
MHD Waves

investigate the small amplitude waves which propagate through a

spatially uniform MHD plasma. start by combining the ideal MHD eqs

to form a closed set of eqs:

dρ
dt

+ ρ∇ · V = 0

ρdV
dt

+ ∇p − ∇×B×B
µ0

= 0

−∂B
∂t

+∇× (V× B) = 0

d
dt

(
p
ργ

)
= 0

Next, we linearized these equations (assuming, for the sake of

simplicity, that the equilibrium flow velocity and equilibrium plasma

current are both zero) to give

∂ρ
∂t

+ ρ0∇ · V = 0

ρ0
∂V
∂t

+ ∇p − ∇×B×B0
µ0

= 0

−∂B
∂t

+∇× (V× B0) = 0

d
dt

(
p
p0
− γρ

ρ0

)
= 0

the subscript 0 denotes an equilibrium quantity. Perturbed quantities

are written without subscripts. Of course, ρ0, p0, and B0 are

constants in a spatially uniform plasma.
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MHD Waves

search for wave-like solutions in which perturbed quantities vary like

ei(k·r−ωt)

−ωρ + ρ0k · V = 0

−ωρ0V + kp− (k×B)×B0
µ0

= 0

ωB + k× (V× B0) = 0

−ω(
p
p0
− γρ

ρ0
) = 0

Assuming that ω 6= 0, the above equations yield

ρ = ρ0
k · V

ω

ωp = γ
p0
ρ0

(ωρ) = γp0
ωρ

ρ0
= γp0(k · V)

B = −
k× (V× B0)

ω
=

(k · V)B0 − (k · B0)V

ω

Substitution of these expressions into the linearized equation of

motion gives
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−ωρ0V = −kp− B0×(k×B)
µ0

= −γp0
k·V
ω k +

(B0·k)B−(B0·B)k
µ0

= −γp0
k·V
ω k +

(k·B0)
µ0

(k·V)B0−(k·B0)V
ω − k

µ0
B0 ·

(k·V)B0−(k·B0)V
ω

−ω2V = −
γp0
ρ0

(k·V)k−
(k · B0)2

µ0ρ0
V+

(k · B0)

µ0ρ0
(k·V)B0−

(B0 · B0)

µ0ρ0
(k·V)k+

(k · B0)

µ0ρ0
(B0·V)k

[
ω2 −

(k · B0)2

µ0ρ0

]
V =

[(
γp0
ρ0

+
B2

0
µ0ρ0

)
k−

(k · B0)

µ0ρ0
B0

]
(k·V)−

(k · B0)(V · B0)

µ0ρ0
k
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MHD Waves

in (x, y, z) coordinate system, assume

B0 = B0z

k = kxx + kzz

θ be the angle subtended between B0 and k

So

kx = k sin θ,

kz = k cos θ

Define

Alfven speed VA =

√
B2

0
µ0ρ0

sound speed VS =
√γp0

ρ0

The equation of motion can be rewritten as[
ω2 − k2V 2

A cos θ2
]
V =

[
(V 2

S + V 2
A)k− kzV 2

Az
]
(kxVx+kzVz)−kzVzV 2

Ak
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MHD Waves

its x component is[
ω2 − k2V 2

A cos2 θ
]
Vx

= (V 2
S + V 2

A)kx(kxVx + kzVz)− kzVzV 2
Akx

= (V 2
S + V 2

A)(k2
xVx + kxkzVz)− kxkzV 2

AVz

= k2V 2
S sin2 θVx + k2V 2

S sin θ cos θVz + k2V 2
A sin2 θVx

its y component is [
ω2 − k2V 2

A cos2 θ
]
Vy = 0

its z component is[
ω2 − k2V 2

A cos2 θ
]
Vz

= (V 2
S + V 2

A)kz(kxVx + kzVz)− kzV 2
A(kxVx + kzVz)− kzVzV 2

Akz

= (V 2
S + V 2

A)(kxkzVx + k2
zVz)− V 2

A(kxkzVx + k2
zVz)− kzVzV 2

Akz

= kxkzV 2
SVx + kxkzV 2

AVx + k2
zV 2

SVz + k2
zV 2

AVz − kxkzV 2
AVx − k2

zV 2
AVz − k2

zV 2
AVz

= k2V 2
S sin θ cos θVx + k2V 2

S cos θ2Vz − k2V 2
A cos2 θVz − k2V 2

A cos2 θVz
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Thus the equation of motion reduces to the eigenvalue problem
ω2 − k2V 2

