
II. equilibrium eq in flux coordinates

First let’s visit the coordinate vectors in curved coordinate systems.

reciprocal sets of vectors A,B,C and a,b, c :

A · a = B · b = C · c = 1

A · b = A · c = B · a = B · c = C · a = C · b = 0

nonzero triple products a · (b× c) and A · (B× C)

Find vectors of one set a,b, c in terms of its reciprocal A,B,C :

a =
B× C

A · (B× C)
,b =

C× A

B · (C× A)
, c =

A× B

C · (A× B)
,

any vector W can be written as

W = (W · a)A + (W · b)B + (W · c)C

or

W = (W · A)a + (W · B)b + (W · C)c
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II. equilibrium eq in flux coordinates

The parallel component of a vector V w.r.t. vector B

V‖ = V·B
B = V · b

b being the unit vector along B.

The perpendicular component of vector V wrt B

V⊥ = −b× (b× V)

Thus

V = V‖b + V⊥
= b(b · V)− b× (b× V)
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II. equilibrium eq in flux coordinates

Next, we build the unit coordinate vectors in curvilinear coordinates

3D position vector can be parametrized by u1, u2, u3:

R(u1, u2, u3) :


x = x(u1, u2, u3)

y = y(u1, u2, u3)

z = z(u1, u2, u3)

one-to-one transformation, invertible
u1 = u1(x, y, z)

u2 = u2(x, y, z)

u3 = u3(x, y, z)

if the determinant of transformation is nonzero
∂x
∂u1

∂x
∂u2

∂x
∂u3

∂y
∂u1

∂y
∂u2

∂y
∂u3

∂z
∂u1

∂z
∂u2

∂z
∂u3


=⇒ u1, u2, u3 are coordinate, curvilinear.
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II. equilibrium eq in flux coordinates

Then we define the coordinate surfaces and coordinate curves

eqs of coordinate surfaces are
u1 = c1 (u2, u3 vary)

u2 = c2 (u3, u1 vary)

u3 = c3 (u1, u2 vary)

c1, c2, c3 are arbitrary constant.

eqs of coordinate curves are
u2 = c2, u3 = c3 (u1 vary)

u3 = c3, u1 = c1 (u2 vary)

u1 = c1, u2 = c2 (u3 vary)
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II. equilibrium eq in flux coordinates
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II. equilibrium eq in flux coordinates

orthogonal: if the coordinate curves intersect at right angle

examples

cylindrical

spherical systems.
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II. equilibrium eq in flux coordinates

Then we construct the tangent-Basis vectors

define a set of vectors: e1, e2, e3 of fixed length,

pointing in the positive direction of the coordinate curves u1, u2, u3

e1 =
∂R

∂u1
; e2 =

∂R

∂u2
; e3 =

∂R

∂u3
;

=⇒ define the tangent vectors at point P.

• linearly independent;

• triple product e1 · e2 × e3 6= 0

• local, varies form point to point

infinitesimal position vector R

dR =
3∑
j=1

∂R

∂uj
duj = ejdu

j
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II. equilibrium eq in flux coordinates

Reciprocal-Basis Vectors

Take coordinate differential

dui = ∇ui · dR = ∇ui · ejdu
j

which can only hold if, and only if

∇ui · ej = δij (Kronecker delta)

=⇒ ∇ui and ej form reciprocal sets of vectors

define the reciprocal-basis vectors

ei = ∇ui

Obviously

ei · ej = δij

Summary:

ej : tangent to the uj coordinate curve

ei : perpendicular to the ui = ci coordinate surface
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II. equilibrium eq in flux coordinates

Covariant components of a vector

using subscript ≡ ()i

D =
(
D · ∂R

∂u1

)
∇u1 +

(
D · ∂R

∂u2

)
∇u2 +

(
D · ∂R

∂u3

)
∇u3

= (D · e1) e1 + (D · e2) e2 + (D · e3) e3

= D1e
1 +D2e

2 +D3e
3

= Die
i with Di ≡ D · ei

Contravariant components of a vector

using superscript ≡ ()i

D =
(
D · ∇u1

)
∂R
∂u1

+
(
D · ∇u2

)
∂R
∂u2

+
(
D · ∇u3

)
∂R
∂u3

=
(
D · e1

)
e1 +

(
D · e2

)
e2 +

(
D · e3

)
e3

= D1e1 +D2e2 +D3e3

= Diei with Di ≡ D · ei
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II. equilibrium eq in flux coordinates

Both covariant and contravariant representations contain all the

information needed and are equally valid.

They are related through metric coefficients.

dR =
3∑
j=1

∂R

∂uj
duj = ejdu

j

We can also write dR as

dR = (dR)ie
i = (dR)i∇u

i

with

(dR)i = dR · ei = dujej · ei = ei · ejdu
j ≡ gijdu

j

Write the basis in its covariant component

ei = (ei)je
j = (ei · ej)e

j = gije
j

Write the basis in its contravariant component

ei = (ei)jej = (ei · ej)ej = gijej
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II. equilibrium eq in flux coordinates

The metric coefficients gij and gij

form the backbone of general curvilinear coordinate systems

• determine the differential arc length along a curve

• allow to switch back and forth between the covariant and

contravariant components of a vector

• provide a means to calculate the dot and cross products of two

vectors

Their definition

gij = ei · ej =
∂R

∂ui
∂R

∂uj

gij = ei · ej = ∇ui · ∇uj

=⇒ symmetric:

gij = gji, gij = gji

Orthogonal coordinate system:

gij = 0 and gij = 0 if i 6= j
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II. equilibrium eq in flux coordinates

Changing between covariant and contravariant components

Di = D · ei = Djej · ei = Djgji = Djgij

Di = D · ei = Dje
j · ei = Djg

ji = Djgij
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II. equilibrium eq in flux coordinates

Since

ei = gije
j ei = gijej

Kronecker delta δij can be obtained through

δij = ej · e
i = gjke

k · ei = gjkg
ki = gikgkj

matrix of metric tensor gij and gij[
gij
] [
gij

]
= I (identity matrix)

so [
gij
]

=
[
gij

]−1
,

[
gij

]
=
[
gij
]−1

determinant

g = det
[
gij

]
g−1 = det

[
gij

]
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II. equilibrium eq in flux coordinates

The Jacobian of the Curvilinear Coordinate System

Jacobian of (x, y, z) wrt ui

J ≡ J(u1, u2, u3) =
∂(x,y,z)

∂(u1,u2,u3)

