First let's visit the coordinate vectors in curved coordinate systems.

reciprocal sets of vectors A,B,C and a, b, c :

A-a=B-b=C.-c=1

A-b=A.-c=B-a=B.-c=C-a=C-b=0

nonzero triple products a- (b x ¢) and A- (B x C)

Find vectors of one set a, b, c in terms of its reciprocal A, B, C :

q B xC b — CxA . A xB
~A-(BxC)”" B-(CxA)  C-(AxB)

any vector W can be written as

W= (W-aA+ (W:-b)B+ (W-c)C

W=(W-Aa+(W-Bb+ (W-C)c
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The parallel component of a vector V w.r.t. vector B

_ VB _y.
Vi=-p =V'b

b being the unit vector along B.

The perpendicular component of vector V wrt B

V|, =-bx(bxV)

Thus
V = Hb—I—VJ_

—b(b-V)—b x (bx V)
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Next, we build the unit coordinate vectors in curvilinear coordinates

3D position vector can be parametrized by ul,u2,u3:

v = z(u 1 2 3)
2= 2(u 1 2 3)

one-to-one transformation, invertible

ul = ul(x,y, 2)
2 _ u2(
3 _ US(

x? y? Z)
x? y? Z)

If the determinant of transformation is nonzero

(%1 or Ox \

2 3
B Y Y,
oul  ou?  oud
dz 0z 0z
\ oul  oul2 oud )

— ul,uz,ug are coordinate, curvilinear.
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Then we define the coordinate surfaces and coordinate curves
eqgs of coordinate surfaces are

p
UlZC

vary)
{ u? =c

vary)
3

u? =c° (u-,u” vary)

(u”, u

(u?, u

w N =
R\
o — W

\

cl, 02, 3 are arbitrary constant.

egs of coordinate curves are
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Il. equilibrium eq in flux coordinates

—— = ’
(t,y.2) 8 (W' u? u*) are
” coordinates of P

Fig. 1.1. '-';'rl.'-rhl'll curvilinear coordinate system with coordinates (u',u’, u"). The coordinate curves
and coordinate surfaces are represented with respect (o a Canesian system with coordinates x, y, )

#He2 8 110 surfoces
ﬁhi: & 10 curves

Fig. L1 Basit vectors ¢ and ¢, at point P. The contravarian basis vectors «' = W' are perpendicular

to the constant coordi : i
ety m——s inate surfaces; the covariant bass Veclors .r,:.ﬂﬂﬂlu.l' are parallel 1o the
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orthogonal: if the coordinate curves intersect at right angle
examples

cylindrical

spherical systems.
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Then we construct the tangent-Basis vectors

define a set of vectors: ey, e9, eg of fixed length,

pointing in the positive direction of the coordinate curves ul, u2, u

R OR __ OR.
oul’ 2T 902 BT 943

€1 =
— define the tangent vectors at point P.
e linearly independent;
e triple product e - e9 X eq # 0
e |ocal, varies form point to point
infinitesimal position vector R
OR
dR = Z == du! —e; du

i ouJ
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Reciprocal-Basis Vectors

Take coordinate differential

dut = Vu! - dR = V! - e]—duj

which can only hold if, and only if

Vul - e; = 6;- (Kronecker delta)

— Vu' and e; form reciprocal sets of vectors

define the reciprocal-basis vectors

Obviously

Summary:

e; : tangent to the u/ coordinate curve

(/

e’ : perpendicular to the u* = ¢! coordinate surface
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Covariant components of a vector

using subscript = (),

_ OR IR . OR 3
D - (D R IR vul + (D- R IR ) vu? + (D au3)v“

= (D-eq)e 1+(D-e2)e2+(D-e3)e3

= Dlel + D2e2 + D3e3

= Diei with D; = D. e;

Contravariant components of a vector

using superscript = ()Z

D — (D Vu)gRl (D w)g@‘; (D-Vug)a—R

3
= (D-el)elf(D-eQ)eer(D-e3>e3 o

— D1e1+D2e2+D3e3
— De with DZ D.ée’
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Both covariant and contravariant representations contain all the

information needed and are equally valid.

They are related through metric coefficients.

