm performance on current 
and potential future architectures12. These projects can similarly benefit from the facilities 
and expertise at centers like NERSC. NERSC has developed considerable internal 
expertise on benchmarking and performance evaluation for procurements, but little of this 
analysis or expertise is shared outside of procurement activities. NERSC has the 

                                                 
10 Automatically optimizing libraries originate from various CS research programs, including SciDAC 
ISICs and joint efforts with other research areas (Math, for example). Examples include Atlas and Optimal 
Solver Libraries. 
11 http://www.nersc.gov/projects/ipm/ 
12 Examples include: the Earth Simulator/Vector evaluation project; PERC activities such as APEX-Map; 
NERSC activities such as IPM and workload characterization project; Early architecture evaluation 
activities like the multi-laboratory X1 evaluation. 
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resources and knowledge to contribute to performance evaluation as evidenced by many 
years of operations and procurements. The combination of resources at NERSC and 
accumulated knowledge and expertise would be beneficial to CS research projects. CS 
research communities need access to such resources and expertise to help propel research 
forward. 
 
A logical next step in providing support for CS research would be for NERSC to 
intersperse large-scale systems procurements with smaller procurements of experimental 
and evaluation systems. The smaller experimental systems would benefit NERSC users 
as well as the research communities. While there is a clear benefit to the general CS 
research community of such an approach, there are longer-term benefits to NERSC as a 
center and DOE computational science projects as well. At any given time, the NERSC 
user base is to a large degree determined by the capabilities of NERSC’s production 
facilities. NERSC’s production facilities are procured on the basis of current workload 
characterization. Not having access to evaluation/early-release systems forces NERSC 
into a narrowing spiral where a new system’s effectiveness is evaluated on the basis of a 
limited set of performance benchmarks deemed to be representative of the current user 
base.  
 
The narrow scope of vision in procurement activities exacerbates the narrowing spiral, 
which effectively inhibits the emergence of new user communities. For example, the data 
intensive computing community remains under-served at NERSC because there are few 
systems of scale at NERSC that can meet their requirements. Because that community 
remains small at the present time, it does not offer a significant target for new NERSC 
procurements. Emerging architectures like the TSI Cell processor, or FPGA-based 
computing lack the software tools at this time necessary to make them effective for 
production science. Such missing tools will likely originate from the DOE CS research 
community. Those tools will only come to fruition if experimental systems of 
considerable scale can be set up side-by-side with a production scientific computing 
environment. In many cases, significant infrastructure is needed to support these 
emerging architectures, and such infrastructure is well outside the reach of individual 
research programs. Keeping emerging systems in non-production/research facilities will 
encourage insulation of important new technologies and concepts from use in production 
environments. The experimental machines also provide a substrate that encourages the 
development of new and alternative user communities who have requirements that are not 
governed by the forte of NERSC’s primary computing environment. An increase in 
available systems, and the research they support, will in turn likely influence decisions 
for subsequent NERSC procurements. 

2.4 Data Management Research and Associated 
Infrastructure 

CS research topics in the areas of Distributed Computing and Data Management 
Infrastructure are diverse and have a broad impact on nearly all aspects of computational 
science applications. The topics range from high performance I/O infrastructure to 
efficient storage and retrieval of data to enabling use of multiple, distributed computing 
resources.  
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As many computational science projects collect and/or generate data that is then shared 
amongst multiple, distributed researchers or research teams, several CS research projects 
focus on basic or applied research in the area of distributed data management, which is a 
central pillar in computational and experimental sciences. During early stages of 
development, computational science researchers benefit from having access to centrally 
located data repositories where users and developers alike have access to reference data 
used to validate new techniques, benchmark applications and so forth. Such data depots 
benefit the communities of users that perform analysis, including visualization, on data 
located at NERSC that is simply too large to move. As science projects evolve, data 
depots serve large distributed communities who need to perform analysis on community-
generated or –gathered data. MSDPlus13 is an example of a community-centric data 
storage and access facility used to share data amongst a distributed team of researchers. 
Storage Resource Managers14 extend the idea of remotely located storage so that it is 
location-transparent, and may consist of many individual data stores in multiple 
locations. Logistical Networking15 also refers to data store idea, but includes the ability to 
migrate data between storage caches. Application-level projects, like the Earth System 
Grid16 and Particle Physics Collaboratory Pilot17 build higher-level services atop the 
lower-level distributed computing infrastructure to deliver functionality to distributed 
teams of scientists.  
 