=

∣∣∣∣∣∣∣∣∣∣
∂x
∂u1

∂x
∂u2

∂x
∂u3

∂y
∂u1

∂y
∂u2

∂y
∂u3

∂z
∂u1

∂z
∂u2

∂z
∂u3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∂x
∂u1

∂x
∂u1

∂x
∂u1

∂y
∂u2

∂y
∂u2

∂y
∂u2

∂z
∂u3

∂z
∂u3

∂z
∂u3

∣∣∣∣∣∣∣∣∣∣
= ∂R
∂u1

· ∂R
∂u2

× ∂R
∂u3

= e1 · e2 × e3

The inverse transformation Jacobian

J ≡ J(x, y, z) =
∂(u1,u2,u3)
∂(x,y,z)

=

∣∣∣∣∣∣∣∣∣∣
∂u1

∂x
∂u1

∂y
∂u1

∂z
∂u2

∂x
∂u2

∂y
∂u2

∂z
∂u3

∂x
∂u3

∂y
∂u3

∂z

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∂u1

∂x
∂u2

∂x
∂u3

∂x
∂u1

∂y
∂u2

∂y
∂u3

∂y
∂u1

∂z
∂u2

∂z
∂u3

∂z

∣∣∣∣∣∣∣∣∣∣
= ∇u1 · ∇u2 ×∇u3 = e1 · e2 × e3
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II. equilibrium eq in flux coordinates

J and J are inverse of each other:

J = e1 · e2 × e3, J = e1 · e2 × e3

It can be proved from

J =
(e2×e3)·[(e3×e1)×(e1×e2)]

[e1·e2×e3]3

=
(e2×e3)

J3 · [e1(e2 · e3 × e1)− e2(e1 · ×e3 × e1)]

=
[e1·e2×e3][e2·e3×e1)]

J3

= J2

J3

= J−1

The basis vectors can be rewritten as for i = 1, 2, 3

ei ≡ ∇ui =
1

J
(
∂R

∂uj
× ∂R

∂uk
) =

1

J
(ej × ek)

and

ei ≡
∂R

∂ui
= J(∇uj ×∇uk) = J(ej × ek)
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II. equilibrium eq in flux coordinates

The Relationship between J and g

We have defined

g = det[gij ]

with

gij =
∂R

∂ui
· ∂R
∂uj

=
∂x

∂ui
∂x

∂uj
+

∂y

∂ui
∂y

∂uj
+

∂z

∂ui
∂z

∂uj

which is

g = det[gij ] =

∣∣∣∣∣∣∣∣∣∣
∂x
∂u1

∂x
∂u1

∂x
∂u1

∂y
∂u2

∂y
∂u2

∂y
∂u2

∂z
∂u3

∂z
∂u3

∂z
∂u3

∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣
∂x
∂u1

∂x
∂u2

∂x
∂u3

∂y
∂u1

∂y
∂u2

∂y
∂u3

∂z
∂u1

∂z
∂u2

∂z
∂u3

∣∣∣∣∣∣∣∣∣∣
=
(
∂R
∂u1

· ∂R
∂u2

× ∂R
∂u3

)2
= J2

So J is related to g by

J =
√
g

From now on we will use
√
g as Jacobian throughout this lecture

and J will be reserved for electric current density.
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II. equilibrium eq in flux coordinates

The Dot Product in Curvilinear Coordinates

Two vectors A and B can be written in terms of their contravariant or

covariant components

A = Aiei = Aie
i

B = Bjej = Bje
j

So

A · B = Aiei · Bjej = AiBjei · ej = AiBjδ
j
i

= Aie
i · Bjej = AiB

jei · ej = AiB
jδij

= Aiei · Bjej = AiBjei · ej = AiBjgij

= Aie
i · Bjej = AiBje

i · ej = AiBjg
ij

In summary

A · B = AiBj = AiB
j = gijA

iBj = gijAiBj

The magnitude of a vector

A =
√

A · A =

√
AiAi =

√
AiA

i =
√
gijA

iAi =

√
gijAiAi
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II. equilibrium eq in flux coordinates

The Cross Product in Curvilinear Coordinates

A× B = AiBjei × ej = AiBje
i × ej

=
√
g
∑
k(AiBj − AjBi)ek = 1√

g

∑
k(AiBj − AjBi)ek

We also have

(A× B)k = gki(A× B)i

and

(A× B)k = gki(A× B)i
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II. equilibrium eq in flux coordinates

The differential arc length dl(i)

dl = |dR| =
√
dR · dR

since

dR =
∂R

∂u1
du1 +

∂R

∂u2
du2 +

∂R

∂u3
du3 =

∂R

∂uj
duj = ejdu

j

the square of the arc length can be expressed as

(dl)2 =
∑
i,j

duidujei · ej = gijdu
iduj

For each i

dR(i) =
∂R

∂ui
dui = eidu

i =
√
g∇uj ×∇ukdui

and

dl(i) =
√
g
∣∣∣∇uj ×∇uk

∣∣∣ dui
i, j, k cycle 1, 2, 3 and no summation is used.
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II. equilibrium eq in flux coordinates

The Differential Area Element dS(i)

surface area vector

dS( in ui = constant) ≡ dS(i)

= dR(j)× dR(k)

= ∂R
∂uj

× ∂R
∂uk

dujduk, no summation over j or k

= ej × ekdu
jduk, no summation over j or k.

= J∇uidujduk

surface area element

dS(i) =
√
dS(i) · dS(i)

=
√

(ej × ek) · (ej × ek)dujduk

=
√

(ej · ej)(ek · ek)− (ej · ek)(ej · ek)dujduk no summation overjork.

=
√

(gjjgkk − gjkgjkdu
jduk no summation overjork.
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II. equilibrium eq in flux coordinates

The Differential Volume Element d3R

d3R : differential-volume determined by the position vector R

infinitesimal in all three coordinates

dV : volume element, infinitesimal in only one direction, i.e., radial

direction

d3R = dR(1) · dR(2)× dR(3)

= du1du2du3e1 · (e2 × e3)

=
√
gdu1du2du3

This result is positive

because be definition e1, e2, e3 form a right-handed system.
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II. equilibrium eq in flux coordinates

The Del Operator ∇

is defined via the relationship

dΦ = ∇Φ · dR

Expansion of dΦ as

dΦ = ∂Φ
∂ui

dui = ∂Φ
∂ui

ei · ejduj = ∂Φ
∂ui

∇ui · ejduj = ∇Φ · dR

(δij = ei · ej)

So we have

∇ ≡ ∇ui ∂
∂ui

≡ ei
∂

∂ui
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II. equilibrium eq in flux coordinates

The Gradient Operator ∇

Operate ∇ on a scalar function Φ(u1, u2, u3)

∇Φ ≡ ∇Φ = ∇ui ∂Φ

∂ui
=
∂Φ

∂ui
ei

Or the con variant component can be given as

(∇Φ)i =
∂Φ

∂ui
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II. equilibrium eq in flux coordinates