We can also write dR as

dR = (dR),e' = (dR); Vu'"

with

(dR)Z = dR - €, = du]e] "€, =¢€;-€e du] — gwdu]

Write the basis in its covariant component

€, (ei)jej — (eZ- . ej)e] — gije]

Write the basis in its contravariant component

e! (ei)jej = (ei : ej)e]- = gijej
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The metric coefficients 93 and gij
form the backbone of general curvilinear coordinate systems

e determine the differential arc length along a curve

e allow to switch back and forth between the covariant and

contravariant components of a vector

e provide a means to calculate the dot and cross products of two
vectors

Their definition

—> symmetric:
9ij =95 97 =¢"
Orthogonal coordinate system:

gz-j:()andgij: if 1 #£ 9
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Changing between covariant and contravariant components

Di:D'ez’:D]ej'ez':ngji:ngz'j
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Since

e; =gjje/ e =g'e

Kronecker delta 53- can be obtained through

k1 k

I _e..el =g ef. el = q.,.q" = kg .
5j—e] e—g]ke e—g]kg = 9" 9k,

matrix of metric tensor ¢*J and 9

{gij} [gij} = [ (identity matrix)

9] = [Qz‘j}_la 95| = [gijrl

SO

determinant

September 5, 2012
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The Jacobian of the Curvilinear Coordinate System

Jacobian of (x,y, z) wrt ul

The inverse transformation Jacobian

J

_ 1.2 3y Oxy,z2)
J =Juu”u’) = a2 03
81’1 3:62 8x3 8:131 8x1 8.701
(903@ %Ly %Ly %Ly 5’5% %yy
oul  ou? oud Oul Oul Ou?
0z 0z 0z 0z 0z 0z
oul  ou2  oud ous  Oud  Oud
~_ 0JR OR OR
“oul ou2 T ou3 T 1273
B 3(u1,u2,u3)
J(@,y,2) = 0(z,y,2)
dul  oul  ou! oul  ou?  ous
oxr Oy 0z Ooxr Or. Oz
ou? ou? ou? | _| oul ou? oud
oxr Oy 0z dy 0y 0y
8_u3 ouS  oud oul  ou? ous
or Oy 0z 0z 0z 0z
VUl-VU2XVU3:el-82X83
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J and J are inverse of each other:

J =e1- ey Xes, J=el . e?xe’
It can be proved from

_ (egxeg)-[(egxej)x(e]xeq)]
7 e1-eyxe3)”

_ (egxey)
J3

-lej(eg -eg x ey) —eg(eq - xeg x eq))]

le1-eo xeg|ley-egxeq)]

The basis vectors can be rewritten as for: =1,2,3

- 1 0R _OR_ 1

1 _ ) _ A
e :Vu —j(@XW)—J(eJXEk)
and
OR . .
e, = — = J(Vul x Vuk) = J(e/ xek)
ou
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The Relationship between J and g
We have defined

g = det[g; ;]
with
OR OR Oxr Ox Oy Oy 0z 0z
out* Ou  oOu'oul Oulou  Ou' duJ
which is

83:1 8x1 6:171 ox 8:172 ox

0 0 9, 0 9, 9,

g =detlg;;] = éty éLy ély , éyy éfly éé
tJ Oul Oul Ou? oul  ou? oud

0z 0z 0z 0z 0z 0z

ous  Oud  Oud oul  ou2 ou

2
(58 48 28)

— J2

So J is related to g by

=1/

From now on we will use /g as Jacobian throughout this lecture

and J will be reserved for electric current density.
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The Dot Product in Curvilinear Coordinates

Two vectors A and B can be written in terms of their contravariant or

covariant components

A :Aiei :Aiei
— Ble. = B.eJ
B=25 e, B]e

; A-B —Ale;-Bjel =ABje;-e/ = AB;s
— Aiei : Bjej — AiBjei ey = AZ-Bj(?;.
:Aiei-Bjej :AiBjeZ--ej :AingZ-j
:Aiei -Bjej :AZ-Bjei-ej :AZ-ngij
In summary

A . B = AZB] = AZBJ = ngAZB] = gZ]AZB]

The magnitude of a vector

A= VA A= \JAIA; = [ 441 =\ Jg, ATl =\ [gii A A,
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The Cross Product in Curvilinear Coordinates

A xB= AZBJGZ' X ej = AZ'B]'EZ X e]

— \/gzk(AZB] — A]Bz)ek — % Zk(AZBj — A]Bz)ek

We also have
(A X B)k = ng(A X B)Z

and
k k1
(A><B) :gZ(AxB)Z-

September 5, 2012
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The differential arc length di(7)

dl = |dR| = VdR - dR

since

R R R R . -
R- Ry R 2 OR 3 OR. J_ e, du’
oul Ou2 ous ouJ

the square of the arc length can be expressed as

(d)? =" du'dule; - e; = g;du’du’
1,]

For each ¢

dR(7) = %aluZ = e;du’ = \/gVul x vVl du!

and

di(i) = /g ‘Vuj x Vuk‘ du®

1,7,k cycle 1,2, 3 and no summation is used.
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The Differential Area Element dS(i)

surface area vector

dS( in u’ = constant) = dS(i7)
_ dR(j) x dR(k)

— IR a—r‘;gdujduk, no summation over j or k
ouJ u

=e; X ekdujduk, no summation over j or k.

