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Steepest-descent moment method for 3D MHD equilibria

An algorithm for finding the nearest local minimum of a function

presupposing that its gradient can be computed.

It is also called the gradient decent method,

starting at a point P0, and as many times as needed,

moves from Pi to Pi+1 by minimizing along the line

extending from Pi in the direction of −∇F (Pi),

the local downhill gradient.

The iteration procedure is

F (Pi+1) = F (Pi)− δt∇F (Pi)

F (Pi+1)−F (Pi)
δt

= −∇F (Pi)

d
dt
F = −∇F

This is the physicist so-called Jacobi relaxation. It can be sped up by

the so-called 2nd order Richardson relaxation

d2

dt2
F +

1

τ

d

dt
F = −∇F
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Steepest-descent moment method for 3D MHD equilibria

X =
∑
Xmne

i(mθ−nζ)

Xmn is called Fourier moments

we will have eqs to solve them
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Steepest-descent moment method for 3D MHD equilibria

The derivation of the MHD equations begins by taking the mass,

momentum, and energy moments integral of Boltzmann equation in

the velocity space

The most basic set of eqs is the Boltzmann eqs for each species s

∂fs(x, v, t)

∂t
+ v · ∇fs(x, v, t) +

es
ms

(E + v× B) · ∇vfs(x, v, t) = Cs

describing the 6D + time (x, v, t) phase space probability distribution

function fs.

together with the free space Maxwell’s eqs

∂B
∂t

= −∇× E (Faraday’s law)

∇× B = µ0ε0
∂E
∂t

+ µ0J (Ampère’s law)

∇ · E = σ
ε0

(Gauss’s law)

∇ · B = 0 (Gauss’s law for magnetism)

It would appear that

the distribution functions for the various plasma species,

from which the constitutive relations are trivially obtained,

are determined by use of rather harmless looking 1st order PDEs.
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Steepest-descent moment method for 3D MHD equilibria

At this stage, we might wonder why,

if the plasma dynamics is apparently so simple

when written in terms of distribution functions,

we need a fluid description of plasma dynamics at all.

It is not at all obvious that fluid theory represent an advance.

This argument is misleading for several reasons. However, by far

the most serious flaw is the view of eq for fs as a tractable eq.

Note that this eq is easy to derive, because it is exact,

taking into account an scales from microscopic to macroscopic.

fs follows a detailed trajectory of a single particle.
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Steepest-descent moment method for 3D MHD equilibria

Numerical difficulties:

number of variables (1+3+3)

× dim (7)

× number density (1.5× 1020m−1)

× meshsize (103)

Time scale 10−8s ∼ 1012s

Space scale 10−5m ∼ 10m

plasma oscillations 1/ωpe ∼ 10−11s

Debye shielding λD ∼ 10−5m

Coulomb collision frequency 1/ν ∼ 10−7s

Coulomb collision length λ ∼ 0.1m

cyclotron waves 1/ωci ∼ 10−8s

Alfven waves a/CA ∼ 10−7s

compressional Alfven waves L‖/CA ∼ 10−6s

sound waves a/CS ∼ 10−5.5s

resistivity > 1/νe ∼ 10−5s
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Steepest-descent moment method for 3D MHD equilibria

In general, this set eqs is very difficult to solve,

due to the complexity of collision operators as well.

However, there are some situations where collions can be completely

neglected.

In this case, we get the kinetic description using Vlasov eq

∂fs(x, v, t)

∂t
+ v · ∇fs(x, v, t) +

es
ms

(E + v× B) · ∇vfs(x, v, t) = 0

It is tractable in sufficiently simple geometry.

Nevertheless,

the fluid approach has much more to offer even in the Vlasov limit.

• the fluid eq possess the key simplicity of involving fewer

dimensions: x, t

• the fluid description is intuitively appealing.

We immediately understand the significance of fluid quantities

such as density and temperature.

Whereas the significance of distribution functions is far less

obvious

• fluid variables are relatively easy to measure in experiment,

whereas,

it is extraordinary difficult to measure a distribution function.

• the kinetic approach to plasma physics is spectacularly inefficient.

The species distribution function fs provide vastly more

information than is needed.
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Steepest-descent moment method for 3D MHD equilibria

In order to get fluid picture of plasma, we define moments of the

distribution function.

the kth moment of the distribution function fs(x, v, t) is written as

Mk(x, t) =

∫
vv . . . v︸ ︷︷ ︸
k

fs(x, v, t)d
3v, k = 0, 1, x, · · ·

Integrated in the velocity phase space v.