The Divergence Operator ∇·

Making use of the properties

∇×∇Φ = 0

∇ · (∇× A) = 0

Because the vector

ej
sqrtg

= (∇uj ×∇uk) = ∇× (uj∇uk)

is the curl of another vector, its divergence is zero

∇ · (
ej√
g
) = ∇ ·

(
∇× (uj∇uk)

)
= 0

we can take the divergence of a vector D

∇ ·D = ∇ ·
(
Djej

)
= ∇ ·

(
√
gDj

ej√
g

)

=
√
gDj∇ ·

(
ej√
g

)
+

ej√
g
· ∇(

√
gDj)

=
ej√
g
· ∇(

√
gDj)

= 1√
g
∂
∂ui

(
√
gDi) (∇(

√
gDj) =

∂(
√
gDj)

∂ui
ei)
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II. equilibrium eq in flux coordinates

The Curl Operator ∇×

from

ei × ej =
ek√
g

∇×∇uj = 0

∇×D = ∇× (Dje
j) = Dj(∇× ej) +∇Dj × ej =

∂Dj

∂ui
ei × ej

i = 1 :
∂Dj
∂u1

e1 × ej e1 × e1 e1 × e2 e1 × e3

i = 2 :
∂Dj
∂u2

e2 × ej e2 × e1 e2 × e2 e2 × e3

i = 3 :
∂Dj
∂u3

e3 × ej e3 × e1 e3 × e2 e3 × e3

Thus

∇×D =
1
√
g

∑
k

(
∂Dj

∂ui
−
∂Di
∂uj

)ek
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II. equilibrium eq in flux coordinates

Differentiation of Vector Components and Basis Vectors

Consider vector field W = W(R(u1, u2, u3))

W = Wiei

or

W = Wie
i

Wi, Wi, ei, ei, are position dependent.

The partial derivatives ∂W
∂uk

follows

∂W
∂uk

= ∂Wi

∂uk
ei +Wi ∂ei

∂uk

or

∂W
∂uk

=
∂Wi
∂uk

ei +Wi
∂ei

∂uk

OR

∂W
∂uk

=

(
∂W
∂uk

)j
ej =

(
∂W
∂uk

· ej
)

ej

or

∂W
∂uk

=

(
∂W
∂uk

)
j
ej =

(
∂W
∂uk

· ej

)
ej
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II. equilibrium eq in flux coordinates

Combine the above 4 expressions

the partial derivative of W can be written in 4 different ways

The contravariant forms(
∂W
∂uk

)j
= ∂Wi

∂uk
ei · ej +Wi ∂ei

∂uk
· ej = ∂Wj

∂uk
+Wi

{
∂ei
∂uk

· ej
}

(
∂W
∂uk

)j
=
∂Wi
∂uk

ei · ej +Wi
∂ei

∂uk
· ej

The covariant forms(
∂W
∂uk

)
j

= ∂Wi

∂uk
ei · ej +Wi ∂ei

∂uk
· ej

(
∂W
∂uk

)
j

=
∂Wi
∂uk

ei · ej +Wi
∂ei

∂uk
· ej =

∂Wj

∂uk
+Wi

{
∂ei

∂uk
· ej

}
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II. equilibrium eq in flux coordinates

The absolute differential dW is given by

dW =
∂W

∂uk
duk

Using partial derivatives, its jth contravariant and covariant

components are

δWj ≡ (dW )j =

(
∂W
∂uk

)j
duk = ∂Wj

∂uk
duk +Wi

{
∂ei
∂uk

· ej
}
duk

= dWj +Wi
{
∂ei
∂uk

· ej
}
duk

δWj ≡ (dW )j =

(
∂W
∂uk

)
j
duk =

∂Wj

∂uk
duk +Wi

{
∂ei

∂uk
· ej

}
duk

= dWj +Wi

{
∂ei

∂uk
· ej

}
duk
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II. equilibrium eq in flux coordinates

Expression Basis Derivatives in terms of Metric Coefficients

The information about the chosen basis is largely contained in the

metric coefficient gij .

The vector
∂ei
∂uk

can be expanded in two ways along ej or ej

∂ei
∂uk

=

{
∂ei
∂uk

· ej
}

ej ≡ (
∂ei
∂uk

)jej

∂ei
∂uk

=

{
∂ei
∂uk

· ej

}
ej ≡ (

∂ei
∂uk

)je
j

Using the properties

(ej = gjnen) (ej = gjnen)

we have {
∂ei
∂uk

· ej
}

= gjn
[
∂ei
∂uk

· en
]

{
∂ei
∂uk

· ej

}
= gjn

[
∂ei
∂uk

· en
]
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II. equilibrium eq in flux coordinates

Since
∂ei
∂uk

=
∂

∂uk

∂R

∂ui
=

∂

∂ui
∂R

∂uk
=
∂ek
∂ui

We have{
∂ei
∂uk

· ej
}

= gjn1
2

[
en ·

∂ei
∂uk

+ en ·
∂ek
∂ui

]

= gjn1
2

[
∂
∂uk

(en · ei) + ∂
∂ui

(en · ek)− ei ·
∂en
∂uk

− ek ·
∂en
∂ui

]

= gjn1
2

[
∂gni
∂uk

+
∂gnk
∂ui

− ∂ei·ek
∂un

]

= gjn1
2

[
∂gni
∂uk

+
∂gnk
∂ui

− ∂gik
∂un

]
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II. equilibrium eq in flux coordinates

From ej · ei = δij

we have
∂

∂uk
(ej · e

i) = 0

and {
ej ·

∂ei

∂uk

}
=

{
ei ·

∂ej

∂uk

}

thus {
∂ei

∂uk
· ej

}
= −gin1

2

[
∂gnj

∂uk
+
∂gnk
∂uj

−
∂gjk

∂un

]
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II. equilibrium eq in flux coordinates

The magnetic field line curvature vector κ

Denote the unit tangent direction of magnetic field line as b = B
B

b · b = 1 yields b · ∂b
∂l

= 0

Hence ∂b
∂l

is perpendicular to b. Define

db

dl
|along b ≡ κn =

1

Rc
n = κ

n is the principle normal to the field line.

The vector κ is called the curvature vector.

The quantity Rc = 1/κ is the local radius of curvature.