= JVuldul duF

surface area element

dS(i) = +/dS(i) - dS(i)

= \/(ej X er.) - (ej X ek)alujalu]’C

k

no summation overjork.

— \/(e] y ej)(ek - ek) — (e] y ek)(ej . ek)du]du

k

no summation overjork.

= \/(gjjgkk — 919k’ du

September 5, 2012 20
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The Differential Volume Element d3R

d°R : differential-volume determined by the position vector R

infinitesimal in all three coordinates

d): volume element, infinitesimal in only one direction, i.e., radial

direction
dR = dR(1) - dR(2) x dR(3)
= dulduzdugel - (e9 x e3)

— \/§du1du2du3

This result is positive

because be definition eq, e, e3 form a right-handed system.
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The Del Operator V

Is defined via the relationship

d® = Vo -dR

Expansion of d® as

dd = 9P g0 — 0 o1 e;dul = 3—‘%vui ‘e;du) = V- dR

~oul ou’ | - Ou
(5;- — e’ . ej)
So we have
V = Vuii = eii
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The Gradient Operator V

Operate V on a scalar function <I>(u1,u2,u3)

Vo = vo — vt 28 _ 92
ou’ ou’

Or the con variant component can be given as

0P

ul

(V®); =

September 5, 2012
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The Divergence Operator V-

Making use of the properties

VXXV =0
V- (VXA)=0

Because the vector

e - . .
L — (Vi XVuk):Vx (u]Vuk)
sqrtg

iIs the curl of another vector, its divergence is zero

Vo(—-L)y=v. (VX (ujVuk)) —0

we can take the divergence of a vector D

V.-D =V. (Djej) _vV. (\@Di%>

— \/gpjv. (7%) 4 %.v(\/gpj)

:\}ga(zi(\/gm) (V(VgD7) = =¥ e

September 5, 2012
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The Curl Operator V x

from
. . e .
el x ) = K V x Vul =0
V9
. . . oD . .
VxD=Vx(D;el)=D;i(Vxe)+VD; xe = e x e
ou
0D : -
izl:a—felxej el xel el xe?2 el xe3
u
0D : -
i:2:—ge2><e] el xel e2xel e2xed
U
0D : -
izS:a—geger ed xel e xel e xed
u
Thus

VD= —"— " Ue
ﬂzk:(au@ o %k
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Differentiation of Vector Components and Basis Vectors

Consider vector field W = W(R(ul, u2, ug))

W = Ve,
or
W = I¥,e!

W', W;, e;, e, are position dependent.

The partial derivatives (9_V\]£ follows
ou

OW _ oW | y5ri 98

ﬁu—k - ouk W
or
oW _ oW, Je'
= —e’' + W;
ouk ouk Louk
OR |
J
oW oW _ [ OW
ouk <8uk> )~ (5’uk ej) ©)
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Combine the above 4 expressions
the partial derivative of W can be written in 4 different ways

The contravariant forms

u

J . .
(%) _ Wigi of 11,08 o)
u

The covariant forms

OW oW i 0e;
(@uk)j ouk "t I ouk

L ' oW ]
ouk ) ;0 "0 Z J
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The absolute differential dW is given by

aw = Wk

ouk

Using partial derivatives, its jth contravariant and covariant

components are

_ _ [ OW k_ OWJ 5k i ] oej k
oWJ = (dW)) = <8uk> du”™ = Ik du”™ + W {6’ull‘€ e]} du

:dW~7+W@'{%.eJ}duk
U

oW 0
R . _ [ OW k_ 2775k ) oe” . k
oW, = (dW)] = <8u )jdu = o du” + W {(%Lk e]}du
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Expression Basis Derivatives in terms of Metric Coefficients