A − k2V 2
S sin2 θ 0 −k2V 2

S sin θ cos θ

0 ω2 − k2V 2
A cos2 θ 0

−k2V 2
S sin θ cos θ 0 ω2 − k2V 2

S cos2 θ


The solubility condition is that the determinant of the square matrix is

zero.

This yields the dispersion relation

(ω2 − k2V 2
A cos2 θ)

[
ω4 − ω2k2(V 2

S + V 2
A) + k2V 2

AV 2
S cos2 θ

]
= 0

There are three independent roots of the above dispersion relation

corresponding to the three different types of wave that can propagate

through an MHD plasma.
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The first, and most obvious, root is

ω = kVA cos θ

which has the associated eigenvector (0, Vy, 0)

This root is characterized by both k · V = 0 and v · B0 = 0.

It immediately follows that there is zero perturbation of the plasma

density or pressure associated with this root

In fact, this root can easily be identified as the shear-Alfven wave,

which only involves plasma motion perpendicular to the magnetic field.
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The remaining two roots of the dispersion relation (721) are written

ω = kV +

and

ω = kV−

V± =

{
1

2

[
V 2
A + V 2

S ±
√

(V 2
A + V 2

S )2 − 4V 2
AV 2

S cos2 θ

]}1/2

Note that V+ ≥ V−.

The first root V+ : termed as the fast magnetosonic wave, or fast

wave

the second root V− : called the slow magnetosonic wave, or slow wave

The eigenvectors for these waves are (Vx, 0, Vy) and thus

k · V 6= 0, V · B0 6= 0

these waves are associated with non-zero perturbations in the plasma

density and pressure, and also involve plasma motion parallel, as well

as perpendicular, to the magnetic field.
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In order to better understand the nature of the fast and slow waves,

let us consider the cold-plasma limit,

which is obtained by letting the sound speed VS tend to zero.

In this limit, the slow wave ceases to exist (in fact, its phase velocity

tends to zero)

whereas the dispersion relation for the fast wave reduces to

ω = kVA

This can be identified as the dispersion relation for the

compressional-Alfven wave

Thus, we can identify the fast wave as the compressional-Alfven wave

modified by a non-zero plasma pressure.
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In the limit VA � VS , which is appropriate to low-β plasmas

β =
2µ0p

B2
=

p

ρ

2µ0ρ

B2
∼ (

VS
VA

)2 � 1

the dispersion relation for the slow wave reduces to

ω = kVS cos θ

This is actually the dispersion relation of a sound wave propagating

along magnetic field-lines. Thus, in low-β plasmas the slow wave is a

sound wave modified by the presence of the magnetic field.

√
(V 2

A + V 2
S )2 − 4V 2

AV 2
S cos2 θ = (V 2

A + V 2
S )

√√√√(1−
4V 2

AV 2
S cos2 θ

(V 2
A+V 2

S )2

∼ (V 2
A + V 2

S )(1− 1
2

4V 2
AV 2

S cos2 θ

(V 2
A+V 2

S )2
)

= (V 2
A + V 2

S )−
2V 2

AV 2
S cos2 θ

V 2
A+V 2

S

= (V 2
A + V 2

S )−
2V 2

S cos2 θ

1+
V 2
S

V 2
S

∼ (V 2
A + V 2

S )− 2V 2
S cos2 θ
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The distinction between the fast and slow waves can be further

understood by comparing the signs of the wave induced fluctuations in

the plasma and magnetic pressures:

B0 · B
µ0

=
(k · V)B2

0 − (k · B0)(B0 · V)