The directional derivative is equivalent to

b · ∇ =
∂

∂l
=

d

dl
|along b

So the curvature can be written in the form

κ = (b · ∇)b = b · ∇b

Since b× (∇× b) = ∇b
2
2 − b · ∇b = −b · ∇b

The curvature can also be written =as

κ = −b× (∇× b)

September 5, 2012 32



II. equilibrium eq in flux coordinates

Elementary Toroidal Coordinates

Circles upon intersection with vertical and horizontal planes

Cylindrical system (R, ζc, z)

Elementary system (u1, u2, u3) = (r, θe, ζe)

The relationship between (x, y, z) and (r, θe, ζe)

x = R0 + r cos θ sin ζ

y = R0 + r cos θ cos ζ

z = r sin θ

R0: major radius

r: minor radius

θ: poloidal angle, encircles the minor axis

ζ: toroidal angle, encircles the major axis

poloidal plane: ζ = constant

toroidal plane: θ = constant
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II. equilibrium eq in flux coordinates

Generalized Toroidal Coordinates

Choose magnetic surfaces as the coordinate surfaces.

Generalize the elementary coordinate (r, θe, ζe) to

r → ψ = const: magnetic surface label

magnetic flux enclosed by the surface

volume

pressure

θe → θg: generalized poloidal angle, based on magnetic axis

θg is multi-valued, changes by 2π after each complete circuit.

ζe → ζg: generalized toroidal angle

ζg = const makes poloidal cross section.

ζg is multi-valued, changes by 2π after each complete circuit.

Now (u1, u2, u3) = (ψ, θg, ζg)

September 5, 2012 34



II. equilibrium eq in flux coordinates

Flux Coordinates

θe and ζe can be deformed by adding periodic functions

θ = θg + f(ρ, θ, ζ)

ζ = ζg + g(ρ, θ, ζ)

with period 2π

so that a field B line appear as a straight line, i.e.,

θ

ζ
= const

Further deformation can even makes the current density J line

straight.

Now (u1, u2, u3) = (ψ, θ, ζ)

The covariant form of magnetic field line in flux coordinates

B = Bψeψ +Bθe
θ +Bζe

ζ , with Bi = B · ei

and the contravariant form becomes

B = Bψeψ +Bθeθ +Bζeζ , with Bi = B · ei
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II. equilibrium eq in flux coordinates

In which

Bψ = 0

Bθ = 1
2π
√
g
Ψ̇rpol

Bζ = 1
2π
√
g
Ψ̇tol

and

Bθ

Bζ
=

Ψ̇rpol

Ψ̇tol
= is a function of flux

From the equation of a field line

dθ

dζ
=
Bθ

Bζ
=

Ψ̇rpol

Ψ̇tol
= ι(ψ)

we see that the slop of the line is indeed constant on the flux surface,

and equal to the rotational transform ι.

This guarantees that the magnetic filed line is straight on the flux

surfaces.

September 5, 2012 36



II. equilibrium eq in flux coordinates

Symmetric Flux Coordinates in a Tokamak

Elementary system (u1, u2, u3) = (ψ, θo, ζo)

ζo is the symmetric angle and

∇ψ · ∇ζo = 0

∇θo · ∇ζo = 0

∂
∂ζo

= 0

eζ ∝ ∇ζo,

eθo · eζo = 0,

|∇ζo| = 1
R,

R is the distance from the major axis to a particular point on the

surface

The magnetic field can be written into the poloidal and toroidal

components.

B = q(∇ψ ×∇ζo) + (∇ζo ×∇ψ)

which is the form used most in the tokamak literature.

q is the safety factor.
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II. equilibrium eq in flux coordinates

From the above orthogonality, it follows that

∇ψ ×∇θo = k∇ζo, k is the proportionality factor.

From the Jacobian

√
go = (∇ζo · ∇ψ × ∇θo)−1 =

1

k|∇ζo|2

we can solve for k, as go is known

k =
1

√
go|∇ζo|2

and the toroidal field

BT = q(∇Ψ × ∇θo) =
q∇ζo

√
go|∇ζo|2

=
qR2
√
go

∇ζo

Defining

I =
qR2
√
go

it can be proved from Ampere’s law that I is a flux surface function

I = I(Ψ)

and effectively measures the total poloidal current outside the flux

surface ψ = const.
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The eqs describing MHD equilibrium of a static (no fluid flow), isotropic
plasma are the force balance eq and Ampere’s and Gauss laws.

Equilibrium with no flow

∇p = J× B

∇× B = µ0J

∇ · B = 0

Equilibrium with toroidal flow

ρu · ∇u +∇p = J× B

∇× B = µ0J

∇ · B = 0

When an anisotropy is present in a system, a particular form of

pressure tensor

P = p⊥I + (p‖ − p⊥)
BB

B2

needs to be prescribed.

p‖ and p⊥ are scalar functions representing the pressure parallel and

perpendicular to the magnetic field direction.

The equilibrium equation with this form for the pressure tensor

becomes

∇ · P = J× B
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F ≡ −J× B +∇p
∇× B = µ0J

∇ · B = 0

p = p(ψ) is the pressure
ψ is the radial coordinate labeling a magnetic flux surface.
The quantity F is the residual MHD force, which must vanish in
equilibrium.

Existence of Nested Flux Surfaces

An important concept is the flux surface,

a surface that is traced out by a series of magnetic field lines, closed.

On such surface B is everywhere perpendicular to its normal.

The flux-freezing constraint guarantees such surfaces exists

(to be demonstrated after the flux quantity is introduced).

magnetic field-lines embedded in an MHD plasma can never break and

reconnect: MHD forbids any change in topology of the field-lines.

The force balance equation implies that p is constant on these

surfaces ( B · ∇p = 0)

The current density lines lie on these surfaces as well (J · ∇p = 0)

In 3D geometry

the existence of flux surfaces (nested or not) is not guaranteed.

but one can follow the field to demonstrate the existence of suitable

surfaces.
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F ≡ −J× B +∇p
∇× B = µ0J

∇ · B = 0

p = p(ψ) is the pressure
ψ is the radial coordinate labeling a magnetic flux surface.
The quantity F is the residual MHD force, which must vanish in
equilibrium.

Two types of nested surfaces:

rational surfaces

irrational surfaces

Between the surfaces traced out by non-closing field lines, there exist

surfaces that contain field lines closing upon themselves after one or

several transit around the machine.

=⇒ Rational surfaces.

because the ratio of the number of poloidal transits (the short way

around the torus) to the number of toroidal transits (the long way

around) of a field line is a rational number.

The other surfaces are called irrational surfaces.

Since the set of real number is dense, every irrational number can be

approximated infinitesimally closely by a rational number and vice

versa.

The same holds for magnetic surfaces.

That is

every rational surface can be approximated very accurately by a

nearby irrational surface, and the other way around.
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For the nested toroidal flux surface geometry considered here, flux
coordinate angles θ and ζ many be introduced.
θ is the poloidal angle (the short way around the magnetic axis)
ζ is the toroidal angle (the long way around the torus).

Assuming the flux surfaces have toroidal topology,

Each toroidal surface ψ encloses a volume V(ψ).

The surface corresponding to an infinitesimal volume V is essentially a

line

that corresponds to the toroidal axis

called magnetic axis

It is a degenerated magnetic surface formed by a field line closing

upon itself after one toroidal transit.

