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Chapter 5

Plasma Descriptions I:
Kinetic, Two-Fluid

Descriptions of plasmas are obtained from extensions of the kinetic theory of
gases and the hydrodynamics of neutral fluids (see Sections A.4 and A.6). They
are much more complex than descriptions of charge-neutral fluids because of
the complicating effects of electric and magnetic fields on the motion of charged
particles in the plasma, and because the electric and magnetic fields in the
plasma must be calculated self-consistently with the plasma responses to them.
Additionally, magnetized plasmas respond very anisotropically to perturbations
— because charged particles in them flow almost freely along magnetic field
lines, gyrate about the magnetic field, and drift slowly perpendicular to the
magnetic field.

The electric and magnetic fields in a plasma are governed by the Maxwell
equations (see Section A.2). Most calculations in plasma physics assume that
the constituent charged particles are moving in a vacuum; thus, the micro-
scopie, “free space” Maxwell equations given in (??) are appropriate. For some
applications the electric and magnetic susceptibilities (and hence dielectric and
magnetization responses) of plasmas are derived (see for example Sections 1.3,
1.4 and 1.6); then, the macroscopic Maxwell equations are used. Plasma effects
enter the Maxwell equations through the charge density and current “sources”
produced by the response of a plasma to electric and magnetic fields:

Pq = Z Ngqs, J = Z nsqsVs, plasma charge, current densities. (5.1)
S S

Here, the subscript s indicates the charged particle species (s = e, i for electrons,
ions), ng is the density (#/m?) of species s, ¢s the charge (Coulombs) on the
species s particles, and V4 the species flow velocity (m/s). For situations where
the currents in the plasma are small (e.g., for low plasma pressure) and the
magnetic field, if present, is static, an electrostatic model (E = —V¢, V- E =
pgl€0 => —V2¢ = p,/eo) is often appropriate; then, only the charge density

DRAFT 11:54
January 21, 2003 ©J.D Callen, Fundamentals of Plasma Physics



CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 2

pq is needed. The role of a plasma description is to provide a procedure for
calculating the charge density p, and current density J for given electric and
magnetic fields E, B.

Thermodynamic or statistical mehanics descriptions (see Sections A.3 and
A.5) of plasmas are possible for some applications where plasmas are close to
a Coulomb collisional equilibrium. However, in general such descriptions are
not possible for plasmas — because plasmas are usually far from a thermody-
namic or statistical mechanics equilibrium, and because we are often interested
in short-time-scale plasma responses before Coulomb collisional relaxation pro-
cesses become operative (on the 1/v time scale for fluid properties). Also, since
the lowest order velocity distribution of particles is not necessarily an equi-
librium Maxwellian distribution, we frequently need a kinetic decsription to
determine the velocity as well as the spatial distribution of charged particles in
a plasma.

The pedagogical approach we employ in this Chapter begins from a rigor-
ous microscopic description based on the sum of the motions of all the charged
particles in a plasma and then takes successive averages to obtain kinetic, fluid
moment and (in the next chapter) magnetohydrodynamic (MHD) descriptions
of plasmas. The first section, 5.1, averages the microscopic equation to develop
a plasma kinetic equation. This fundamental plasma equation and its properties
are explored in Section 5.2. [While, as indicated in (5.1), only the densities and
flows are needed for the charge and current sources in the Maxwell equations,
often we need to solve the appropriate kinetic equation and then take velocity-
space averages of it to obtain the needed density and flow velocity of a particle
species.] Then, we take averages over velocity space and use various approxi-
mations to develop macroscopic, fluid moment descriptions for each species of
charged particles within a plasma (Sections 5.3%, 5.4*). The properties of a
two-fluid (electrons, ions) description of a magnetized plasma [e.g., adiabatic,
fluid (inertial) responses, and electrical resistivity and diffusion] are developed
in the next section, 5.5. Then in Section 5.6*, we discuss the flow responses in
a magnetized two-fluid plasma — parallel, cross (ExB and diamagnetic) and
perpendicular (transport) to the magnetic field. Finally, Section 5.7 discusses
the relevant time and length scales on which the kinetic and two-fluid models
of plasmas are applicable, and hence useful for describing various unmagnetized
plasma phenomena. This chapter thus presents the procedures and approxima-
tions used to progress from a rigorous (but extremely complicated) microscopic
plasma description to succesively more approximate (but progressively easier to
use) kinetic, two-fluid and MHD macroscopic (in the next chapter) descriptions,
and discusses the key properties of each of these types of plasma models.