The lower order moments all have names and simple physical

interpretations.
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Steepest-descent moment method for 3D MHD equilibria

number density (#/m3): ns(x, t) =
∫
fs(x, v, t)d3v

flow velocity (m/s): Vs(x, t) = 1
ns

∫
vfs(x, v, t)d3v

charge density (C/m3): σ =
∑
s es

∫
fs(x, v, t)d3v =

∑
s esns

current density (A/m2): J =
∑
s es

∫
vfs(x, v, t)d3v =

∑
s esnsVs

temperature (J, eV ): Ts(x, t) = 1
ns

∫ msv2r
3 fs(x, v, t)d3v =

msv
2
T

2

conductive heat flux (W/m2): qs(x, t) =
∫

vr
msv

2
r

2 fs(x, v, t)d3v

pressure (N/m2): ps =
∫ msv2r

3 fs(x, v, t)d3v = nsTs

pressure tensor (N/m2): Ps =
∫
mvrvrfs(x, v, t)d3v = psI + πs

stress tensor (N/m2): πs =
∫
ms

(
vrvr −

v2r
3 I

)
fs(x, v, t)d3v

We have defined and used the relative velocity

vr = v− Vs(x, t)

In addition, we will need the lowest order velocity moments of the

Coulomb collision operator Cs.
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Steepest-descent moment method for 3D MHD equilibria

density conservation in collisions: 0 =
∫
Csd

3v

frictional force density (N/m3): Rs =
∫
mvCsd3v

energy exchange density (W/m3): Qs =
∫ mv2r

2 Csd
3v
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Steepest-descent moment method for 3D MHD equilibria

The kth moment of the kinetic eq is obtained by multiplying the

distribution eq

by k powers of v and integrate over velocity space.

∫
vv . . . v︸ ︷︷ ︸
k

[
∂fs(x, v, t)

∂t
+∇ · (vfs(x, v, t)) +∇v ·

(
es
ms

(E + v× B)fs(x, v, t)

)
= Cs

]

The flow term is simplified by pulling the divergence outside the

velocity integral.

The acceleration term is treated by partial integration.

These 2 terms couple the kth moments to the (k + 1)th and

(k − 1)th moments.
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Steepest-descent moment method for 3D MHD equilibria

Making use of the collisional conservation laws,

the 0th order moment yields the continuity eq for species s

∂

∂t
ns +∇ · nsVs = 0

the 1th order moment gives the momentum conservation eq for

species s

∂

∂t
(msnsVs)+∇·(psI+πs+msnsVsVs)−esns(E+Vs×B) = Rs

We rewrite it using the density eq to remove the ∂n
∂t

contribution and

∇ ·msnsVsVs = msVs(∇ · nsVs) +msnsV · ∇Vs to obtain

msns
dVs

dt
= −∇p − ∇ · πs + esns(E + Vs × B) + Rs

the 2nd order moment yields the energy conservation eq for species s

∂

∂t

(
3

2
ps +

1

2
msnsV

2
s

)
+∇·

[
qs +

(
5

2
ps +

1

2
msnsV

2
s

)
Vs + Vs · πs

]
−esnsE·Vs−Qs = Vs·Rs

Using the dot product of the momentum eq with Vs to remove the

∂V 2
s

∂t
term and using the density eq, it can be simplified to

3

2

∂ps

∂t
= −∇ · (qs +

5

2
psVs) + Vs · ∇ps − πs : ∇Vs + Qs

or
3

2

dps
dt

+
5

2
ps∇ · Vs = −∇ · qs − πs : ∇Vs +Qs
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Steepest-descent moment method for 3D MHD equilibria

It is often useful to write the energy eq in terms of the collisional

entropy.

which is defined as

Ss ≡
1

ns

∫
fs ln fsd

3v ' ln

T3/2
s
ns

+const =
3

2
ln

 ps

n
5/3
s

+const

An entropy eq can be obtained directly by using the density and

energy eqs in the total time derivative of the entropy Ss for a given

species of particles

nsTs
dSs
dt

=
3

2
ns
dTs
dt

− Ts
dns
dt

= −∇ · qs − πs : ∇Vs +Qs

The evolution of entropy in the moving fluid can be written in terms

of the local time derivative of the entropy density nsSs by making use

of the density eq

nsTs
dSs
dt

= Ts

[
d(nsSs)

dt
− Ss

dns
dt

]
= Ts

[
∂(nsSs)

∂t
+∇ · nsSsVs

]
Using this form for the rate of entropy increase and

∇ ·
(

qs
Ts

)
=

1

Ts
∇ · qs − qs · ∇ lnTs

We have

∂nsSs
∂t

+∇ ·
(
nsSsVs +

qs
T

)
=

1

Ts
(qs · ∇ lnTs + πs : ∇Vs −Q)
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Steepest-descent moment method for 3D MHD equilibria

Explanation

1. According to the 1st eq, the species s density is constant along a

fluid trajectory unless the fluid is non-solenoidal.