It is a line around which the magnetic surfaces are nested.
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For the nested toroidal flux surface geometry considered here, flux
coordinate angles θ and ζ many be introduced.
θ is the poloidal angle (the short way around the magnetic axis)
ζ is the toroidal angle (the long way around the torus).

The ideal MHD Ohm’s law, E + V× B = 0

implies that the magnetic flux through any closed contour in the

plasma, is a conserved quantity. To verify, consider the magnetic flux,

Ψ =

∫
S

B · dS

through a contour, Γ, which is co-moving with the plasma and spans

surface S. The time rate of change of Ψ is made up of two parts.

1st, there is the part due to the time variation of B over the surface

S. This can be written(
∂Ψ

∂t

)
1

=

∫
S

∂B

∂t
· dS = −

∫
S
∇× E · dS Faraday law

2nd, there is the part due to the motion of Γ. If dl is an element of Γ

then V× dl is the area swept out by dl per unit time. Hence, the flux

crossing this area is B · V× dl, and(
∂Ψ

∂t

)
2

=

∫
Γ

B·V×dl =

∫
Γ

B×V·dl =

∫
S
∇×(B×V)·dS Stokes’s theorem

Hence, the total time rate of change of Ψ is given by

dΨ

dt
= −

∫
S
∇× (E + V× B) · dS = 0 Ohm’s law

This implies that Ψ remains constant in time for any arbitrary

contour. This, in turn, implies that magnetic field-lines must move

with the plasma. In other words, the field-lines are frozen into the

plasma and the surfaces have to be nested.
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The condition
B · ∇p = 0

and
∇ · B = 0

cab be satisfied by writing B in Contravariant form as follows:

B = ∇ζ ×∇χ+∇Φ×∇θ?

= Bθeθ +Bζeζ

It satisfies

B · ∇p = p′ψB · ∇ψ = p′ψ(Bθeθ +Bζeζ ) · ∇ψ = 0

and

∇ · B = ∇ · (∇ζ ×∇χ+∇Φ×∇θ?)

= ∇χ · ∇ ×∇ζ −∇ζ · ∇ ×∇χ+∇θ? · ∇ ×∇Φ−∇Φ · ∇ ×∇θ?

= 0
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2πχ(ψ) is the poloidal magnetic flux
2πΦ(ψ) is the toroidal magnetic flux
between the magnetic surface label ψ and the magnetic axis (ψ = 0, where
∇χ = 0).

The flux Ψ through an arbitrary surface S is defined as

Ψ =

∫
S

B · dS

Generally two magnetic fluxes can be defined from two corresponding

surfaces.

The poloidal flux is defined by ψ =
∫
Sp

B · ndS

Sp : a ring-shaped ribbon stretched between the magnetic axis and

the flux surface ψ.

(Complementarity, Sp can be taken to be a surface spanning the

central hole of the torus.)

Likewise,

the toroidal flux is defined by φ =
∫
St

B · ndS

St : a poloidal section of the flux surface.

It is natural to use ψ or φ to label the flux surfaces.
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2πχ(ψ) is the poloidal magnetic flux
2πΦ(ψ) is the toroidal magnetic flux
between the magnetic surface label ψ and the magnetic axis (ψ = 0, where
∇χ = 0).

Consider the integral and apply Gauss’s theorem∫
d3xB · ∇ζ =

∫
d3x∇ · (Bζ) =

∮
Bζ · dS

∫
d3xB · ∇θ =

∫
d3x∇ · (Bθ) =

∮
Bθ · dS

We choose the ζ = 0 surface to cut the torus open and consider

the volume enclosed by the surfaces Storus, Sζ=0, and Sζ=2π.∮
Bζ · dS =

∫
Storus

ζB · dS +

∫
Sζ=2π

ζB · dS +

∫
Sζ=0

ζB · dS

The 1st one vanishes by definition: B is tangent everywhere to the

magnetic surface, dS ⊥ B.

ζ = 0 on the surface Sζ=0;

ζ = 2π on the surface Sζ=2π.

∫
d3xB · ∇ζ = 2π

∫
Sζ=2π

ζB · dS

S2π or S0 is what we previously called toroidal flux surface, Stor

So

Ψtor =

∫
stor

B · dS =
1

2π

∫
V
d3xB · ∇ζ
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2πχ(ψ) is the poloidal magnetic flux
2πΦ(ψ) is the toroidal magnetic flux
between the magnetic surface label ψ and the magnetic axis (ψ = 0, where
∇χ = 0).

Similarly,

We choose the θ = 0 surface to cut the long way torus open and

consider

the volume enclosed by the surfaces Storus, Sθ=0, and Sθ=2π.∮
Bθ · dS =

∫
Storus

θB · dS +

∫
Sθ=2π

θB · dS +

∫
Sθ=0

θB · dS

The 1st one vanishes by definition: B is tangent everywhere to the

magnetic surface, dS ⊥ B.

θ = 0 on the surface Sθ=0;

θ = 2π on the surface Sθ=2π.

∫
d3xB · ∇θ = 2π

∫
Sθ=2π

θB · dS

S2π or S0 is what we previously called toroidal flux surface, Spol

So

Ψpol =
1

2π

∫
V
d3xB · ∇θ
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2πχ(ψ) is the poloidal magnetic flux
2πΦ(ψ) is the toroidal magnetic flux
between the magnetic surface label ψ and the magnetic axis (ψ = 0, where
∇χ = 0).Following

B = χ′ψ∇ζ ×∇ψ + φ′ψ∇ψ × (∇θ + λ′ψ∇ψ + λ′θ∇θ + λ′ζ∇ζ)

we have

B · ∇ζ = Φ′ψ(∇ψ × (∇θ + λ′θ∇θ) · ∇ζ =
√
g−1(Φ′ψ + λ′θ)

Hence

Ψtor = 1
2π

∫
B · ∇ζ√gdψdθdψ

= 1
2π

∫ √
g−1(Φ′ψ + λ′θ)

√
gdψdθdψ

= 1
2π2π2πΦ

= 2πΦ

Use has been of that λ is periodic in θ and ζ.

Similarly

B · ∇θ = χ′ψ(∇ζ ×∇χ · ∇θ + Φ′ψ(∇ψ × (∇θ + λ′ψ∇ψ + λ′θ∇θ + λ′ζ∇ζ) · ∇θ

=
√
g−1χ′ψ + Φ′ψ(∇ψ × (λ′ζ∇ζ) · ∇θ

Ψpol = 1
2π

∫
B · ∇θ√gdψdζdψ

= 1
2π

∫ √
g−1χ′ψ

√
gdψdζdψ

= 1
2π2π2πχ

= 2πχ
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θ? = θ + λ(ψ, θ, ζ)

is the poloidal angle that makes the magnetic field lines straight.

the local rotational number B·∇θ?