5.1 Plasma Kinetics

The word kinetic means “of or relating to motion.” Thus, a kinetic description
includes the effects of motion of charged particles in a plasma. We will begin
from an exact (albeit enormously complicated), microscopic kinetic description
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that is based on and encompasses the motions of all the individual charged par-
ticles in the plasma. Then, since we are usually interested in average rather than
individual particle properties in plasmas, we will take an appropriate average
to obtain a general plasma kinetic equation. Here, we only indicate an out-
line of the derivation of the plasma kinetic equation and some of its important
properties; more complete, formal derivations and discussions are presented in
Chapter 13.

The microsopic description of a plasma will be developed by adding up the
behavior and effects of all the individual particles in a plasma. We can consider
charged particles in a plasma to be point particles — because quantum mechan-
ical effects are mostly negligible in plasmas. Hence, the spatial distribution of
a single particle moving along a trajectory x(¢) can be represented by the delta
function 0[x — x(t)] = 0[z — z(t)] §[y — y(¢¥)] 6[z — 2(t)] — see B.2 for a discus-
sion of the “spikey” (Dirac) delta functions and their properties. Similarly, the
particle’s velocity space distribution while moving along the trajectory v(t) is
0[v—v(t)]. Here, x, v are Eulerian (fixed) coordinates of a six-dimensional phase
space (z,Y, 2, Uz, Uy, v;), whereas x(t), v(t) are the Lagrangian coordinates that
move with the particle.

Adding up the products of these spatial and velocity-space delta function
distributions for each of the i = 1 to IV (typically ~ 10'¢-1024) charged particles
of a given species in a plasma yields the “spikey” microscopic (superscript m)
distribution for that species of particles in a plasma:

N
fm(x,v,t) = Z d[x — x;(t)] 6[v — v;(t)], microscopic distribution function.
i=1
(5.2)
The units of a distribution function are the reciprocal of the volume in the six-
dimensional phase space x,v or # /(m%73) — recall that the units of a delta
function are one over the units of its argument (see B.2). Thus, d®rd% f is
the number of particles in the six-dimensional phase space differential volume
between x, v and x+dx, v+dv. The distribution function in (5.2) is normalized
such that its integral over velocity space yields the particle density:

N

n™(x,t) = /dgv fm(x,v,t) = Z S[x —x;(t)], particle density (#,/m3).

i=1
(5.3)
Like the distribution f™*, this microscopic density distribution is very singular
or spikey — it is infinite at the instantaneous particle positions x = x;(¢) and
zero elsewhere. Integrating the density over the volume V of the plasma yields
the total number of this species of particles in the plasma: [i, d*zn(x,t) = N.
Particle trajectories x;(t),v;(t) for each of the particles are obtained from
their equations of motion in the microscopic electric and magnetic fields E™, B™:

mdvz—/dt:q[Em(xi,t)+vime(xi,t)], dXi/dt:V“ Z:LQ,,N
(5.4)
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(The portion of the E™, B™ fields produced by the i'" particle is of course omit-
ted from the force on the i'" particle.) In Eqs. (5.2)-(5.4), we have suppressed
the species index s (s = e, i for electrons, ions) on the distribution function f™,
the particle mass m and the particle charge g; it will be reinserted when needed,
particularly when summing over species.