While NERSC has provided some support in the past for “data depot” projects, such 
support has been minimal, and falls well short of what is needed to help transition data 
management infrastructure research into production quality, mature technology. For 
example, the MDSPlus data repository is arguably the most widely used system for data 
management – including distributed data management – in the magnetic fusion energy 
program. It is currently installed at over 30 sites spread over 4 continents, including 
NERSC. At the same time, some NERSC fusion users instead prefer to take advantage of 
Logistical Networking to store and move simulation data. In both cases, NERSC 
provided basic support services: a workstation, an operating system with current security 
patches, and system administration. In both cases, the MDSPlus and Logistical 
Networking developers could benefit from a deeper interaction with NERSC staff. 
During early research and development, the MDSPlus servers were set up in an ad-hoc 
fashion in small testbeds by the developers and participating scientists. To move to 
production status at NERSC, MDSPlus needed a proper security model. The developers 
of MDSPlus were not equipped to understand the security deficiencies and how to correct 
them. Although NERSC’s security team understood the security policies and found 
MDSPlus to be security-deficient, there is neither funding nor human resources available 
to foster the type of relationship between CS researchers and NERSC staff to remedy the 
situation. As a result, an opportunity to improve MDSPlus and better serve the scientific 
research community has been missed. 

                                                 
13 http://www.mdsplus.org/  
14 http://sdm.lbl.gov/  
15 http://loci.cs.utk.edu/ 
16 http://www.earthsystemgrid.org/ 
17 http://www.ppdg.net/ 
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For data that can be moved, current CS research projects that focus on distributed data 
repositories (MDSPlus, SRB, and LN) and their respective user communities envision the 
need to grow the existing 1GB data repositories set aside for testing at NERSC to grow 
upwards past 10TB in the very near future. These needs will grow within the next few 
years to well past 100TB of disk storage and 1PB in tape resources. In a related matter, 
while initial code prototypes will be developed under funding to the CS research groups 
who collaborate with application scientists, in the long term, there is an unmet need for 
funding for additional developers that will adapt other codes to use those tools. Also, 
future implementations of infrastructure like Logistical Networking will require the close 
attention of and interaction with NERSC staff to develop and deploy appropriate policy 
enforcement mechanisms that are compatible with the site-specific policies of NERSC. 
 
At the filesystem level, several recent CS research projects have focused on wide-area 
and high performance parallel filesystems. The vision of Lustre18 is a scalable file system 
that can serve clusters with 10,000's of nodes, petabytes of storage, move 100’s of 
GB/second. SDSC, IBM and NCSA demonstrated a wide-area GPFS deployment at 
SC200319, while SDSC, NCSA and LLNL demonstrated a wide-area Lustre20deployment, 
also at SC2003.  
 
As a programmatic activity, both the CS research and computational science projects 
hosted at NERSC will benefit greatly from a high performance, global-unified-parallel 
filesystem that is accessible by all platforms within the NERSC center. In the near future, 
the scientific community as a whole will benefit greatly from global filesystems that are 
deployed across major centers in the DOE community. Projects like MADmap21 are 
currently I/O bound, and envision the need to store and share upwards of 100TB among a 
handful of participating sites using a wide-area filesystem. The software technology 
required for wide-area global unified parallel filesystem, which is still in early research 
and development phases, is not likely to emerge naturally from the commercial 
software/hardware vendors. This means NERSC will need to play an expanded role in 
wide-area filesystem testbeds with other centers and research groups. Participation in 
development and deployment activities will accelerate technology hardening and also 
provide developers better insight about the needs of HPC centers like NERSC. Without 
direct NERSC involvement, solutions that emerge for wide-area filesystems may prove to 
be unworkable either due to NERSC policy requirements that were not well understood 
by the developers or by workload characteristics that were not well accommodated by the 
developed solution. 
 