The information about the chosen basis is largely contained in the

metric coefficient 9ij-

8ei

The vector - can be expanded in two ways along e; or e/
U

oe; e, ]} de; \j
—=q—F-eJ e, =(—F)/e;
Auk {Guk J (8uk) J
8@2' 5’e2~ } J 8e,L- ]
—F =q—F-e; e/ =(—+),e
ouk {@uk J (8uk )]
Using the properties
(e = g/"n) (&)= gjpe")

we have

de, i\ _in [ Oe;
Uik =" [Tk e

oe; oe;,
{7?'%‘}:99‘” [a?f?'e ]

QD

September 5, 2012
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Since

de; 9 OR 0 OR _Oe

ouk B ouk ou’ Ul ouk - oul

We have

{

8ei

ouk

:gjn% [#(en ei)+%(en es)
o[-
o -

September 5, 2012
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Frome'-eizéé-

we have

and

thus

September 5, 2012
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The magnetic field line curvature vector k

Denote the unit tangent direction of magnetic field line as b = B

Sy

1y . 0b _
b-b=1yields b al—O
ob

Hence al Is perpendicular to b. Define

db 1

E|along b=r="p N=F

n is the principle normal to the field line.
The vector K is called the curvature vector.

The quantity Rc = 1/k is the local radius of curvature.

The directional derivative is equivalent to

0 _d

b'v:a: dl’alongb

So the curvature can be written in the form

k=(b-V)b=b-Vb

2
Since b x (V x b) = VY% —b-Vb=—b-Vb

The curvature can also be written =as

k=—b x (V xb)

September 5, 2012
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Elementary Toroidal Coordinates

Circles upon intersection with vertical and horizontal planes

Fig.46. Coordinate curves and surfaces of
or “elementary” system

E=cunsflunt
minor surface
axis+

major \
QA5 =
R

r=constant
surface

constant
surfoce

Cylindrical system (R, (¢, 2)
Elementary system (ul,uQ,ug) = (7, O¢, Ce)

The relationship between (x,y, z) and (7, f¢, Ce)

r = Ry +rcosfsin(
y = Ry + rcostcos(

z=1rsinf

R(: major radius

r: minor radius

6: poloidal angle, encircles the minor axis
(: toroidal angle, encircles the major axis
poloidal plane: ( = constant

toroidal plane: 6 = constant
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Generalized Toroidal Coordinates

Choose magnetic surfaces as the coordinate surfaces.

w240 we2E0

Fig. 48. u’ = constant surfaces which are perpendicular o the Shafran
simple tokamak

Generalize the elementary coordinate (7, fe¢, (e) to

r — 1 = const: magnetic surface label

magnetic flux enclosed by the surface

volume

pressure
Oe — bg: generalized poloidal angle, based on magnetic axis

0g is multi-valued, changes by 27 after each complete circuit.
Ge — Qg generalized toroidal angle

Gg = const makes poloidal cross section.

Gg 1s multi-valued, changes by 27 after each complete circuit.

Now (ul,u2,u3) = (¥, 08¢, (g)
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Flux Coordinates

fe and (e can be deformed by adding periodic functions

0 =0g+ f(p,0,C)
¢ =¢g+9(p0,¢)
with period 27

so that a field B line appear as a straight line, i.e.,

0

— = const

G

Further deformation can even makes the current density J line
straight.

Now (ul,uQ,ug) = (¢, 6, ()

The covariant form of magnetic field line in flux coordinates

B = Bwew -+ Bgee -+ BCeC, with B; = B - e;

and the contravariant form becomes

B=5Ye, + Bey+ B'e;, with B' =B - ¢’
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In which

BY —
0 1 g
b7 = 27T\/§\ij0l
1 .
BS = W\Ijtol
and .
h W

B
_C — .pOl = Is a function of flux
B \Ijtal

From the equation of a field line

a0 _ B Vpol _
¢ B¢ W,

(1))

we see that the slop of the line is indeed constant on the flux surface,

and equal to the rotational transform «.

This guarantees that the magnetic filed line is straight on the flux

surfaces.
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Symmetric Flux Coordinates in a Tokamak

Elementary system (ul,u2,u3) = (¢, 00, (o)

Co I1s the symmetric angle and

Vi -V =0
Vo V(=0
a%) =0

€ X Vo,
€9, €, = 0,
Vol = .

R is the distance from the major axis to a particular point on the

surface

The magnetic field can be written into the poloidal and toroidal

components.

B =q¢(VY x V() + (V(o x V1))
which is the form used most in the tokamak literature.

q is the safety factor.
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From the above orthogonality, it follows that

Vi x Vo = kEV (o, k is the proportionality factor.