2. According to the 2nd eq, the species s flow accelerates along a

fluid trajectory under the influence of the scalar pressure, the

viscous stresses, the Lorentz force, and the frictional forces due to

collisions with other species.

3. According to the 3rd eq, the species s energy density changes

along a fluid trajectory because of the work done in compressing

the fluid, viscous heating, heat flow, and the local energy gain

due to collisions with other species. The electrical contribution to

plasma heating has now become entirely implicit.

No amount of manipulation, or rearrangement, can cure our fluid

equations of their most serious defect:

the fact that they are incomplete.

our equations relate interesting fluid quantities, such as the density,

ns, the flow velocity, Vs, and the scalar pressure, ps, to next higher

moments, such as the viscosity tensor, πs, the heat flux density, qs,

and the moments of the collision operator, Rs and Qs.

They needs closures to use additional information to express the latter

quantities in terms of former.

Several models

· · · TRANSP

· · ·
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Steepest-descent moment method for 3D MHD equilibria

Closure Moments

...

When there is no significant entropy production on the time scale of

interest, entropy is a ”constant of the fluid motion”.

Then we obtain the ”adiabatic” (in the thermodynamic sense) eq of

state for the species

dSs
dt

≡ 1

γ − 1

d

dt
ln
ps

n
γ
s
' 0 ⇔ ps ∝ n

γ
s .

Here we have defined

γ = (N + 2)/N

in which N is the number of degrees of freedom.

We have been treating the fully 3D case for which

N = 3, γ =
5

3
, γ − 1 =

2

3
.

Other eqs of state used are

ps ∝ ns, Ts = const, isothermal eq of state (γ = 1)

ps ' 0, Ts ' 0, cold species eq of state

∇ · Vs = 0, ns = const, incompressible species flow (γ →∞)
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Steepest-descent moment method for 3D MHD equilibria

Consider electron and ion fluids separately.

Under the infinite conduction,

ε0 → 0,

σ = e(ni − ne) = 0

ni = ne ≡ n

electron fluid eqs

d
dt
n+ n∇ · Ve = 0

men d
dt

Ve + ∇pe + ∇ · πe + en(E + Ve × B) = R

3
2
dpe
dt

+ 5
2pe∇ · Ve + πe : ∇Ve +∇ · qe = Qe

ion fluid eqs

d
dt
n+ n∇ · Vi = 0

min
d
dt

Vi + ∇pi + ∇ · πi − en(E + Vi × B) = −R

3
2
dpi
dt

+ 5
2pi∇ · Vi + πi : ∇Vi +∇ · qi = Qi

September 14, 2012 17



Steepest-descent moment method for 3D MHD equilibria

Definition of the one-fluid variables of MHD:

mass density (kg/m3): ρ =
∑
s msns = mene +mini ' min

the center-of-mass velocity (m/s): V =

∑
s msnsVs∑
s msns

=
miniVi+meneVe

ρ ' Vi

current density (A/m2): J =
∑
s nsesVs = −ne(Ve − Vi)

plasma pressure (N/m2): p =
∑
s

[
ps + nsms

3 V 2
s

]
' pe + pi

stress tensor (N/m2):
π =

∑
s

[
πs + nsms

(
(Vs − V)(Vs − V)− 1

3 I|Vs − V|2
)]

' πe + πi
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Steepest-descent moment method for 3D MHD equilibria

A one fluid mass density eq is obtained by multiplying the electron

and ion density eqs by their respective masses to yield

∂ρ

∂t
+∇ · ρV = 0

A one fluid momentum eq is obtained by simply adding the electron

and ion momentum eqs and using the assumption of quasi neutrality

in the plasma

ρ
dV

dt
+ ∇p − J × B + ∇ · π = 0

Next, a one fluid generalized Ohm’s law is obtained by multiplying the

electron and ion momentum eqs by es
ms and summing them to

produce an eq for ∂J
∂t

me

e2
d

dt

(
Je
ne

)
= E+V×B−

(
J‖
σ‖

+
J⊥
σ⊥

)
− J× B−∇pe −∇ · πe

nee

Considering all the orderings and taking the limit of vanishing electron

mass the generalized ohm’s law is obtained

E + V× B =
1

ne
[Re + J× B−∇pe −∇ · πe] ' ηJ

η ≡ 1/σ0 = meνe/nee
2 is the isotropic electrical resistivity.