                                                 
18 http://www.lustre.org/ 
19 http://www.hoise.com/primeur/03/articles/monthly/AE-PR-12-03-40.html and 
http://www.teragrid.org/news/apps/0312/hpcwire9.html 
20 http://www.foundrynet.com/about/newsevents/releases/pr11_18_03b.html, and 
http://www.clusterfs.com/pr/2003-11-12.html. 
21 See http://www.lbl.gov/Science-Articles/Archive/sabl/2005/February/planck-satellite-map.html and 
http://crd.lbl.gov/~cmc/MADmap/doc/. 
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Complementary to file system and shared data resources is the need for effective I/O at 
the application level. CS research projects in this area include MPI-IO22, Parallel HDF523 
and pNetCDF24. The combination of filesystem and parallel I/O interfaces produce the 
bandwidth capacity required by computational science and data intensive applications. 
Having “real” parallel file systems is not only helpful for research, but also offers 
opportunity for synergy between different groups of CS researchers: those working on 
parallel code interfaces and those developing and deploying parallel file systems. Early 
deployment, testing and feedback of evolving parallel I/O technologies at NERSC will 
prove beneficial to the CS research groups as well as to early adopter computational 
science projects, and help NERSC to better understand requirements of emerging 
applications. 
 
CS research in filesystems would benefit from having access to NERSC’s accumulated 
base of filesystem knowledge and expertise. NERSC filesystem characterization activities 
performed over the past few years in ASG, for example, represent a wealth of 
information and data on the performance of real hardware that would benefit CS research. 
More broadly, there are many areas where the data gathered in order to qualify equipment 
procurements are invaluable to research efforts, so a coordinated effort to disseminate 
this information in a coordinated manner would prove beneficial to CS research 
activities. 

2.5 Distributed Computing Research and Infrastructure 
Another element of distributed computing infrastructure is middleware and tools for 
designing and creating reusable software for high-performance, parallel applications. The 
CCA project25 aims to conceive, develop and deploy a number of related technologies 
aimed at providing the infrastructure for creating reusable software components for use in 
large-scale parallel codes, including distributed computing applications. Higher-level 
application frameworks, like SCIRun226, support creation of distributed, parallel 
applications from reusable software components built atop varying types of component 
interfaces (CCA, CORBA). DiVA27 focuses on methodology for achieving a high degree 
of interoperability at all levels of the software stack in high performance, parallel and 
distributed visualization and analysis. Both SCIRun2 and DiVA must address remote 
component invocation, data marshaling and task scheduling within processors on a single 
machine as well as between distributed, parallel resources. Distributed computing 
technologies are predicated upon the ability for distributed software components to be 
launched and to communicate with one another. Furthermore, the distributed resources 
should be schedulable for testing and debug use as well as for full production use. 
Researchers and users of such technologies often must navigate through a maze of 
security and access policies that are different at each site, thereby compounding the 
complexity of research, early deployment and production use. While NERSC and other 

                                                 
22 http://www-unix.mcs.anl.gov/romio/ 
23 http://hdf.ncsa.uiuc.edu/Parallel_HDF/PHDF5/ph5-status.html 
24 http://www-unix.mcs.anl.gov/parallel-netcdf/ 
25 http://www.osti.gov/scidac/computing/projects/armstrong.html 
26 http://www.llnl.gov/CASC/calendar/parker.012704.html 
27 http://vis.lbl.gov/Research/DiVA/ 
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centers can help by migrating towards unified access policies that eliminate these 
barriers, a program-wide mandate and support for implementing such a mandate will 
likely be required to achieve the desired results.  
 
During the production phase, parallel codes need direct access from the parallel nodes 
directly to storage (scratch disk and/or mass storage) and in other cases, other machines 
on the network. Another need is the ability to access all nodes on the parallel computer 
from the outside world, that is, an externally visible and accessible IP address for each 
node. While the absence of global visibility is not a complete showstopper, when 
connecting two distributed components, each consisting of a large set of parallel 
processes, at least one of the components needs to have IP address visibility. Going 
through a small set of head nodes is not scalable. 
 