From the Jacobian

Vo= (Véo- Vi x Vo) T = 1
we can solve for k, as go is known
L 1
\/§0|VCO‘2
and the toroidal field
qVio qR?

BT = Q(V\IJ X VH()) = Vo

V90lVéol2  Vgo

Defining
_ R’
V90

it can be proved from Ampere's law that [ is a flux surface function

I

[ =1(7)

and effectively measures the total poloidal current outside the flux

surface 9 = const.
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Equilibrium with no flow

Vp=JxB
V x B =puyd
V-B=0

Equilibrium with toroidal flow

pu-Vu+Vp=JxB
V x B =puyd
V-B=0

When an anisotropy is present in a system, a particular form of

pressure tensor

BB
P=p I+ (pH —pL)E
needs to be prescribed.

p| and p | are scalar functions representing the pressure parallel and

perpendicular to the magnetic field direction.

The equilibrium equation with this form for the pressure tensor
becomes

V-P=JxB
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Existence of Nested Flux Surfaces

An important concept is the flux surface,
a surface that is traced out by a series of magnetic field lines, closed.
On such surface B is everywhere perpendicular to its normal.

The flux-freezing constraint guarantees such surfaces exists

(to be demonstrated after the flux quantity is introduced).

magnetic field-lines embedded in an MHD plasma can never break and
reconnect: MHD forbids any change in topology of the field-lines.

The force balance equation implies that p is constant on these
surfaces ( B - Vp = 0)

The current density lines lie on these surfaces as well (J - Vp = 0)

In 3D geometry
the existence of flux surfaces (nested or not) is not guaranteed.
but one can follow the field to demonstrate the existence of suitable

surfaces.
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Two types of nested surfaces:
rational surfaces

irrational surfaces

Between the surfaces traced out by non-closing field lines, there exist
surfaces that contain field lines closing upon themselves after one or

several transit around the machine.

—> Rational surfaces.
because the ratio of the number of poloidal transits (the short way
around the torus) to the number of toroidal transits (the long way

around) of a field line is a rational number.
The other surfaces are called irrational surfaces.

Since the set of real number is dense, every irrational number can be
approximated infinitesimally closely by a rational number and vice

VErSa.

The same holds for magnetic surfaces.

That is
every rational surface can be approximated very accurately by a

nearby irrational surface, and the other way around.
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Assuming the flux surfaces have toroidal topology,
Each toroidal surface 1) encloses a volume V(1)).

The surface corresponding to an infinitesimal volume )V is essentially a
line

that corresponds to the toroidal axis
called magnetic axis

It is a degenerated magnetic surface formed by a field line closing
upon itself after one toroidal transit.

It is a line around which the magnetic surfaces are nested.
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The ideal MHD Ohm'slaw, E+V XB =0

implies that the magnetic flux through any closed contour in the
plasma, is a conserved quantity. To verify, consider the magnetic flux,

v [ B.ds
S

through a contour, I', which is co-moving with the plasma and spans

surface S. The time rate of change of W is made up of two parts.

Ist, there is the part due to the time variation of B over the surface
S. This can be written

(a_\p) — 8_B.d5:—/V><E-dSFaradaylaw
ot /1 g ot S

2nd, there is the part due to the motion of I'. If dl is an element of I’
then V X dl is the area swept out by dl per unit time. Hence, the flux

crossing this area is B - V x dl, and
oV ,

(—) = / B-Vxdl = / BxV.dl = / Vx(BxV)-dS Stokes's theorem
ot Jo JT r S

Hence, the total time rate of change of W is given by

d—qj:—/V><(E+V><B)-dS:OOhm’sIaw
dt S

This implies that ¥ remains constant in time for any arbitrary
contour. This, in turn, implies that magnetic field-lines must move
with the plasma. In other words, the field-lines are frozen into the

plasma and the surfaces have to be nested.
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It satisfies

B-Vp=p,B- Vi :péb(Beee + BCeC) Vi =0

and

V-B =V (V(xVy+Vd x Vo)
= Vy-VXV(—V( - VXVy+VI VxVP—VD -V x VO
— 0
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27mx () is the poloidal magnetic flux
27 ® (1)) is the toroidal magnetic flux

between the magnetic surface label ¢) and the magnetic axis (v = 0, where
Vx = 0).

The flux ¥ through an arbitrary surface S is defined as

v [ B.ds
S

Generally two magnetic fluxes can be defined from two corresponding
surfaces.

The poloidal flux is defined by 1) = fSp B - ndS

Sp : a ring-shaped ribbon stretched between the magnetic axis and
the flux surface .