Finally, the one fluid eq of state or energy eq is needed to close the

hierarchy of MHD eqs. In MHD it is customary to use an isentropic

eq of state

d
dt

ln
p
ργ

=
γ−1
p

(
pe
dSe
dt

+ pi
dSi
dt

)
' γ−1

p

(
−∇ · qe −∇Vi : πi + ηJ2

)
' (γ − 1)

ηJ2
p

' 0(in resistivity / ideal MHD range)
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Steepest-descent moment method for 3D MHD equilibria

the single fluid resistivity (η 6= 0) / ideal (η → 0) eqs can be written

as
∂
∂t
ρ+∇ · ρV = 0

ρ
(
∂
∂t

V + V · ∇V
)

= −∇p+ J× B

d
dt

ln
p
ργ

= (γ − 1)
ηJ2
p

∂
∂t

B = ∇× (V× B− ηJ)

∇× B = µ0J

The most important effects neglected by the ideal MHD eqs are

1. heat conductivity parallel to the magnetic field

2. viscosity

3. resistivity

Although resistivity is numerically a small diffusion effect, it has

the important consequence of allowing magnetic field topology to

break.

With resistivity, the magnetic field line tends to break up into a

number of thin filaments called magnetic islands which thread their

way through the plasma.

Since heat flows rapidly along field lines, one of the direct effects of

this island structure is to enhance transport across the plasma.
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Steepest-descent moment method for 3D MHD equilibria

After some manipulations, it can be shown that the ideal MHD eqs

yield the following conservation forms of total MHD system mass,

momentum and energy density

MHD system mass eq: ∂ρ
∂t

+∇ · ρV = 0

MHD system momentum eq:
∂(ρV)
∂t

+∇ · T = 0

MHD system energy eq: ∂w
∂t

+∇ · S = 0

in which

MHD stress tensor: T ≡ ρVV +

(
p+ B2

2µ0

)
I− BB

µ0

MHD energy density: w ≡ ρV 2

2 +
p

γ−1 + B2
2µ0

MHD energy flux: S ≡
(
ρV 2

2 +
γ
γ−1p

)
V + E×B

µ0
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Steepest-descent moment method for 3D MHD equilibria

Take the steady state solution,

∂

∂t
= 0

we get ideal MHD equilibrium eqs

∇p = J× B

∇× B = µ0J

∇ · B = 0

Currently there are several codes available to calculate 2D, 3D

magnetic equilibria, or equilibria with magnetic island.

Equilibrium Solver:

Solve Ψ as a function of (R,Z) through iterating GS eq, such as TSC.

Inverse Equilibrium Solver:

Solve R, Z as functions of (ψ, θ), Such as Jsolver

The force density can be written as

f = −∇p+ J× B

= −∇p− 1
µ0

B× (∇× B)

= −∇p− B
µ0

b× (∇×Bb)

= −∇p− B
µ0

b× (∇B × b)− B2
µ0

b× (∇× b)

= −∇p︸ ︷︷ ︸
fluid pressure

− ∇⊥

(
B2

2µ0

)
︸ ︷︷ ︸

magnetic pressure

+
B2

µ0
κ︸ ︷︷ ︸

parallel tension
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Steepest-descent moment method for 3D MHD equilibria

Consider Frenet Coordinate System

b = B
B magnetic field direction

n = κ
κ magnetic curvature direction

z = b× n binormal direction

Then the force density can be re-written as

f = −b(b·∇p)−n

[
(n · ∇)

(
p +

B2

2µ0

)
−

B2

µ0
κ

]
−z(z·∇)

(
p +

B2

2µ0

)

The conditions for MHD force balance equilibrium are thus

along B : 0 = b · ∇p =
∂p
∂l

curvature direction : 0 = n · ∇
(

p + B2
2µ0

)
− B2

µ0
κ

binormal direction : 0 = z · ∇
(
p+ B2

2µ0

)
Since there is no magnetic force along the magnetic filed, p must be

const along magnetic field lines.

When nested magnetic flux surfaces exist, ∂p
∂l

requires the pressure be

a function of the magnetic flux

B · ∇p = (B · ψ)
dp

dψ
= 0

together with

J · ∇p = J · J× B = 0

we see that the vector fields J and B both lie within, and do not

penetrate, magnetic flux surfaces.

Further, from J× B = ∇p, we know that the pressure gradient is

perp to the flux surfaces.
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I. Introduction
The global analysis of finite aspect ratio, high beta, 3D toroidal
configurations.