The microscopic electric and magnetic fields E™, B™ are obtained from the
free space Maxwell equations:

V.-E™ =p"/cy, VXE™=—9B™ /L,

5.5

V-.-B" =0, VXB™ = 11o(J™ + ¢g0E™/0t). (5:5)
The required microscopic charge and current sources are obtained by integrating
the distribution function over velocity space and summing over species:

Py (x,t) qu/ v fIN(x, v, t) = ZqSZ(sx x;(t
t)EZQS/ meXVt ZQSZVZ X_Xi(t)]'

Equations (5.2)—(5.6) together with initial conditions for all the N particles
provide a complete and exact microscopic description of a plasma. That is,
they describe the exact motion of all the charged particles in a plasma, their
consequent charge and current densities, the electric and magnetic fields they
generate, and the effects of these microscopic fields on the particle motion — all
of which must be calculated simultaneously and self-consistently. In principle,
one can just integrate the N particle equations of motion (5.4) over time and
obtain a complete description of the evolving plasma. However, since typical
plasmas have 10'6-102* particles, this procedure involves far too many equa-
tions to ever be carried out in practice! — see Problem 5.1. Also, since this
description yields the detailed motion of all the particles in the plasma, it yields
far more detailed information than we need for practical purposes (or could
cope with). Thus, we need to develop an averaging scheme to reduce this mi-
croscopic description to a tractable set of equations whose solutions we can use
to obtain physically measurable, average properties (e.g., density, temperature)
of a plasma.

To develop an averaging procedure, it would be convenient to have a single
evolution equation for the entire microscopic distribution f™ rather than having

(5.6)

1However, “particle-pushing” computer codes carry out this procedure for up to millions
of scaled “macro” particles. The challenge for such codes is to have enough particles in each
relevant phase space coordinate so that the noise level in the simulation is small enough
to not mask the essential physics of the process being studied. High fidelity simulations
are often possible for reduced dimensionality applications. Some relevant references for this
fundamental computational approach are: J.M. Dawson, Rev. Mod. Phys. 55, 403 (1983);
C.K. Birdsall and A.B. Langdon, Plasma Physics Via Computer Simulation (McGraw-Hill,
New York, 1985); R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles
(IOP Publishing, Bristol, 1988).
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to deal with a very large number (V) of particle equations of motion. Such an
equation can be obtained by calculating the total time derivative of (5.2):

i
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Here in successive lines we have used three-dimensional forms of the properties
of delta functions given in (??), and (??): xd(x—x;) = x; §(x—x;) and v (v —
vi) = v;0(v — v;), and (9/0t) §[x — x;(t)] = —dx;/dt - (0/0x) §[x — x;(t)] and
(0/0t) 0[v—v;(t)] = —dv;/dt - (0/0v) §[v—v;(t)]. Substituting the equations of
motion given in (5.4) into the second line of (5.7) and using the delta functions
to change the functional dependences of the partial derivatives from x;,v; to
x,v, we find that the result df™/dt = 0 can be written in the equivalent forms

g _ o dx o dv op
a0t dt 9x dt 0v
B 8fm afm 2 . . afm_
= 5 +v . —|—m[E (x,t) + vxB™(x,1)] v =0. (5.8)

This is called the Klimontovich equation.? Mathematically, it incorpo-

rates all N of the particle equations of motion into one equation because the
mathematical characteristics of this first order partial differential equation in
the seven independent, continuous variables x,v,t are dx/dt = v, dv/dt =
(g/m)[E™(x,t) + vxB™(x,t)], which reduce to (5.4) at the particle positions:
X — x;, v — v; fori =1,2,...,N. That is, the first order partial differen-
tial equation (5.8) advances positions in the six-dimensional phase space x,v
along trajectories (mathematical characteristics) governed by the single particle
equations of motion, independent of whether there is a particle at the particular
phase point x, v; if say the i*! particle is at this point (i.e., x = x;, v = v;),
then the trajectory (mathematical characteristic) is that of the i particle.

Equations (5.2), (5.5), (5.6) and (5.8) provide a complete, exact description
of our microscopic plasma system that is entirely equivalent to the one given
by (5.2)—(5.6); this Klimintovich form of the equations is what we will average
below to obtain our kinetic plasma description. These and other properties of
the Klimontovich equation are discussed in greater detail in Chapter 13.