(Complementarity, Sp can be taken to be a surface spanning the
central hole of the torus.)

Likewise,
the toroidal flux is defined by ¢ = fSt B - ndS
St : a poloidal section of the flux surface.

It is natural to use ¥ or ¢ to label the flux surfaces.
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Consider the integral and apply Gauss's theorem

/d3x3-vgz/d3xv-(3<):j[Bg-ds

/dSXB-VQ:/dSXV-(BH):%Bﬁ-ds

We choose the ( = 0 surface to cut the torus open and consider

the volume enclosed by the surfaces St ;5. SC:O' and SCZQT("

%BC-dS: gB-ds+/S<27T§B-ds+/S (B -dS

Storus (=0
The 1st one vanishes by definition: B is tangent everywhere to the

magnetic surface, dS 1 B.
¢ = 0 on the surface SC:O;
( = 2m on the surface SC:27T'

/d3x3-vg2w/3< 2 (B - dS
—or

So or Sy is what we previously called toroidal flux surface, S,

So

1 3
\\Jj —/ B~dS——/de-VC
tor s 2w JV

tor
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Similarly,

We choose the # = 0 surface to cut the long way torus open and
consider

the volume enclosed by the surfaces S pq,5:. Sp—g, and Sg_—o..

%Be-ds_ 93-d5+/ 93.d5+/ 6B - dS
S9=2r 59—=0

The 1st one vanishes by definition: B is tangent everywhere to the

E%OTUS

magnetic surface, dS 1 B.
6 = 0 on the surface SH:O;
0 = 27 on the surface Sy_o. .

/dng-V9:27r/ B - dS
S@zZW

So- or S is what we previously called toroidal flux surface, Spol
So
1

_ - IR .
pOl_Qﬂ- Vd xB V@

v
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Following

/ /
7 7

B = X';bvg A qb';bw X (VI X, VO T AR XVO)

we have

B V¢ = @, (Vi x (VO + V) - VC = /5~ L(@/) + X))

Hence

Utor = 5= | B V(/gdydidy

= o [ VI H(@l + Np)/gdvdody

Use has been of that A is periodic in 6 and (.

Similarly

B-VH = Xgp(vg x Vy - VO + %(w x (V6 + Agpw + A’Hve + A’CVC) .V
_ \/ﬁ_lxéb + %(w X (A’CVC) -V

Vool = 5= | B - V0 /gdvdCdy

= f VI~ X vadudcdy
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From previous slides, the rotational transform is defined as

L m

2t n
n: the mean number of toroidal transits
m: the mean number of poloidal transits

A rational surface,

on which the field line does not cover a surface but constitutes a 1D

structure,
has ¢ equal to a rational number;
on an irrational surface,

on which the field line covers the surface entirely ¢ is irrational.

when B is straight, it follows from the definition of ¢ that

_
o

L

Using field line eq (to be introduced later),

. can be written in an equivalent and more useful expression

L d\prOl
2w AWy,
\ijOZ . the poloidal magnetic flux

W4, o the toroidal magnetic flux.
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In tokamak research, the quantity ¢ = 27 /1, "safety factor”, is

preferred

In an axisymmetric tokamak with circular cross section flux surfaces,

the eqgs of a field line are, approximately:

Td(ge o Rd(;e
Bp  Br
Bp = (B - 0¢) poloidal field
B = (B - (e) toroidal field
Thus
g~ TBT
RBp

which is the "0"th order approximation of other configurations.
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In almost all toroidal devices, the rotational transform changes from

flux surface to flux surface.

To measure the amount of change, one uses the concept of shear,

defined simply as

In this paper

(ngvngw%wxv@*)-ve*

(X;pvngw%wxv@*).vg

- ngvgxw.ve*

- %wxve*.vg

/
Xw _
=3 a function of flux surface v alone

0

b1
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The metric coefficient g;; and g% forms the matrix of metric tensor

OR OR
Y P —

out oOuJ

9ig i

Obviously they are symmetric:

915 = 944>

gZ] _ g]Z

They are orthogonal coordinate system as well if, and only if:

g =0 ifi # j

The determinant of the tensor is given by

g = det[g; ;]
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g is related to the transformation Jacobian in the following way:

R OR Oz Ox

g; = - = ———
Uoout o oud out Hud

8% 8ﬁ 8%
B B B

Oul  Ou?
Jz 0z

ous  Ous

oy 0Oy 0z 0z
-+ . - -+ . .
ou® ouJ  ou® oul
8ﬁ 8% 8%
%% %% %% ::(8R.8R><8R)2
2&1 2%2 2%3 oul ou2  oud
2z z Z
oul  oul  oud