B·∇ζ
is a function of ψ alone in the (ψ, θ?, ζ)

coordinate system. and λ is a periodic function of θ and ζ with zero
average over a magnetic surface

∫ ∫
dθdζλ = 0

From previous slides, the rotational transform is defined as

ι

2π
=
m

n

n: the mean number of toroidal transits

m: the mean number of poloidal transits

A rational surface,

on which the field line does not cover a surface but constitutes a 1D

structure,

has ι equal to a rational number;

on an irrational surface,

on which the field line covers the surface entirely ι is irrational.

when B is straight, it follows from the definition of ι that

ι =
dθ

dζ

Using field line eq (to be introduced later),

ι can be written in an equivalent and more useful expression

ι

2π
=
dΨpol

dΨtor

Ψpol : the poloidal magnetic flux

Ψtor : the toroidal magnetic flux.
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θ? = θ + λ(ψ, θ, ζ)

is the poloidal angle that makes the magnetic field lines straight.

the local rotational number B·∇θ?

B·∇ζ
is a function of ψ alone in the (ψ, θ?, ζ)

coordinate system. and λ is a periodic function of θ and ζ with zero
average over a magnetic surface

∫ ∫
dθdζλ = 0

In tokamak research, the quantity q = 2π/ι, ”safety factor”, is

preferred

In an axisymmetric tokamak with circular cross section flux surfaces,

the eqs of a field line are, approximately:

rdθe
BP

=
Rdζe
BT

BP ≡ (B · θe) poloidal field

BT ≡ (B · ζe) toroidal field

Thus

q '
rBT
RBP

which is the ”0”th order approximation of other configurations.
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θ? = θ + λ(ψ, θ, ζ)

is the poloidal angle that makes the magnetic field lines straight.

the local rotational number B·∇θ?

B·∇ζ
is a function of ψ alone in the (ψ, θ?, ζ)

coordinate system. and λ is a periodic function of θ and ζ with zero
average over a magnetic surface

∫ ∫
dθdζλ = 0

In almost all toroidal devices, the rotational transform changes from

flux surface to flux surface.

To measure the amount of change, one uses the concept of shear,

defined simply as

s(ψ) ≡ dι

dψ
= ι̇(ψ)

In this paper

ι = B·∇θ?
B·∇ζ

=
(χ′ψ∇ζ×∇ψ+Φ′ψ∇ψ×∇θ

?)·∇θ?

(χ′
ψ
∇ζ×∇ψ+Φ′

ψ
∇ψ×∇θ?)·∇ζ

=
χ′ψ∇ζ×∇ψ·∇θ

?

Φ′
ψ
∇ψ×∇θ?·∇ζ

=
χ′ψ
Φ′
ψ

a function of flux surface ψ alone
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The contravariant basis vectors are

ei ≡ ∇α, α = (ψ, θ, ζ)

The covariant basis vectors are
ei ≡ ∂x

∂αi
=
√
gej × ek, (i, j, k) forms a positive triplet

√
g = (∇ψ · ∇θ ×∇ζ)−1 is the Jacobian.

The metric coefficient gij and gij forms the matrix of metric tensor

gij = ei · ej =
∂R

∂ui
· ∂R
∂uj

, gij = ei · ej = ∇ui · ∇uj

Obviously they are symmetric:

gij = gji, gij = gji

They are orthogonal coordinate system as well if, and only if:

gij = 0, gij = 0 ifi 6= j

The determinant of the tensor is given by

g = det[gij ]
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The contravariant basis vectors are

ei ≡ ∇α, α = (ψ, θ, ζ)

The covariant basis vectors are
ei ≡ ∂x

∂αi
=
√
gej × ek, (i, j, k) forms a positive triplet

√
g = (∇ψ · ∇θ ×∇ζ)−1 is the Jacobian.

g is related to the transformation Jacobian in the following way:

gij =
∂R

∂ui
· ∂R
∂uj

=
∂x

∂ui
∂x

∂uj
+

∂y

∂ui
∂y

∂uj
+

∂z

∂ui
∂z

∂uj

g =

∣∣∣∣∣∣∣∣∣∣
∂x
∂u1

∂x
∂u1

∂x
∂u1

∂y
∂u2

∂y
∂u2

∂y
∂u2

∂z
∂u3

∂z
∂u3

∂z
∂u3

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
∂x
∂u1

∂x
∂u2

∂x
∂u3

∂y
∂u1

∂y
∂u2

∂y
∂u3

∂z
∂u1

∂z
∂u2

∂z
∂u3

∣∣∣∣∣∣∣∣∣∣
= (

∂R

∂u1
· ∂R
∂u2

× ∂R

∂u3
)2

Thus
√
g is the Jacobian of coordinate transformation

and from previous slides we know

√
g−1 = ∇ψ · ∇θ ×∇ζ
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Thus, from eq2, the contravariant components of the magnetic field are
Bj ≡ B · ei where

Bθ = 1√
g (χ

′ − Φ′ ∂λ
∂ζ )

Bζ = 1√
gΦ

′(1 + ∂λ
∂θ )

Bψ = 0

Bθ = B · ∇θ =
√
g−1χ′ψ + Φ′ψ∇ψ × (λ′ζ∇ζ) · ∇θ

=
√
g−1χ′ψ − Φ′ψλ

′
ζ∇θ · (∇ζ)×∇ψ

=
√
g−1(χ′ψ − Φ′ψλ

′
ζ )

Bζ = B · ∇ζ = Φ′ψ∇ψ × (1 + λ′θ∇θ) · ∇ζ

=
√
g−1(Φ′ψ(1 + λ′θ)

Bψ = B · ∇ψ = 0
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The covariant components
Bi ≡ B · ei

are related to Bi through the metric tensor

gij = ei · ej

Bi = Bθgθi +Bζgζi

as can be verified by taking the scalar product of eq2 with ei.

Since

ei · e
j = δ

j
i

Bψ = B · eψ = (Bθeθ +Bζeζ ) · eψ = Bθgθψ +Bζgζψ

Bθ = B · eθ = Bθgθθ +Bζgζθ

Bζ = B · eζ = Bθgθζ +Bζgζζ
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Although the function λ(ψ, θ, ζ) in eq3a can be eliminated by taking θ = θ?

as retention here provides flexibility in specifying the poloidal angle θ.
The role of the poloidal angle in the moment exponent of equilibria is to
yield rapidly convergent Fourier series for the spatial coordinates x(ψ, θ, ζ).

make use of fft to compute Fourier series

x =
∑
m=0

∑
n=0

xmn(ψ)ei(mθ−nζ)

The complex coefficients xmn can be computed from the coefficients

of real Fourier series

x =
∑
m=0

∑
n=0 amn(ψ) sin(mθ − nζ)

x =
∑
m=1

∑
n=1 bmn(ψ) cos(mθ − nζ)
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Discrete Fourier Transform and Fourier Series

FFT

adopt the definition used in the Matlab

It is common to assume that we are given a periodic sequence of

numbers {fk}
N
k=1 of period N.