2.6 Scientific Visualization 
A direct by-product of the growth in size and speed of computational systems is a 
proportional growth in size and complexity of the resulting data. Visualization, which is 
the transformation of abstract scientific data into readily comprehensible images, is the 
most effective medium for presenting large amounts of complex scientific data to a 
human for interpretation and understanding. Generally speaking, the visualization 
techniques that were adequate 10 or 20 years ago - when machines were slower and data 
smaller and less complex - are often inadequate for use on today's data and on today's 
computational platforms. The gamut of visualization and computer graphics research 
aims to address many challenges posed by the need for understanding data produced on 
the world’s largest machines. The topics include algorithmic research and development 
on parallel and distributed platforms, delivery of visual and analysis content to remote 
users, effective visual presentation, and techniques that either reduce data size and/or 
complexity as well as leverage human intuition to help to “find needles in haystacks.”  
 
A fact of life in modern computational science is the distributed nature of the resources 
and consumers. When data “is small,” it is simply and easily transferred to the remote 
location where it then undergoes local analysis and visualization. For the largest 
problems, however, moving data is not an option. Furthermore, it is a much more 
efficient use of resources to “move the analysis close to the data” for such problems. 
Presenting the results of such analysis and visualization to the remote user is the domain 
of remote and distributed visualization research. Emerging research in remote and 
distributed visualization relies upon the presence of fundamental infrastructure: fast and 
reliable networks, the ability to log in to remote machines, and so forth. 
 
In nearly all cases, visualization and rendering algorithms substantially benefit from 
modern graphics hardware. Case in point – software rendering techniques reach 
asymptotic performance levels of 100s/K triangles/second on modern microprocessors, 
while a $300 graphics accelerator is capable of throughput levels on the order of 
50M/triangles a second – two orders of magnitude difference. Some visualization and 
graphics research efforts focus on techniques that leverage GPU programs for performing 
vertex or fragment operations. These approaches are often used for vector and tensor field 
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visualization where texture/color combining operations are more effectively performed 
on the GPU than in host memory. Even though centers like NERSC typically do not 
accommodate local viewing of visualization output (e.g., at a local console or display 
wall), some visualization and rendering software is quite capable of leveraging graphics 
hardware to accelerate processing. The resulting images may then be delivered to a 
remote viewer using one a variety of different techniques. For example, hardware-based 
image compositing28 or tiling systems provide the means for low-latency image 
combination to support either sort-first29 or sort-last30 parallel algorithm architectures, 
both of which are intended to provide increased capacity and throughput for visual data 
analysis. Overall, the key idea is that a highly capable visual analysis resources located 
near the data will serve the analysis needs of computational science projects. As with 
other areas of CS research, research will benefit from access to such a resource that is 
located close to the data source but remote from the ultimate user.  
 
Computational platforms are now sufficiently powerful to generate data faster than users 
can visually inspect the results. Users are simply not capable of viewing all the data in all 
its detail. Instead, new avenues in visualization and analysis research leverage advances 
in data analysis and scientific data management to focus analysis on specific subsets 
within larger data. The result is a reduced load on the end-to-end visualization process, 
from less visualization processing time to a reduced visual load on the viewer who must 
interpret and analyze the results. Query-driven visualization31, data mining, and visual 
analytics are all labels for this kind of activity. All are amenable for deployment in either 
interactive or offline processing modes. Applications in this area will by definition make 
use of multiple resources, some of which may be geographically distributed. As with 
other areas of CS research, there is a very real need to be able to use such resources for 
algorithmic development, testing, debugging, and profiling/performance analysis. Such 
resources will need to be provisioned for interactive as well as ultimate production use. 
 
In contrast to simulation codes, applications that can be classified as visualization, data 
analysis, visual analytics and so forth are often characterized as data intensive 
applications32. The balance of machine characteristics required to support data intensive 
applications differs from that required for the leading-edge computing resources at 
NERSC. Whereas the primary computational platforms tend to be biased towards raw 
CPU performance, a resource more suitable for data intensive applications should be 
biased more towards I/O throughput and large memory. As with earlier statements to the 