Thus /g is the Jacobian of coordinate transformation

and from previous slides we know

Vi b =vy v x V¢
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BY-B.vo = \/g—lxgp + %w X ()\’CVC) V0

= VTN, — PNV - (V) x VY

-~

BS=B-V¢( =0

/

W

Vi x (14 ApV6) - V¢

= V7@ (14

0

BY =B.-Vy
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Since
e; - el = o/
i

Bw =B - e¢ — (Bee(g + BCEC) y E¢ — BQQ@¢ + BC9C¢
B@ =B- ey = Beg(g(g + BCQCQ

BC — B - eC = BQQQC + BCQCC
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make use of fft to compute Fourier series

r — S: S: xmn(w)ez(mﬁ—nC)

m=0n=0

The complex coefficients 7, can be computed from the coefficients

of real Fourier series

T = m=02>_n=0amn(¥)sin(md — nf)
T =2 m=12n=1bmn () cos(md —n()
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FFT
adopt the definition used in the Matlab

It iIs common to assume that we are given a periodic sequence of

numbers {fk}]k\]:1 of period N.

Then the DFT of the sequence is a sequence Fp forn=1,--- N

defined by

N
Fo= 3 fre 2rin=1(k=1)/N

k=1
the Inverse Discrete Fourier Transform (IDFT) gives for k=1,--- N

N
fro= S Fpe2miln=D(k=1)/N

n=1
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Relation to Fourier Transform

the FT of a causal signal f(¢), which is effectively zero for ¢t > T

1. For window size 1" and number of sampling points /N define the
sample spacing T = %
2. Now define the sample points ¢;. = kT for k = 0,---, (N — 1),

: 1
(I.e., tk = kw)

3. Then we define f;. = f(1.).

4. Associated with this we define the frequency sampling points

where the number QTW is the fundamental frequency.

Now we consider the problem of approximating the FT of f at

the points wy, = %Tn

The exact answer is

F(wnp) = /OO e_iwntf(t)dt,n: 0,---,(N—1)

—00
5. For f ~ 0 for |z| > T,

T .
Flon) = [ e 90t f(0)dtn = 0., (V =1

0. Let us approximate this integral by a left-endpoint Riemann sum
approximation using the points ¢;. defined above:

N—-1
Flop)=Ts > e ™“nkf(ty),n=0,-- (N 1)
k=0
7. Substituting the definitions of wp, t;. and T in terms of 1" and
N we have
T N—-1 i I
~ — 27N _
F(Wn)—ﬁ kz:() e 2T / ftp),n=0,---,(N—1)
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8. Thus we see that
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Relation to Fourier Series
if fisa T periodic function defined initially on |=7/2,T/2] then
Fro 0 o2min /T
1/2 9
/ f(x)e 2minx /T ..

Now from what we have written above, for the approximation of the
FT of a function which is zero outside the interval [—T/2,T/2|, we
see that

T N/2
Z —Qmink/N
CnN?N fke / ,TL——N/Q—I—]_,,N/Q
~N/2+1

Thus by our definition of the DFT we have

1
Cn — NFn

September 5, 2012 60

PRINCETON



Since only truncated series are used, a proper choice for 6 is necessary to
provide adequate accuracy in the approximate moment solution. In
general, this value for 6 is incompatible with the requirement that
magnetic field lines are straight in (0*, () coordinates. The inclusion of \
therefore generates a convenient resummation of the inverse equilibrium
Fourier moment expansion. In this context, A\ assumes the role of a
renormalization parameter. Inserting eq2 into eqla yields

F = FyVi + Ff

Fy = /g(JSB? — J'BS) +pf
Fg=J"

B =,/9(B*VH — BVzeta)
J'=13-Va; =u'V-Bx Vay

F =—-JxB+Vp
— _(Jwew + Jeeg + JCeC) X (B‘gee + BCEC) +plv¢

= —(1VB%,, x ey + VBl x e¢ + J'Bley x e; + JSBe; x eg) +p/ Vi
= —~(JVB/gV¢ — JYBC gV + 17BC \gvu — I BY\/5Vy) + 4/ Ty

= JV\/a(BSVY - BYNC) + | g BY — JUBS) + pf | vy

= Fﬁﬁ—l-FwV@b
W 1 1 1
J¥ = —VxB-Vy=—(VxB-Vy—B-VxVy) = —V-(BxV)
10 HQ K0
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B.-Vi=0
B-F =FyB-V+FgB-j