Then the DFT of the sequence is a sequence Fn for n = 1, · · · , N
defined by

Fn =
N∑
k=1

fke
−2πi(n−1)(k−1)/N .

the Inverse Discrete Fourier Transform (IDFT) gives for k = 1, · · · , N

fk =
N∑
n=1

Fne
2πi(n−1)(k−1)/N .
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Discrete Fourier Transform and Fourier Series

Relation to Fourier Transform

the FT of a causal signal f(t), which is effectively zero for t > T

1. For window size T and number of sampling points N define the

sample spacing Ts = T
N

2. Now define the sample points tk = kTs for k = 0, · · · , (N − 1),

(i.e., tk = k TN )

3. Then we define fk = f(tk).

4. Associated with this we define the frequency sampling points

ωn ≡ 2πn
T

where the number 2π
T is the fundamental frequency.

Now we consider the problem of approximating the FT of f at

the points ωn ≡ 2πn
T .

The exact answer is

F (ωn) =

∫ ∞
−∞

e−iωntf(t)dt, n = 0, · · · , (N − 1)

5. For f ∼ 0 for |x| > T ,

F (ωn) '
∫ T

0
e−iωntf(t)dt, n = 0, · · · , (N − 1)

6. Let us approximate this integral by a left-endpoint Riemann sum

approximation using the points tk defined above:

F (ωn) ' Ts

N−1∑
k=0

e−iωntkf(tk), n = 0, · · · , (N − 1)

7. Substituting the definitions of ωn, tk and Ts in terms of T and

N we have

F (ωn) ' T

N

N−1∑
k=0

e−2πin/Nf(tk), n = 0, · · · , (N − 1)
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Discrete Fourier Transform and Fourier Series

8. Thus we see that

F (
2πn

T
) ' T

N
Fn
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Discrete Fourier Transform and Fourier Series

Relation to Fourier Series

if f is a T periodic function defined initially on [−T/2, T/2] then

f ∼
∑∞
−∞ cne

2πin/T

cn = 1
T

∫ T/2
−T/2 f(x)e−2πinx/T dx

Now from what we have written above, for the approximation of the

FT of a function which is zero outside the interval [−T/2, T/2], we

see that

cn ∼
1

T

T

N

N/2∑
−N/2+1

fke
−2πink/N , n = −N/2 + 1, · · · , N/2

Thus by our definition of the DFT we have

cn =
1

N
Fn
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Since only truncated series are used, a proper choice for θ is necessary to
provide adequate accuracy in the approximate moment solution. In
general, this value for θ is incompatible with the requirement that
magnetic field lines are straight in (θ?, ζ) coordinates. The inclusion of λ
therefore generates a convenient resummation of the inverse equilibrium
Fourier moment expansion. In this context, λ assumes the role of a
renormalization parameter. Inserting eq2 into eq1a yields

F = Fψ∇ψ + Fββ

Fψ =
√
g(JξBθ − JθBζ) + p′

Fβ = Jβ

β =
√
g(Bζ∇θ −Bθ∇zeta)

J i ≡ J · ∇αi = µ−1
m ∇ · B×∇αi

F = −J× B +∇p

= −(Jψeψ + Jθeθ + Jζeζ )× (Bθeθ +Bζeζ ) + p′∇ψ

= −(JψBθeψ × eθ + JψBζeψ × eζ + JθBζeθ × eζ + JζBθeζ × eθ) + p′∇ψ

= −(JψBθ
√
g∇ζ − JψBζ

√
g∇θ + JθBζ

√
g∇ψ − JζBθ

√
g∇ψ) + p′∇ψ

= Jψ
√
g(Bζ∇θ −Bθ∇ζ) +

[√
g(JζBθ − JθBζ ) + p′

]
∇ψ

= Fββ + Fψ∇ψ

Jψ =
1

µ0
∇×B·∇ψ =

1

µ0
(∇×B·∇ψ−B·∇×∇ψ) =

1

µ0
∇·(B×∇ψ)
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There are only 2 independent components of F, since the component

B · F = p′ · ∇ψ = 0

is already incorporated into the representation of B in eq2.

B · ∇ψ = 0

B · F = FψB · ∇ψ + FβB · β

= Fβ(Bθeθ +Bζeζ ) ·
√
g(Bζ∇θ −Bθ∇ζ)

=
√
gFβ(BθBζeθ · ∇θ −BζBθeζ · ∇ζ)

=
√
gFβ(BθBζ −BζBθ)

= 0
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Writing J i in terms of the covariant components of B yields expressions for
the forces in terms of the flux functions, χ′,Φ′, p′ and the metric:

Fψ = µ−1
0 (Bθ ∂Bθ

∂ψ +Bζ
∂Bζ

∂ψ − B · ∇Bψ) + p′

Fβ = 1
µ0
√
g (
∂Bζ

∂θ − ∂Bθ

∂ζ )

As we have already knew

∇×D =
1
√
g

∑
k

(
∂Dj

∂ui
−
∂Di
∂uj

ek

from Ampere’s law, we obtain

µ0J = ∇× B = 1√
g

[
(
∂Bζ
∂θ

− ∂Bθ
∂ζ

eψ) + (
∂Bψ
∂ζ

−
∂Bζ
∂ψ

eθ) + (
∂Bθ
∂ψ

−
∂Bψ
∂θ

eζ )

]

Jζ = J · ∇ζ = 1
µ0
√
g
(
∂Bθ
∂ψ

−
∂Bψ
∂θ

eζ ) · ∇ζ

Jθ = J · ∇θ = 1
µ0
√
g
(
∂Bψ
∂ζ

−
∂Bζ
∂ψ

eθ) · ∇θ

Fψ = 1
µ0

(Bθ
∂Bθ
∂ψ

−Bθ
∂Bψ
∂θ

−Bζ
∂Bψ
∂ζ

+Bζ
∂Bζ
∂ψ

) + p′

Fβ ≡ Jψ = J · ∇ψ = 1
µ0
√
g
((
∂Bζ
∂θ

− ∂Bθ
∂ζ

eψ) · ∇ψ
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Here, for any scalar A, the derivative along a magnetic field line is

B · ∇A = Bθ
∂A

∂θ
+Bζ

∂A

∂ζ

Magnetic Differential Equation: B · ∇A = S

S: source term

A: unknown single-valued function to be solved for.