                                                 
28 Much work has been done in research (e.g., http://portal.acm.org/citation.cfm?id=827060) and product 
development (http://www.sgi.com/products/visualization/onyx4/modules.html#compositor) for hardware- 
and software-based hardware compositing and image manipulation systems. 
29 For example, see http://www.cs.princeton.edu/omnimedia/papers/piwalk.pdf, 
http://www.r3vis.com/Downloads/OpenRM-Chromium-WhitePaper-July2003.pdf and 
http://citeseer.ist.psu.edu/kutluca97imagespace.html. 
30For example, see  http://spire.stanford.edu/raptor/, 
http://csdl.computer.org/comp/proceedings/pvg/2001/7223/00/72230085abs.htm and 
http://www.ccs.lanl.gov/ccs1/projects/Viz/pdfs/99sgexampl.pdf. 
31 http://crd.lbl.gov/~kewu/fastbit/ 
32 W.T Kramer et al. “Deep Scientific Computing Requires Deep Data,” IBM J. Res. & Dev., Vol 48, No. 
2, March 2004. (http://www.research.ibm.com/journal/rd/482/kramer.pdf) 
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effect that CS research needs access to the large platforms at NERSC as part of the 
ongoing research efforts, the visualization research community needs access to such 
platforms that are part of larger facilities in order to conceive, develop and deploy end-to-
end solutions in the environments where they will be ultimately used. 
 
If we assume that the largest production machines will not be used for interactive analysis 
- continuing the current policy and reflecting a choice to run applications on the most 
appropriate platform given performance requirements and system balance - the most 
promising approach will be to first provide a deep, high-bandwidth I/O capability for 
those large machines. Such an infrastructure will help to move simulation data out as 
efficiently as possible. On the outside, a production, data-intensive machine that is 
specifically designed and used for post-simulation analysis and visualization will be 
brought to bear. These secondary computing resources often need to be of a capacity and 
performance nearly on the order of the original simulation machine, though perhaps with 
more emphasis on memory and the bandwidth to parallel I/O systems and archival 
tape/disk farms. The ASCI roadmap from 199833 spells out a Center balance where 10% 
of the Center's resources (measured in processors or flops) should be dedicated to 
interactive analysis. The High End Computing Revitalization Task Force (HECRTF)34 
raises that ratio to 25%. In contrast to these recommendations, NERSC’s current 
allocation of resources for data analysis, including visualization, is approximately 1.3% 
in FY04 and 3.0% in FY0535. 
 
While size and machine balance are important considerations in data intensive 
computing, it is equally important to point out that data intensive platforms are often used 
interactively. Interactive use tends to be “bursty,” where the platform will transition from 
being “idle” to “fully loaded” and back to “idle” within the span of a few seconds. Such a 
load pattern reflects interactive use patterns: generate some visual results, look at the 
results for a brief period of time, change the parameters to the visualization or analysis 
software, generate new results, look at new results, etc. While it is tempting to “backfill” 
these “idle” machines with batch jobs to use the cycles, doing so will have adverse 
impacts on interactive users. There will be a noticeable delay to the interactive user as 
batch jobs are paged out of the system. This effect will be more pronounced if batch jobs 
are paged back in and resumed while an interactive job is running, but temporarily idle 
during an examination phase. A good compromise is to temporally partition the machine 
so that periods of time are dedicated exclusively to interactive use, and other periods may 
be shared by batch and interactive jobs. 
 
3 Summary of Recommendations and Requirements for 

NERSC from CS Research Programs 
 
The high performance networking community has long recognized the gap exists 
between the promising prototypes of revolutionary technologies demonstrated by the 
                                                 
33 http://www.cacr.caltech.edu/Publications/DVC/ 
34 http://www.itrd.gov/hecrtf-outreach/ 
35 Assuming a $10M/yr budget for computational platforms, NERSC spent about $130K in FY04 and will 
spend about $300K in FY05 on data analysis platforms for its user community. 
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research community and production networking requirements. In the 2001 NSF/ANIR 
workshop on Grand Challenges in E-Science36 and subsequent DOE report on the future 
of DOE Scientific Networking,37leading members of the scientific networking 
community grappled with this issue by created distinct definitions for research, 
experimental, and production networks where the experimental networks provide missing 
link that supports examination of the most promising research concepts at a production 
scale and thereby forming a more robust conduit between innovative research and 
production.  This conduit has fostered the rapid emergence of advanced networking 
services involving that exploit user-controlled switched light-paths – concepts that had 
been formerly marooned in research laboratories due to uncertainties about their 
feasibility and robustness for large-scale deployment. A similar situation exists in the 
area of high performance computing. The missing link between CS research and 
NERSC’s production supercomputing capabilities is an expanded role to support 
experimental systems that foster closer ties between research and production. There is an 
element of risk involved in increasing support for immature CS technology -- the success 
of any given technology is not pre-ordained.  But the benefits for advancing technology 
far outweigh these costs. 