2Yu. L. Klimontovich, The Statistical Theory of Non-equilibrium Processes in a Plasma
(M.I.T. Press, Cambridge, MA, 1967); T.H. Dupree, Phys. Fluids 6, 1714 (1963).
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The usual formal procedure for averaging a microscopic equation is to take
its ensemble average.? We will use a simpler, more physical procedure. We begin
by defining the number of particles Ngp in a small box in the six-dimensional
(6D) phase space of spatial volume AV = Az Ay Az and velocity-space volume
AV, = Av, Avy Av,: Ngp = [, d’r fAVU d* f™. We need to consider box
sizes that are large compared to the mean spacing of particles in the plasma [i.e.,
Az >>n~1/3 in physical space and Av, >> vr/(n\})'/3 in velocity space] so
there are many particles in the box and hence the statistical fluctuations in the
number of particles in the box will be small (§Ngp/Nep ~ 1/v/Ngp << 1).
However, it should not be so large that macroscopic properties of the plasma
(e.g., the average density) vary significantly within the box. For plasma applica-
tions the box size should generally be smaller than, or of order the Debye length
Ap for which Ngp ~ (nA%)? >>>> 1 — so collective plasma responses on the
Debye length scale can be included in the analysis. Thus, the box size should be
large compared to the average interparticle spacing but small compared to the
Debye length, a criterion which will be indicated in its one-dimensional spatial
form by n='/3 < Az < Ap. Since nA}, >> 1 is required for the plasma state, a
large range of Axz’s fit within this inequality range.

The average distribution function (f™) will be defined as the number of
particles in such a small six-dimensional phase space box divided by the volume
of the box:

lim Nep lim Jav @ [ay, o f"
n=18<Az<dp AVAV,  n-18<az<rn [py & [y d 7

average distribution function. (5.9)

(f™(x,v,1)) =

From this form it is clear that the units of the average distribution function are
the number of particles per unit volume in the six-dimensional phase space, i.e.,
#/(m®s73). In the next section we will identify the average distribution (f™)
as the fundamental plasma distribution function f.

The deviation of the complete microscopic distribution f™ from its average,
which by definition must have zero average, will be written as § f™:

of = fm={(f™), (0f™) =0, discrete particle distribution function.
(5.10)
The average distribution function (f™) represnts the smoothed properties of the
plasma species for Az 2 Ap; the microscopic distribution §f™ represents the
“discrete particle” effects of individual charged particles for n=1/% < Az < Ap.
This averaging procedure is illustrated graphically for a one-dimensional
system in Fig. 5.1. As indicated, the microscopic distribution f™ is spikey
— because it represents the point particles by delta functions. The average
distribution function (f™) indicates the average number of particles over length

3In an ensemble average one obtains “expectation values” by averaging over an infinite
number of similar plasmas (“realizations”) that have the same number of particles and macro-
scopic parameters (e.g., density n, temperature T') but whose particle positions vary randomly
(in the six-dimensional phase space) from one realization to the next.
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Figure 5.1: One-dimensional illustration of the microscopic distribution function
f™, its average (f™) and its particle discreteness component 6 ™.

scales that are large compared to the mean interparticle spacing. Finally, the
discrete particle distribution function § f™ is spikey as well, but has a baseline
of —(f™(z)), so that its average vanishes.

In addition to splitting the distribution function into its smoothed and dis-
crete particle contributions, we need to split the electric and magnetic fields,
and charge and current densities into their smoothed and discrete particle parts
components:

E™ = (E™)+J/E™, B™ = (B™)+iB™,

Pyt = Apg) +opy, I o= (M) +0I™.
Substituting these forms into the Klimontovich equation (5.8) and averaging
the resultant equation using the averaging definition in (5.9), we obtain our
fundamental plasma kinetic equation:

AT 4o O @y vy 0
_% <[5Em +vxoB™] - agfim> . (5.12)

The terms on the left describe the evolution of the smoothed, average distribu-
tion function in response to the smoothed, average electric and magnetic fields
in the plasma. The term on the right represents the two-particle correlations
between discrete charged particles within about a Debye length of each other. In
fact, as can be anticipated from physical considerations and as will be shown in
detail in Chapter 13, the term on the right represents the “small” Coulomb col-
lision effects on the average distribution function (f™), whose basic effects were
calculated in Chapter 2. Similarly averaging the microscopic Maxwell equa-
tions (5.5) and charge and current density sources in (5.6), we obtain smoothed,
average equations that have no extra correlation terms like the right side of
(5.12).