ε =
R

a

The ratio of the major radius to the minor radius of toroidal plasma

low: ε ∼ 1

finite: ε ∼ 3

large: ε ≥ 8
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I. Introduction
The global analysis of finite aspect ratio, high beta, 3D toroidal
configurations.

Substitute J from Ampere’s law into the force balance eq

∇p = (∇× B)× B/µ0

=
[
(B · ∇)B−∇(B2/2)

]
/µ0

This may be rewritten as

∇(p+B2/2µ0) = (B · ∇)B/µ0

term on the left: indicate that the magnetic field may be considered

to have a ”magnetic pressure” given by B2/2µ0.

term on the right: comes form bending and parallel compression of

the field, producing perpendicular and parallel forces, respectively.

The ratio of the plasma pressure to the magnetic field pressure

β =
p

B2/2µ0
=

thermal energy density

magnetic energy density

is the measure of confinement efficiency with which the magnetic field

confines the plasma. In other words, how well does the magnetic field

hold a non-uniform plasma in equilibrium.

High β is desirable for economic power balance

but is difficult to achieve because of various plasma instabilities.

In low-β plasma, the force balance is mainly a matter of different

magnetic force in balance with each other.

At high-β, the magnetic field plays a minor role in the dynamics of the

plasma.
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I. Introduction
The global analysis of finite aspect ratio, high beta,
3D toroidal configurations.

Consider the single particle motion first.

A major goal is to provide an understanding of how magnetic fields

confine charged particles in a fusion plasma.

Apply Newton’s law in plasma physics

m d
dt

V = e(E + V× B) (Lorentz force)

m d
dt

x = V

In general,

B = B(x, t)

E = E(x, t)

So this is a set of coupled nonlinear ODE.

Assuming a uniform, time independent, magnetic field, no electric field

B = Bẑ, B = const

E = 0
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I. Introduction
The global analysis of finite aspect ratio, high beta,
3D toroidal configurations.
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I. Introduction
The global analysis of finite aspect ratio, high beta,
3D toroidal configurations.

In component form, the full set of Newton’s Law reduces to

m d
dt
Vx = eB

m Vy,

m d
dt
Vy = −eBm Vx,

m d
dt
Vz = 0

d
dt
x = Vx

d
dt
y = Vy

d
dt
z = Vz

Vx(0) = Vx0 = V⊥ cos θ

Vy(0) = Vy0 = V⊥ cos θ

Vz(0) = Vz0 = V‖

x(0) = x0

y(0) = y0

z(0) = z0

Here

ωc =
eB

m

is the gyro frequency.

V⊥, V‖ are constants representing the initial velocity.

x0, y0, z0, θ, are constants representing the initial position.
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I. Introduction
The global analysis of finite aspect ratio, high beta,
3D toroidal configurations.

1. parallel motion

m d
dt
Vz = 0

d
dt
z = Vz

The solutions is

Vz(t) = V‖
z(t) = z0 + V‖t

There are no parallel force providing confinement and

particles simply proceed unimpeded.

The motion is therefore unconfined along a given magnetic line.
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I. Introduction
The global analysis of finite aspect ratio, high beta,
3D toroidal configurations.

2. Perpendicular motion

m d
dt
Vx = eB

m Vy, Vx(0) = Vx0 = V⊥ cos θ

m d
dt
Vy = −eBm Vx, Vy(0) = Vy0 = V⊥ cos θ

Eliminating Vx gives

d2

dt2
Vy + ω2

cVy = 0,

Vy(0) = V⊥ sin θ

d
dt
Vy(0) = −ωcVx(0) = −ωcV⊥ cos θ

It’s general solution is easily found to be

Vy(t) = −V⊥ sin(ωct− θ)

Vx(t) = V⊥ cos(ωct− θ)

The particles rotate with an angular frequency equal to the gyro

frequency.
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I. Introduction
The global analysis of finite aspect ratio, high beta,
3D toroidal configurations.

The solution for the perpendicular motion is completed by

integrating the velocity

d
dt
x = Vx x(0) = x0

d
dt
y = Vy y(0) = y0

yielding the particle trajectory

x(t)− x(0) =
∫ t
0 Vx(t′)dt′

y(t)− y(0) =
∫ t
0 Vy(t

′)dt′

i.e.,

x(t) = xg + rL sin(ωct− θ)

y(t) = yg + rL cos(ωct− θ)

Here

rL =
V⊥
ωc

=
mV⊥
eB

is the gyro radius. the quantities xg, yg are defined as

xg = x0 + rL sin θ

yg = y0 − rL cos θ

So

(x− xg)
2 + (y − yg)

2 = r2L

is the orbit of the particle, which is circular.