3.1 Proactive Deployment of CS Research  
Become a part of the research cycle rather than a consumer of finished, mature products. 
CS research is an evolutionary process that requires synergistic relationships with 
consumers (computational science applications) and the centers where the technology is 
ultimately deployed. Without direct NERSC involvement, solutions that emerge from CS 
research may prove to be unworkable either due to NERSC policy requirements that were 
not well understood by the developers or by workload characteristics that are not well 
accommodated by the solution. NERSC should be proactive about deploying, with the aid 
of CS researchers, new technologies before they reach maturity so that the research 
community has an opportunity to test and harden those systems. Waiting for CS research 
technology to mature before production deployment will not help it to mature, and such 
delays effectively act as in impediment to the evolution of computer and computational 
science. To achieve this objective, NERSC may consider extending the same “red carpet” 
treatment afforded to the largest science projects to CS research. 
 
Increase program focus on deploying results from CS research on NERSC platforms. As 
CS research technologies mature, NERSC should be proactive about deploying these new 
technologies developed for its user community on its machines. The Center should be a 
delivery vehicle for CS research products to the ultimate beneficiaries – the 
computational science projects hosted at NERSC. Deployment of these technologies will 
require adaptation and tuning by NERSC staff, possibly with the involvement of the CS 
researchers and developers. Deployment may include providing consulting services to 
users to help adapt technologies into their applications and workflows. Such deployment 
and “technology transfer” from research into production is an activity that is, generally 
speaking, not funded under CS research projects. 
                                                 
36 http://www.evl.uic.edu/activity/NSF/index.html 
37 W.E Johnston, W.T. Kramer, J.F. Leighton, C. Catlett, A Vision for DOE Scientific Networking Driven 
by High Impact Science", March 15, 2002. (http://www.sc.doe.gov/ascr/high-performance_networks.pdf)
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3.2 Expand Program Focus to Support CS Research 
Embrace a flexible and adaptive approach to system configuration. Unlike many 
production activities that may work well when the center uses a “set and forget” approach 
to system configuration, many CS research programs require variation in system 
configuration parameters for the purpose of research, development, analysis, testing and 
related pre-production activities. While the CS researcher does not necessarily require 
“root access,” having the ability to work closely with NERSC staff who can be perform 
such configurations will be immensely useful.  
 
Embrace a more flexible and accommodating policy for investigative runs, even on large 
numbers of processors. Testing, debugging, and performance analysis of parallel 
programming models at large scale often require interactive access for periods of time 
because many debugging activities cannot be conducted in batch mode. 
 
Provision systems for debug, test, and analysis runs. With debug queue wait times 
currently in excess of six hours as of the time of this writing, the present approach to 
provisioning is not viable for CS research. In many cases, debug/test runs are not 
computationally intensive, but sometimes require the use of large numbers of nodes for 
relatively short periods of time. Another distinctive need of this type of work is access to 
platforms for routine regression testing. This is critical to insure the quality of the 
software being developed, and as testing suites increase in size, the computational 
requirements grow, and it needs done frequently. Many projects run regression tests on a 
daily basis. Such patterns do not fit well in the model of computation currently used as 
the basis for NERSC allocation requests.  
 
Increase dialogue between NERSC experts and CS researchers. Parallel language 
researchers in particular can benefit from a close relationship with NERSC consultants so 
that architectural details and performance analysis details of the production computing 
systems are available to CS research. 