5.2 Plasma Kinetic Equations

We now identify the smoothed, average [defined in (5.9)] of the microscopic
distribution function (f™) as the fundamental distribution function f(x,v,t)
for a species of charged particles in a plasma. Similarly, the smoothed, average
of the microscopic electric and magnetic fields, and charge and current densities
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will be written in their usual unadorned forms: (E™) — E, (B™) — B, (p;") —
pq, and (J™) — J. Also, we write the right side of (5.12) as C(f) — a Coulomb
collision operator on the average distribution function f which will be derived
and discussed in Chapter 11. With these specifications, (5.12) can be written
as

- R A s N N ()

dt 0t 0x
PLASMA KINETIC EQUATION. (5.13)

This is the fundamental plasma kinetic equation* we will use thoughout the
remainder of this book to provide a kinetic description of a plasma. To complete
the kinetic description of a plasma, we also need the average Maxwell equations,
and charge and current densities:

Pq 9B

OE
‘E=— E=—— -B = B = J — . .14
v e V x 5 v 0, Vx m( +mm> (5.14)

qu/dvfs X, V,t), qu/dvvfs x,v,t). (5.15)

Equations (5.13)—(5.15) are the fundamental set of equations that provide a
complete kinetic description of a plasma. Note that all of the quantities in
them are smoothed, average quantities that have been averaged according to
the prescription in (5.9). The particle discreteness effects (correlations of parti-
cles due to their Coulomb interactions within a Debye sphere) in a plasma are
manifested in the Coulomb collsion operator on the right of the plasma kinetic
equation (5.13). In the averaging procedure we implicitly assume that the par-
ticle discreteness effects do not extend to distances beyond the Debye length
Ap. Chapter 13 discusses two cases (two-dimensional magnetized plasmas and
convectively unstable plasmas) where this assumption breaks down. Thus, while
we will hereafter use the average plasma kinetic equation (5.13) as our funda-
mental kinetic equation, we should keep in mind that there can be cases where
the particle discreteness effects in a plasma are not completely represented by
the Coulomb collision operator.

For low pressure plasmas where the plasma currents are negligible and the
magnetic field (if present) is constant in time, we can use an electrostatic ap-
proximation for the electric field (E = —V¢). Then, (5.13)—(5.15) reduce to

of of | af

8t+ Ix [V¢+ xBJ - 3y

4Many plasma physics books and articles refer to this equation as the Boltzmann equa-
tion, thereby implicity indicating that the appropriate collision operator is the Boltzmann
collision operator in (??). However, the Coulomb collision operator is a special case (small
momentum transfer limit — see Chapter 11) of the Boltzmann collision operator Cp, and
importantly involves the cumulative effects (the In A factor) of multiple small-angle, elastic
Coulomb collsions within a Debye sphere that lead to diffusion in velocity-space. Also, the
Boltzmann equation usually does not include the electric and magnetic field effects on the
charged particle trajectories during collisions or on the evolution of the distribution function.
Thus, this author thinks it is not appropriate to call this the Boltzmann equation.

=C(f), (5.16)
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—V%p = —q qu/ vf(x,v,t), (5.17)

which provides a complete electrostatic, kinetic description of a plasma.

Some alternate forms of the general plasma kinetic equation (5.13) are also
useful. First, we derive a “conservative” form of it. Since x and v are inde-
pendent Eulerian phase space coordinates, using the vector identity (?7) we

find o o7 of
ax V=Y a—+f< xv)v‘a—x~
Similarly, for the velocity derivative we have

9 q q of
2 . 4g Bl f= L[E Bl —_
ov m[ FvxBlf m[ +vxB ov’
since 9/0v - [E + vxB] = 0 because E,B are both independent of v, and

0/0v - vxB = 0 using vector identities (??) and (??). Using these two results
we can write the plasma kinetic equation as

of | 0 (4
= 8_'[Vf]+ﬂ' E(E+va)f} = C(f),

conservative form of plasma kinetic equation(5.18)

which is similar to the corresponding neutral gas kinetic equation (?7?). Like for
the kinetic theory of gases, we can put the left side of the plasma kinetic equation
in a conservative form because (in the absence of collisions) motion (of particles
or along the characteristics) is incompressible in the six-dimensional phase space
x,v: 0/0x - (dx/dt)+0/0v - (dv/dt) = 0/0x - v +0/0v - (qg/m)[E+vxXB] =0
— see (77).