Since the gyro radius is quite small in comparison to the minor

radius a,

one can conclude that there is a good confinement perpendicular

to the magnetic field.
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I. Introduction
The global analysis of finite aspect ratio, high beta,
3D toroidal configurations.

3. Rotation direction of gyro motion

Because the electrons and ions have opposite sign charges,

they rotate in opposite directions.

The magnetic field generated by the electric current of a gyrating

particle always opposes the magnetic filed,

i.e., the gyromotion is diamagnetic.
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I. Introduction
The global analysis of finite aspect ratio, high beta,
3D toroidal configurations.

4. helical trajectory

The combined perpendicular and parallel motions corresponds to

a helical trajectory.

Particle spiral unimpeded along field lines with a small

perpendicular excursion equal to the gyro radius.
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I. Introduction
The global analysis of finite aspect ratio, high beta,
3D toroidal configurations.

This has important implications for the geometry of a magnetic

fusion reactors: it must be a toroidal.

Otherwise, In a finite length linear geometry,

all magnetic field lines mush eventually make contact with wall as

they leave the system.

The particles therefore free stream along the filed lines directory

colliding with the wall in a very short time, which is an end loss.

In toroidal geometry, the field lines close upon themselves,

particles continuously spiral along the field lines and do not leave

the chamber,

therefore, confined in both the parallel and perpendicular

directions.
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The variational formulation of MHD equilibria provides a mathematically
efficient prescription for treating the truncation or closure of an
approximate finite series solution of the nonlinear equilibrium eqs.

There are 2 variational formulations:

The first variation: equilibrium

The second variation: linear stability
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The variational formulation of MHD equilibria provides a mathematically
efficient prescription for treating the truncation or closure of
an approximate finite series solution of the nonlinear equilibrium eqs.

Complex Fourier series

f(x) =
∞∑
−∞

cne
inx

Assuming f(x) is a periodic function with T = 2π,

the Fourier coefficients are then given by

cn =
1

2π

∫ π

−π
f(ξ)e−inξdξ

The Fourier coefficients an, bn, cn are related via

an = cn + c−n n = 0, 1, 2, · · ·

bn = i(cn − c−n) n = 1, 2, · · ·

and

cn =



an−ibn
2 n > 0

a0
2 n = 0

a−n+ib−n
2 n < 0
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Also inherent in any energy principle is an iteration scheme for obtaining
the solution of this truncated set of eqs, which is based on seeking the
minimum energy state.

It is often desirable to have a variational statement of a problem.

One value of such a form is that it can be cast in new variables and

the principle will still hold.

The first variation determines the equilibrium: The form of w will

depend on the constraints imposed during the variation.

To this end, we seek an energy functional w such that the condition

that the variation of w vanish is equivalent to the plasma equilibrium

eq.

It would suffice to find a function w such that its variational is given

by

δw =

∫
ξ · [∇p− J× B]d3x

for arbitrary displacement field ξ(x).

If it vanishes for all ξ, then the equilibrium eq is satisfied everywhere.

The second variation determines the linear stability of the system.
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The first variation

Since the displacement field ξ(x) is the time integral of the velocity

field V,

we can obtain the ideal MHD constraints: the flux and entropy are

conserved.

This the most physical of possible constraints,

Thus we examine the functional

w =

∫ (
B2

2µ0
+

p

γ − 1

)
d3x

subject to magnetic conservation

δB = ∇ × (ξ × B)

and entropy conservation

δp = −ξ · ∇p − γp∇ · ξ = (γ − 1)ξ · ∇p − γ∇ · pξ

The 1st variation of w gives

δw =

∫ (
1

µ0
B · δB +

δp

γ − 1

)
d3x

using the constraints, it becomes

δw =

∫
ξ · (∇p− J× B) d3x−

∫
dS ·

{
1

µ0
ξ⊥B

2 +
γ

γ − 1
pξ

}
if we have the additional condition that

dS · ξ = 0

on the boundary, which also follows from flux and entropy

conservations,

then this is of the desired form of equilibrium eq.

This form is valid in up to 3D space x = (x, y, z).
September 14, 2012 38



VMEC Code: 3D MHD Equilibrium

Solve inverse equilibrium equation

Assuming the existence of nested flux surfaces and

that quantities may be Fourier expanded in terms of the poloidal and

toroidal coordinates,

the code uses a variational method to find a minimum in the total

energy of the system.