3.3 Break the Narrowing Spiral that Inhibits Innovation 
Broaden the vision for procurements. When procurement evaluations and requirements 
for new platforms are based on current user requirements, the result is a platform that at 
best serves the need of established users bases. It takes a while for CS tools to catch up 
with hardware and architectural innovations, so operating innovative or new 
hardware/software architectures is essential for fostering new user communities and 
accelerating innovation in computing for the domain sciences. These new communities 
have little voice in new procurements until the software methods for properly exploiting 
new technology enable them to reach critical mass. Reaching critical mass requires 
leading-edge CS research on innovative systems that are operated at scale that is relvant 
for evaluating high-end science applications. However, the CS research community is not 
equipped to set up and front such systems.  Likewise, the research community is not 
equipped to provide user management systems like NIM in order to manage an kind of a 
user community.  
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NERSC offers the most appropriate venue for operating novel/new technologies at a 
larger/experimental scale because it leverages core capabilities in systems infrastructure, 
expertise, and user management that are required for NERSC’s production operations. 
The CS research community would benefit greatly if NERSC could open up the 
procurement process to new user and research communities by using smaller 
procurements to provide early access for CS researchers and new user communities so 
they can become established. A logical next step in providing support for CS research 
would be for NERSC to intersperse the procurements of large-scale systems with smaller 
scale procurements of experimental/evaluation systems that are made available to 
NERSC users as a service to both the research and the computing science communities. 
 
Procure and provide emerging architectures and evaluation systems. The experimental 
machines provide a substrate that encourages the development of new/alternative user 
communities who have requirements that are not governed by the forte of NERSC’s 
primary computing environment. Early progress on emerging platforms by new user 
communities may have a positive, long-term impact on subsequent NERSC procurement 
choices.  

3.4 Facilities Requirements 
Provide capable systems suitable for data-intensive computing research and production. 
Unlike production computational science - where the emphasis is typically upon 
flops/byte - the needs of data-intensive algorithmic research is different, placing the 
architectural balance point more in the direction of greater amounts of memory visible to 
the application, and greater I/O capacity.  
 
Strive for better architectural balance within the center. The ASCI roadmap called for a 
center balance where data analysis platforms accounted for about 10% of center 
resources; the HECRTF calls for a ratio of about 25%. The reasoning is to prevent 
another “Earth Simulator data bottleneck” as well as starvation of data analysis 
infrastructure. If analysis resources do not meet the needs of the computational science 
community, they will not be utilized because they are ineffective. 
 
Increase capacity and capability of secondary storage to better support research and 
production activities in both CS and computational science. CS research and 
computational science projects have identified near-term needs for 10s of TB of spinning 
disk, with 100s of TB of disk and better than 1PB of tape storage within the next couple 
of years. 
 
Increase I/O capability on largest production platforms. If we assume that the largest 
production machines will not be used for interactive analysis - continuing the current 
policy and reflecting a choice to run applications on the most appropriate platform given 
performance requirements and system balance - the most promising approach will be to 
first provide a deep, high-bandwidth I/O capability for those large machines. 
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3.5 Local Resource Requirements 
Provide high quality parallel debugging systems. Useful software tools like POE+ and 
IPM were created by NERSC consultants who have an in-depth knowledge of the 
hardware. These kinds of activities should be encouraged and supported. 
 
Increase the architectural diversity of resources at NERSC. A theme common to many 
domains of CS research is the need for access to a broad range of architectures, and at a 
scale larger than is possible in an individual research program. The CS research 
community is dependant upon centralized computing facilities like NERSC to provide the 
resources needed to support research objectives. 

3.6 Leverage NERSC Expertise and Stature to Strengthen CS 
Research Programs 

Leverage NERSC relationships with vendors for CS research. Center can play role by 
helping language & library developers to establish closer relationships with vendors who 
supply production systems in order to get early access to specs for new systems, and to 
help drive the design process to better accommodate emerging concepts in parallel 
programming exposed by new languages and libraries. 
 
Provide system details and documentation to the CS research community. To achieve a 
high level of success (broad impact), NERSC should play a key role in the deployment 
and development of advanced technologies. This is a two way street: NERSC needs to 
provide access to systems, system details & docs to researchers that they otherwise might 
not have access to via “public channels” – NERSC is and should be a resource center. 
This is a two way street: NERSC needs to provide access to systems, system details & 
docs to researchers that they otherwise might not have access to via “public channels” – 
NERSC is and should be a resource center. 
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