In a magnetized plasma with small gyroradii compared to perpendicular
gradient scale lengths (oV | << 1) and slow processes compared to the gyrofre-
quency (0/0t << w.), it is convenient to change the independent phase space
variables from x, v phase space to the guiding center coordinates x4, €4, pt. (The
third velocity-space variable would be the gyromotion angle ¢, but that is av-
eraged over to obtain the guiding center motion equations — see Section 4.4.)
Recalling the role of the particle equations of motion (5.4) in obtaining the
Klimintovich equation, we see that in terms of the guiding center coordinates
the plasma kinetic equation becomes Of /0t + dx,/dt - V f + (dp/dt) Of /O +
(deg/dt)0f /0y = C(f). The gyroaverage of the time derivative of the mag-
netic moment and Jf/0u are both small in the small gyroradius expansion;
hence their product can be neglected in this otherwise first order (in a small
gyroradius expansion) plasma kinetic equation. The time derivative of the en-
ergy can be calculated to lowest order (neglecting the drift velocity vp) using
the guiding center equation (??), writing the electric field in its general form
E=-V®-0A/0t and d/dt = 0/0t + dxy/dt-0/0x ~ /0t + vV

(5.19)

Tar THa = e TR T

dzy _ d (Mo, L0 4B 0% 0B o 0A
dt — dt\ 2 T
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Thus, after averaging the plasma kinetic equation over the gyromotion angle ¢,
the plasma kinetic equation for the gyro-averaged, guiding-center distribution
function f, can be written in terms of the guiding center coordinates (to lowest
order — neglecting vp) as

of N de, Of,
a—tg + b-Vfy+vpi-Vf,+ d—tga—ez = <C(f.q)></>v fg = f(xg’€97M7 t),

drift-kinetic equation, (5.20)

in which the collision operator is averaged over gyrophase [see discussion before
(??7)] and the spatial gradient is taken at constant g4, i1, ¢, i.e., V.= 0/0x |, p.¢-
This lowest order drift-kinetic equation is sufficient for most applications. How-
ever, like the guiding center orbits it is based on, it is incorrect at second order
in the small gyroradius expansion [for example, it cannot be put in the conserva-
tive form of (5.18) or (??)]. More general and accurate “gyrokinetic” equations
that include finite gyroradius effects (oV ~ 1) have also been derived; they
are used when more precise and complete equations are needed.

For many plasma processes we will be interested in short time scales during
which Coulomb collision effects are negligible. For these situations the plasma
kinetic equation becomes

df _of of | a of
dt 0t Tox m[E XB]'GV_O’
Vlasov equation. (5.21)

This equation, which is also called the collisionless plasma kinetic equation,
was originally derived by Vlasov® by neglecting the particle discreteness effects
that give rise to the Coulomb collisional effects — see Problem 5.2. Because
the Vlasov equation has no discrete particle correlation (Coulomb collision)
effects in it, it is completely reversible (in time) and its solutions follow the
collisionless single particle orbits in the six-dimensional phase space. Thus, its
distribution function solutions are entropy conserving (there is no irreversible
relaxation of irregularities in the distribution function), and, like the particle
orbits, incompresssible in the six-dimensional phase space — see Section 13.1.
The nominal condition for the neglect of collisional effects is that the fre-
quency of the relevant physical process(es) be much larger than the collision
frequency: d/dt ~ —iw >> v, in which v is the Lorentz collision frequency
(??). Here, the frequency w represents whichever of the various fundamen-
tal frequencies (e.g., wp, plasma; kcg, ion acoustic; w., gyrofrequency; wy,
bounce; wp, drift) are relevant for a particular plasma application. However,
since the Coulomb collision process is diffusive in velocity space (see Section
2.1 and Chapter 11), for processes localized to a small region of velocity space
09 ~ dvy /v << 1, the effective collision frequency (for scattering out of this
narrow region of velocity space) is veg ~ v/69% >> v. For this situation the
relevant condition for validity of the Vlasov equation becomes w >> veg. Often,