This produces a parabolic set of equations (with second-order spatial

derivatives in the radial coordinate, ψ),

which are converted to hyperbolic form through a Richardson scheme.

The VMEC code is able to rapidly solve for MHD equilibrium 3D

configurations.

ITER fixed boundary flux surface
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VMEC Input Namelist

&INDATA

LFREEB = F

MGRID_FILE = "none"

DELT = 0.9

NFP = 7

NCURR = 0

MPOL = 9

NTOR = 6

NZETA = 18

NITER = 10000

NSTEP = 200

NVACSKIP = 6

GAMMA = 0.000000E+00

PHIEDGE = 1.13E-01

CURTOR = 0.0

NS_ARRAY = 9 49

FTOL_ARRAY = 1.00e-6 1.e-11

AM = 1.e4 -1.e4 9*0.

AI = 6.90 0.0 0.0 3.90 0.0 0.0

6.90 0.0 0.0 6.90 0.0

AC = 11*0.

RAXIS = 2.88 0.04

ZAXIS = 0.00 -0.04

RBC(0,0) = 2.90 ZBS(0,0) = 0.00

RBC(0,1) = 1.00 ZBS(0,1) = 1.00

RBC(1,1) = -0.21 ZBS(1,1) = 0.21

RBC(1,4) = -0.01 ZBS(1,4) = 0.01

RBC(1,6) = -0.01 ZBS(1,6) = -0.01

/
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VMEC Output Data Format

The VMEC code outputs some runtime and diagnostic data to the

screen

along with the creation of four files

(jxbout, mercier, threed1, and wout)

The data output to the screen is also indicated (in greater detail) in

the threed1 file.

It is suggested that

the user redirect the output of the run to a log file.

The wout file is a text file containing data

from plotting of the final configuration.

Details of reading the ’wout’ file can be found in

’LIB OPT/vsource/readw only priv.f.’

If ’LDIAGNO’ was set to true in the input namelist,

a ’diagno in’ file will be created.

This file contains information regarding the outer flux surface

and currents for the DIAGNO routine

(which calculate the field at a point for magnetic reconstruction).
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Array to Read VMEC Output Data

iNumFieldPeriod,

iNumRadialGrids,

iMaxPoloidalModeNumber,

iMaxToroidalModeNumber,

iAccumModeNumber

iPoloidalMode = iVector1D(0,iAccumModeNumber-1);

iToroidalMode = iVector1D(0,iAccumModeNumber-1);

RMNC = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

RMNS = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

ZMNC = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

ZMNS = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

lmn = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

bmn = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

gmn = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

bsubumn = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

bsubvmn = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

bsubsmn = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

bsupumn = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

bsupvmc = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

bsupvms = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

currvmc = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

currvms = d2D(0,iNumRadialGrids-1,0,iAccumModeNumber-1);

iota = d1D(0,iNumRadialGrids-1);

mass = d1D(0,iNumRadialGrids-1);

Pressure = d1D(0,iNumRadialGrids-1);

dPsids = d1D(0,iNumRadialGrids-1);
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Read VMEC Data

wb1, wp, gam, pfac, iNumFieldPeriod, iNumRadialGrids,

iMaxPoloidalModeNumber, iMaxToroidalModeNumber,

iAccumModeNumber, ifsq, nit, iasym, ireconstruct

imse2, itse, nbsets, nobd, nextcur, nbfld

iPoloidalMode[:], iToroidalMode[:]

RMNC[ir][:], ZMNS[:][:], lmn[:][:]

bmn[:][:], gmn[:][:], bsubumn[:][:],

bsubvmn[:][:], bsubsmn[:][:], bsupumn[:][:]

bsupvmc[:][:], currvmc[:][:]

iota[:], mass[:], Pressure[:] dPsids[:],

buco, bvco, phijs, vol, overr, curu, curv, specw
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User Configurations

iNumGridsPhi;

iNumCPUPhi;

iNumRadialGrids;

iNumRadialCPU;

iPoloidalSymmetry;

iNumCPUTheta;
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Find the major radius, magnetic axis, minor radius

Rmajor = RMNC[0][j];

a=0.0; BphiAxis = 0.0;

i=0:iMaxTorModeNumber-1

phi = 2.0*PI*i/((iMaxTorModeNumber+1)*iNumFieldPeriod)

theta = 0.0;

Raxis = 0.0; Zaxis = 0.0; Bphi = 0.0;

Raxis += RMNC[0][:] * cos(iPolMode[:]*theta - iTorMode[:]*phi)+

RMNS[0][:] * sin(iPolMode[:]*theta - iTorMode[:]*phi);