µ0ω

From the z component of linearized equation of motion

ωρ0Vz = kp cos θ

Combining and thus obtaining

B0·B
µ0

=
B2

0
µ0

p
γp0

−
B2

0
µ0ρ0

k2

ω2 cos2 θp

= (
B2

0
µ0ρ0

ρ0
γp0

−
B2

0
µ0ρ0

k2

ω2 cos2 θ)p

= (
V 2
A

V 2
S

− V 2
A

k2

ω2 cos2 θ)p

=
V 2
A

V 2
S

(1−
k2V 2

S cos2 θ

ω2 )p

Hence

p and
B0·B
µ0

have the same sign if V > VS cos θ

and the opposite sign if V < VS cos θ

V = ω
k

is the phase velocity.
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It is straightforward to show that V+ > VS cos θ and V− < VS cos θ

ω2 =
1

2

[
k2(V 2

A + V 2
S )±

√
k4(V 2

A + V 2
S )2 − 4k4V 2

AV 2
S cos2 θ

]

V 2 ≡ ω2

k2
=

1

2
(V 2

A + V 2
S )± 1

2

√
(V 2

A + V 2
S )2 − 4V 2

AV 2
S cos2 θ

V 2
+ = 1

2(V 2
A + V 2

S ) + 1
2

√
(V 2

A + V 2
S )2 − 4V 2

AV 2
S cos2 θ

≥ 1
2(V 2

A + V 2
S ) + 1

2

√
(V 2

A + V 2
S )2 − 4V 2

AV 2
S

= 1
2(V 2

A + V 2
S ) + 1

2(V 2
A − V 2

S )

= V 2
A

or

= 1
2(V 2

A + V 2
S ) + 1

2(V 2
S − V 2

A)

= V 2
S

for 0 ≤ θ ≤ π, cos θ > 0, so

V+ > VS cos θ
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Similarly

V 2
− = 1

2(V 2
A + V 2

S )− 1
2

√
(V 2

A + V 2
S )2 − 4V 2

AV 2
S cos2 θ

≤ 1
2(V 2

A + V 2
S )− 1

2

√
(V 2

A + V 2
S )2 − 4V 2

AV 2
S

= 1
2(V 2

A + V 2
S )− 1

2(V 2
A − V 2

S )

= V 2
A

or

= 1
2(V 2

A + V 2
S )− 1

2(V 2
S − V 2

A)

= V 2
S

and

V− < VS cos θ
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Thus, we conclude that in the fast magnetosonic wave the pressure

and magnetic energy fluctuations reinforce one another,

whereas the fluctuations oppose one another in the slow magnetosonic

wave.

The slow wave always has a smaller phase velocity than the

shear-Alfven wave

which, in turn, always has a smaller phase velocity than the fast wave.

slow wave (‖ B0)
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Alfven wave (‖ B0)

fast wave (⊥ B0)
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The Second Variation

The linearized ideal MHD eqs are found by looking for solution

which deviate only infinitesimally from the equilibrium,

and by keeping terms only to 1st order in this small deviation.

We take as equilibrium quantities

J0(x) the current density

B0(x) the magnetic field

p0(x) the pressure

V0(x) the fluid velocity

They satisfy

J0 × B0 = ∇p0

∇× B0 = µ0J0

∇ · B0 = 0

V0 = 0
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The Second Variation

The perturbed variables B1, J1, p1, V1 are added into B, J, p, V

B(x, t) = B0(x) + B1(x, t)

J(x, t) = J0(x) + J1(x, t)

p(x, t) = p0(x) + p1(x, t)

V(x, t) = V1(x, t)

Assume that they are much smaller than their equilibrium parts.

From here on, we drop the subscript ”0” from the equilibrium

quantities.
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The Second Variation

Introducing a displacement field ξ(x, t),

which is just the displacement of a fluid element originally located at

position x.

Taking as initial conditions that the perturbed quantities vanish at

t = 0

ξ(x, 0) = B1(x, 0) = p1(x, 0) = 0

the linearized ideal MHD eqs take the form

p1 = −ξ · ∇p − γp∇ · ξ

B1 = ∇ × (ξ × B)

J1 = 1
µ0
∇× B1

The linearized momentum eq then becomes

ρ
∂2

∂t2
ξ = J × B1 + J1 × B − ∇p ≡ F(ξ)

F(ξ) =
1

µ0
[∇ × B × B1 + ∇ × B1 × B] + ∇(ξ · ∇p + γp∇ · ξ)

It is known as the linear eq of motion for an ideal MHD plasma.
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The Second Variation

We look for separable eigenmode solution. If we assume time

dependence

ξ(x, t) = ξ(x)e−iωt

Then it takes the time independent form

−ρ0ω2ξ(x) = F(ξ)

This is an eigenvalue eq for the frequency ω2.