2 solvability conditions on S.

1.
∮ dl
BS = 0

coming from B · ∇A = B∂A
∂l

, which implies

A = A0 +

∫ l

0

dl

B
S.

2. 〈B · ∇A〉 = 〈S〉 = 0

or lim∆V→0
∫
∆V Sd

3x = 0

As usual in the theory of differential eq, its general solution consists of

2 parts, a homogeneous and a particular solution

A = Ah + Ap

where Ah
B · ∇Ah = 0

fp is obtained from Fourier’s series approximation.
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Equation of a magnetic field line

It is defined as a curve whose tangent at any point is parallel to B:

B ∝ dR( orB× dR = 0)

dR: differential vector tangent to the field line

Using contravariant components of both B(B1, B2, B3) and

dR(du1, du2, du3) the eq leads to

B1

du1
=

B2

du2
=

B3

du3
= c

c: proportionality constant

Recalling Bi = B · ∇ui,

B · ∇u1

du1
=

B · ∇u2

du2
=

B · ∇u3

du3
= c

September 5, 2012 65



Equation of a magnetic field line

How c is determined

If parametrize the filed line curve by its arc length l, the tangent

vector dR/dl is a unit vector, and

B

B
=
dR

dl
|alongB

Thus we have the constant

c =
B

dl

So the equation of a magnetic field line is

B

dl
=

B1

du1
=

B2

du2
=

B3

du3

or
B

dl
=

B · ∇u1

du1
=

B · ∇u2

du2
=

B · ∇u3

du3
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In the 2D axisymmetric case, Fβ = 0, can be integrated to yield Bζ = F (ψ).

axisymmetric along angle ζ

∂
∂ζ

= 0

eζ = Rζ

eζ = 1
Rζ

Bζ = B · eζ = (Bθeθ +Bζeζ ) · eζ = Bθgθζ +Bζgζζ = Bζgζζ

Fβ =
1

µ0
√
g

(
∂Bζ

∂θ
−
∂Bθ
∂ζ

)
=

1

µ0
√
g

∂Bζ

∂θ

=⇒
∂Bζ
∂θ

together with
∂Bζ
∂ζ

= 0, we have Bζ is a function of ψ.
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Noting that

gθζ = gψζ = 0,
∂λ

∂ζ
= 0

due to axisymmetry,

From last slide, we have
∂λ

∂ζ
= 0
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and
Bζ = Bζ/gζζ

with
gζζ = R2

R is the major radius

This can be easily verified from cylindrical coordinates
x = R cos ζ

y = R sin ζ

z = z

gζζ = eζ ·eζ =
∂x

∂ζ
·∂x
∂ζ

= (−R sin ζ, R cos ζ, 0)·(−R sin ζ, R cos ζ, 0) = R2
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eq4d becomes the inverse GS eq

Fψ =
χ′

µ0
√
g

[
∂

∂ψ

(
χ′gθθ√
g

)
− ∂

∂θ

(
χ′gθψ√

g

)]
+

FF ′

µ0R2
+ p′

Fψ = 1
µ0

(Bθ
∂Bθ
∂ψ

+Bζ
∂Bζ
∂ψ

−Bθ
∂Bψ
∂θ

−Bζ
∂Bψ
∂ζ

) + p′

= 1
µ0

(Bθ ∂
∂ψ

(Bθgθθ +Bζgζθ) +Bζ ∂
∂ψ

(Bθgθζ +Bζgζζ )−Bθ ∂
∂θ

(Bψ)−) + p′

= 1
µ0

(Bθ ∂
∂ψ

(Bθgθθ) +Bζ ∂
∂ψ

(Bζgζζ )−Bθ ∂
∂θ

(Bθgθψ)) + p′

= 1
µ0
Bθ( ∂

∂ψ
( 1√

g
(χ′ − Φ′∂λ

∂ζ
)gθθ)−

∂
∂θ

( 1√
g
(χ′ − Φ′∂λ

∂ζ
)gθψ)) + 1

µ0
Bζ ∂

∂ψ
(BζR2) + p′

= 1
µ0
√
g
(χ′ − Φ′∂λ

∂ζ
)( ∂
∂ψ

( 1√
g
χ′gθθ)−

∂
∂θ

( 1√
g
χ′gθψ)) + 1

µ0R
2 (BζR2) ∂

∂ψ
(BζR2) + p′

=
χ′

µ0
√
g
( ∂
∂ψ

(
χ′gθθ√

g
)− ∂

∂θ
(
χ′gθψ√

g
)) + 1

µ0R
2 (FF ′) + p′

where

F ≡ RBζ =
R2Φ′
√
g

(1 +
∂λ

∂θ
)
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From eq3c and 3d, note that eq5a cab be written R2Φ′
√
g (1 + ∂λ

∂θ ) = F (ψ)

which yields Φ′(ψ) = 〈
√
g

R2 〉F (ψ) and

∂λ

∂θ
=

√
g/R2

〈√g/R2〉
− 1

Here the brackets denote a normalization θ average.

From last slide, we have F ≡ RBζ = R2Φ′√
g

(1 + ∂λ
∂θ

) , Thus

Φ′(1 +
∂λ

∂θ
) =

√
g

R2
F

Averaging in θ direction∮
Φ′(1 + ∂λ

∂θ
)dθ =

∮ √g
R2Fdθ

Φ′ · 2π + Φ′λ|2π0 = F
∮ √g
R2

Φ′ = 1
2πF

∮ √g
R2 = F 〈

√
g

R2 〉

Hence

(1 +
∂λ

∂θ
) =

√
g

R2
F/Φ′ =

√
g/R2

〈√g/R2〉
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Eq5c shows that in 2D geometry, the straight magnetic field line system
for λ = 0 is one for which

√
g/R2 is constant on a magnetic surface.

only constant satisfies √
g

R2
= 〈

√
g

R2
〉
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Consider an equilibrium that is approximated by shifted, elliptical flux
surfaces fro which the cylindrical coordinates (R,Z) have the low-order
Fourier representation

R = R0(ψ) +R1(ψ) cos θ
Z = Z1(ψ) sin θ

Analysis of this configuration indicates that to leading order in the
inverse aspect ration, the condition

∂

∂θ
(R2/

√
g) = 0

in the (ψ, θ) coordinate system leads to an unphysical inward shift

∆ = R0(0)−R0(ψ) ≤ 0

which is independent of the plasma pressure.

This type of configuration is for theoretical analysis, practical system

is much more complicate.

the inverse aspect ration,

ε =
a

R
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The retention of λ allows for the surface variation of
√
g/R2 in the (ψ, θ)

coordinate system, where the low-order Fourier series representation for
(R,Z) is appropriate. It also yields the correct variation of R0(ψ) with
pressure.

...
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