5A.A. Vlasov, J. Phys. (U.S.S.R.) 9, 25 (1945).
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the Vlasov equation applies over most of velocity space, but collisions must be
taken into account to resolve singular regions where velocity-space derivatives
of the collisionless distribution function are large.

Finally, we briefly consider equilibrium solutions of the plasma kinetic and
Vlasov equations. When the collision operator is dominant in the plasma ki-
netic equation (i.e., v >> w), the lowest order distribution is the Maxwellian
distribution [see Chapter 11 and (?7?)]:

m \3/2 m|v,|? ne=vr/vr
fux,v,t)=n (m) exp (— 5T = AT v,=v-—-V,

Maxwellian distribution function. (5.22)

Here, vr = /2T /m is the thermal velocity, which is the most probable speed
[see (?77?)] in the Maxwellian distribution. Also, n(x,t) is the density (units of
#/m3), T(x,t) is the temperature (J or eV) and V(x,t) the macroscopic flow
velocity (m/s) of the species of charged particles being considered. Note that
the v,. in (5.22) represents the velocity of a particular particle in the Maxwellian
distribution relative to the average macroscopic flow velocity of the entire dis-
tribution of particles: V = [ d% v fy;/n. It can be shown (see Chapter 13) that
the collisionally relaxed Maxwellian distribution has no free energy in velocity
space to drive (kinetic) instabilities (collective fluctuations whose magnitude
grows monotonically in time) in a plasma; however, its spatial gradients (e.g.,
Vn and VT) provide spatial free energy sources that can drive fluidlike (as
opposed to kinetic) instabilities — see Chapters 21-23.

If collisions are negligible for the processes being considered (i.e., w >> veg),
the Vlasov equation is applicable. When there exist constants of the single
particle motion ¢; (e.g., energy ¢; = €, magnetic moment c¢s = pu, etc. which
satisfy dc;/dt = 0), solutions of the Vlasov equation can be written in terms of
them:

f = fler,ca,-++), ¢; = constants of motion, Vlasov equation solution,
df de; Of
— 2 _ i =0. 2
dt Z dt 807; 0 (5 3)

A particular Vlasov solution of interest is when the energy € is a constant
of the motion and the equilibrium distribution function depends only on it:
fo = fo(g). If such a distribution is a monotonically decreasing function of the
energy (i.e., dfp/de < 0), then one can readily see from physical considerations
and show mathematically (see Section 13.1) that this equilibrium distribution
function has no free energy available to drive instabilities — because all possible
rearrangements of the energy distribution, which must be area-preserving in the
six-dimensional phase space because of the Vlasov equation df /dt = 0, would
raise the system energy [ d% [ d% (mwv?/2)f(€) leaving no free energy available
to excite unstable electric or magnetic fluctuations. Thus, we have the statement

fo = fo(€), with dfy/de < 0, is a kinetically stable distribution. (5.24)
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Note that the Maxwellian distribution in (5.22) satisfies these conditions if there
are no spatial gradients in the plasma density, temperature or flow velocity.
However, “confined” plasmas must have additional dependencies on spatial co-
ordinates® or constants of the motion — so they can be concentrated in regions
within and away from the plasma boundaries. Thus, most plasmas of inter-
est do not satisfy (5.24). The stability of such plasmas has to be investigated
mostly on a case-by-case basis. When instabilities occur they usually provide
the dominant mechanisms for relaxing plasmas toward a stable (but unconfined
plasma) distribution function of the type given in (5.24).