A variational statement is possible and offer many advantages over a

direct solution since F is self-adjoint∫
d3xη · F(ξ) =

∫
d3xξ · F(η)

for any two vector fields η(x) and ξ(x).

It follows immediately that
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The Second Variation

1. The eigenvalues of F are real.

Subtracting the inner product of ξ?(x), the complex conjugate of

ξ(x), with F(ξ) from the inner product of ξ(x) with F(ξ?),

(ω2 − ω?2)ρ0

∫
d3x|ξ|2 = −

∫
d3x[ξ? · F(ξ)− ξ · F(ξ?)] = 0

Thus

ω2 = ω?2

or, in words, ω2 is purely real.
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The Second Variation

2. The eigenvectors of F are orthogonal.

Suppose ξn is the eigenvectors of F with eigenvalues ωn and

ξm is the eigenvectors of F with eigenvalues ωm

We subtract ∫
d3xξm ·

[
−ρ0ω2

nξn = F(ξn)
]

from ∫
d3xξn ·

[
−ρ0ω2

mξm = F(ξm)
]

to obtain

ρ0(ω2
n−ω2

m)

∫
d3xξ?

m·ξn =

∫
d3x(ξ?

m·F(ξn)−ξn·F(ξ?
m) = 0

This implies that the inner product of ξn and ξm is zero,

or that the eigenvectors are orthogonal if n 6= m.
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The Second Variation

3. ξn is a complete set eigenfunctions of F.

Any square integrable displacement field ξ can be represented as

linear combination of the ξn

ξ =
∞∑

n=0

anξn
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4. The spectrum of F
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The Second Variation

Let us define the quantity δw which is the change in potential energy

due to a perturbation

δw(ξ?, ξ) = −1

2

∫
d3xξ? · F (ξ)

quantify K such that ω2K is the kinetic energy

K(ξ?, ξ) =
1

2

∫
d3xρ|ξ|2

Consider now the functional Ω2, known as the Rayleigh quotient

Ω2(ξ?, ξ) =
δw(ξ?, ξ)

K(ξ?, ξ)

Any allowable function ξ (and ξ?) for which Ω2 becomes stationary is

an eigenfunction of the ideal MHD normal mode eqs with eigenvalue

ω2 = Ω2(ξ?, ξ)
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To prove this, consider the variation

δ(Ω2) =
δ[δw]
K − δwδ[K]

K2

= 1
K

[
δ[δw]− Ω2δ[K]

]

= − 1
2K

∫
d3x

{
δξ? · [F (ξ) + ρΩ2ξ] + δξ · [F (ξ?) + ρΩ2ξ?]

}
= 0

Since δξ? and δξ are arbitrary variations, for the variation of Ω2 to

vanish, we must have

F(ξ) = −ρω2ξ

The energy principle states that there is an instability if, and only if,

there exists a vector field η(x) that satisfies the boundary condition

and such that

δw(η?, η) < 0

One can thus investigate the stability of a system by looking at the

sign of δw for various trial functions η without ever solving for the

eigenfunctions ξ(x).

September 16, 2012 26



The Second Variation

Since K is positive definite, an actual eigenvalue ω2 must exist such

that

ω2 ≤ δw(η?, η)

K(η?, η)

so that the actual system will always be more unstable than that

found with trial functions.

Suppose we have a truncated set of basis functions,

ξn, n = 0, 1, 2, · · · , N

We can form trial functions ξ by taking linear combinations of these

ξ =
∑

anξn

We can then evaluate δw as a quadratic form

δw =
N∑

m=0

N∑
n=0

δw(ξm, ξn)aman

Minimize it, subject to any convenient normalization, wrt the

amplitude an, leads to a linear algebraic eq for the set of an.
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