Zaxis += ZMNC[0][:] * cos(iPolMode[:]*theta - iTorMode[:]*phi)+

ZMNS[0][:] * sin(iPolMode[:]*theta - iTorMode[:]*phi);

Bphi += bsupvmc[0][:] * cos(iPolMode[:]*theta - iTorMode[:]*phi)+

bsupvms[0][:] * sin(iPolMode[:]*theta - iTorMode[:]*phi);

Bphi *= Raxis; /* this is the toroidal field */

BphiAxis += Bphi/(1+iMaxTorModeNumber);

j=0:iMaxPolModeNumber-1

theta = 2.0*PI*j/iMaxPolModeNumber;

R = 0.0; Z = 0.0;

R += RMNC[iNumRGrids-1][:]* cos(iPolMode[:]*theta - iTorMode[:]*phi)+

RMNS[iNumRGrids-1][:]* sin(iPolMode[:]*theta - iTorMode[:]*phi);

Z += ZMNC[iNumRGrids-1][:]* cos(iPolMode[:]*theta - iTorMode[:]*phi)+

ZMNS[iNumRGrids-1][:]* sin(iPolMode[:]*theta - iTorMode[:]*phi);

a += sqrt((R-Raxis)*(R-Raxis) + (Z-Zaxis)*(Z-Zaxis));

a /= (iMaxTorModeNumber+1);

a /= iMaxPolModeNumber;

AspectRatio = Rmajor/a;
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Interpolate VMEC DATA to USER CONFIGURATION

sgrid[:] = pow(l2p2((double)i, &thispack, ’F’), 2.0);

vmecfit(sgrid, iNumRGrids, RMNC, iNumRGrids,

iAccumModeNumber, iPolMode, RMNC, IntegerGrid);

vmecfit(sgrid, iNumRGrids, RMNS, iNumRGrids,

iAccumModeNumber, iPolMode, RMNS, IntegerGrid);

vmecfit(sgrid, iNumRGrids, ZMNC, iNumRGrids,

iAccumModeNumber, iPolMode, ZMNC, IntegerGrid);

vmecfit(sgrid, iNumRGrids, ZMNS, iNumRGrids,

iAccumModeNumber, iPolMode, ZMNS, IntegerGrid);

vmecfit(sgrid, iNumRGrids, bsupvmc, iNumRGrids,

iAccumModeNumber, iPolMode, bsupvmc, HalfGrid);

vmecfit(sgrid, iNumRGrids, bsupvms, iNumRGrids,

iAccumModeNumber, iPolMode, bsupvms, HalfGrid);

vmecfit(sgrid, iNumRGrids, currvmc, iNumRGrids,

iAccumModeNumber, iPolMode, currvmc, IntegerGrid);

vmecfit(sgrid, iNumRGrids, currvms, iNumRGrids,

iAccumModeNumber, iPolMode, currvms, IntegerGrid);

vmecfit0(sgrid, iNumRGrids, Pressure, iNumRGrids,

Pressure, HalfGrid);
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Map on Real Space (R,Z)

j=0:NumPhiSections-1

phi

i=0:NumLocalVertices-1

mapIndexToVmecCoordinates(ir, theta)

vmecpoint2(ir, theta, phi, r[i], z[i])

sine = sin(Data->iPolMode[:]*theta - Data->iTorMode[:]*phi);

cosine = cos(Data->iPolMode[:]*theta - Data->iTorMode[:]*phi);

R += Data->RMNC[ilocation][:]*cosine +

Data->RMNS[ilocation][:]*sine;

Z += Data->ZMNC[ilocation][:]*cosine +

Data->ZMNS[ilocation][:]*sine;
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Map on Real Space (R,Z)

j=0:map.NumPhiSections-1

phi

i=0:map.NumLocalVertices-1

mapIndexToVmecCoordinates(PolSymmetry, ir, theta)

vmecBfield(ir, theta, phi,

bsupvmn[i],

currvmn[i],

pressure[i],

density[i],

chi[i])

cos = cos((Data->iPolMode[:]*theta -

Data->iTorMode[:]*phi))

sin = sin((Data->iPolMode[:]*theta -

Data->iTorMode[:]*phi))

bsupv += Data->bsupvmc[ilocation][:]*cos +

Data->bsupvms[ilocation][:]*sin

currv += Data->currvmc[ilocation][:]*cos +

Data->currvms[ilocation][:]*sin

pressure = Data->Pressure[ilocation];
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Initialization and Perturbation Addition

zeroFlowField

addPerturbation
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