= Fg(BYy + Be;) - /5(BSVO — BIVC)
= VGF(BYBSey - V0 — BSBe; - V()

= /gF3(BYBS — BSBY)
=0
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As we have already knew

V X

1
D=

V9

from Ampere's law, we obtain

- o [.9B
NOJ—VXB_W [(W_
76 =J.v¢ = Nol\/ﬁ(%@e _
g9 — 3. vy = M()l\/ﬁ(a@iw
Fy = H—%(BQ%—%—B@%

Fg=JV=1-Vi =

September 5, 2012
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Z(aDj — aD?e
7 ou? ouJ k

aBe 8B¢ B aBg

ac o) T ae — apee)

OB
—5-e¢) - V¢

8BC

By | OB

_BC (9C +BC3¢

iova\\ o8~ g ) VY
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Magnetic Differential Equation: B-VA =S5

S: source term
A: unknown single-valued function to be solved for.

2 solvability conditions on S.
dl o _
1§ s =0

coming from B - VA = B%—f?, which implies

L dl
A=A =S
O—I-/O BS

2. (B-VA) =(S)=0
or hmAV—>O fAV SdSX =

As usual in the theory of differential eq, its general solution consists of

2 parts, a homogeneous and a particular solution

where Ah
B- VAh =0

Jp is obtained from Fourier’s series approximation.

September 5, 2012 64



It is defined as a curve whose tangent at any point is parallel to B:
B x dR( orB x dR = 0)

dR: differential vector tangent to the field line

Using contravariant components of both B(Bl, BQ, BS) and
dR(dul, du?, du>) the eq leads to

Bl B2 B3
—_— e = —— = C
dul du? du?

c. proportionality constant

Recalling B'=B. Vui,

B-Vul B-Vu? BV
p— p— :C

dul du? du
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How c¢ is determined

If parametrize the filed line curve by its arc length [, the tangent

vector dR/dl is a unit vector, and

B dR

B ﬁ‘aZOngB

Thus we have the constant

So the equation of a magnetic field line is

B Bl B2 B?
i dul  du?  dud
or

B-Vu! B-Vu? BV

B_
d dul  du?
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axisymmetric along angle (

0
a_C:O
eC:RC
eC:%C

B =B = (BYey + BCeC) e = Beggg + BS4S¢ = B 4S6

0B
together with a—CC = (), we have BC Is a function of 1.
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From last slide, we have
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This can be easily verified from cylindrical coordinates

.

xr = Rcos(
§ y= Rsin(
L 2=z

9¢C = €¢eC = 2—’53—2 = (~Rsin¢, Reos(,0)-(~Rsin(, Reos(,0) = R
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= 108" (G5 = @' Femp) = (5 (X = ¥ G)agy)) + i B g (BR?) + 0/
_ 1 OAy( 0 (1 d (1 1 2\ 0 2
= W(X/ - q)lac)(aw(\/gX/%@) - ag(ﬁXlgeqp)) T W(BCR )_w(BCR ) +p/

/ / X 99
= (O ~ ) + L (P 4+

where
R?®' O\

— RBS —
F=RB> = \/§(1+89)
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25/
From last slide, we have F' = RBC _ L7 (1+ A

S S

<I>’(1+@):

F
00

R2

Averaging in 6 direction

' (1+ 99)d0 = § g—gme

Hence

September 5, 2012

PRINCETON

71



Eqbc shows that in 2D geometry, the straight magnetic field line system
for A = 0 is one for which ,/g/R* is constant on a magnetic surface.

only constant satisfies
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Consider an equilibrium that is approximated by shifted, elliptical flux
surfaces fro which the cylindrical coordinates (R, 7) have the low-order
Fourier representation

R = Ro(v)) + R1(¢) cos @
/= Zl(?ﬁ) sin 6

Analysis of this configuration indicates that to leading order in the
inverse aspect ration, the condition

0, o B
%(R /\VGg) =0

in the (¢, 0) coordinate system leads to an unphysical inward shift
A= Ry(0) — Ro(v) <0

which is independent of the plasma pressure.

This type of configuration is for theoretical analysis, practical system

Is much more complicate.

the inverse aspect ration,

S| =
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The retention of )\ allows for the surface variation of /g/R* in the (¢, 0)
coordinate system, where the low-order Fourier series representation for

(R, Z) is appropriate. It also yields the correct variation of R((v) with
pressure.
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