5.3 Fluid Moments*

For many plasma applications, fluid moment (density, flow velocity, tempera-
ture) descriptions of a charged particle species in a plasma are sufficient. This is
generally the case when there are no particular velocities or regions of velocity
space where the charged particles behave differently from the typical thermal
particles of that species. In this section we derive fluid moment evolution equa-
tions by calculating the physically most important velocity-space moments of the
plasma kinetic equation (density, momentum and energy) and discuss the “clo-
sure moments” needed to close the fluid moment hierarchy of equations. This
section is mathematically intensive with many physical details for the various
fluid moments; it can skipped since the key features of fluid moment equations
for electrons and ions are summarized at the beginning of the section after the
next one.

Before beginning the derivation of the fluid moment equations, it is con-
venient to define the various velocity moments of the distribution function we
will need. The various moments result from integrating low order powers of the
velocity v times the distribution function f over velocity space in the laboratory
frame: [d%v?f, j =0,1,2. The integrals are all finite because the distribution
function must fall off sufficiently rapidly with speed so that these low order,
physical moments (such as the energy in the species) are finite. That is, we
cannot have large numbers of particles at arbitrarily high energy because then
the energy in the species would be unrealistically large or divergent. [Note that
velocity integrals of all algebraic powers of the velocity times the Maxwellian
distribution (5.22) converge — see Section C.2.] The velocity moments of the
distribution function f(x,v,t) of physical interest are

density (#/m?) : n= /d?’v 1 (5.25)

1
flow velocity (m/s) : V=-— /d3v vf, (5.26)
n

60ne could use the potential energy term g¢é(x) in the energy to confine a particular species
of plasma particles — but the oppositely charged species would be repelled from the confining
region and thus the plasma would not be quasineutral. However, nonneutral plasmas can be
confined by a potential ¢.
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1 2 2

temperature (J, eV) : T=- /d?’v %f = mvT, (5.27)
n 3 2
muv?
conductive heat flux (W/m?) : q= /d3v v, ( 2T> 1 (5.28)
2

pressure (N/m?): p= /dgv %f =nT, (5.29)
pressure tensor (N/m?) : P= /d3v mv,v,.f =pl+m, (5.30)

2
stress tensor (N/m?) : = /d?’vm (vrvr - %I) £, (5.31)

in which we have defined and used
v, =v—-V(x,t), v, =|v,|, relative (subscript r) velocity, speed. (5.32)

By definition, we have [d*v,f = n(V — V) = 0. For simplicity, the species
subscript s = e, i is omitted here and thoughout most of this section; it is
inserted only when needed to clarify differences in properties of electron and ion
fluid moments.

All these fluid moment properties of a particular species s of charged particles
in a plasma are in general functions of spatial position x and time ¢: n = n(x,t),
etc. The density n is just the smoothed average of the microscopic density (5.3).
The flow velocity V is the macroscopic flow velocity of this species of particles.
The temperature T is the average energy of this species of particles, and is
measured in the rest frame of this species of particles — hence the integrand
is (mv?/2)f instead of (mwv?/2)f. The conductive heat flux q is the flow of
energy density, again measured in the rest frame of this species of particles. The
pressure p is a scalar function that represents the isotropic part of the expansive
stress (pl in P in which | is the identity tensor) of particles since their thermal
motion causes them to expand isotropically (in the species rest frame) away
from their initial positions. This is an isotropic expansive stress on the species
of particles because the effect of the thermal motion of particles in an isotropic
distribution is to expand uniformly in all directions; the net force (see below)
due to this isotropic expansive stressis =V - pl = — 1 -Vp—pV .1 = —Vp (in the
direction from high to low pressure regions), in which the vector, tensor identities
(?7), (??) and (??) have been used. The pressure tensor P represents the overall
pressure stress in the species, which can have both isotropic and anisotropic
(e.g., due to flows or magnetic field effects) stress components. Finally, the
stress tensor 7 is a traceless, six-component symmetric tensor that represents
the anisotropic components of the pressure tensor.

In addition, we will need the lowest order velocity moments of the Coulomb
collision operator C(f). The lowest order forms of the needed moments can be
inferred from our discussion of Coulomb collisions in Section 2.3:

density conservation in collisions : 0= / dC(f), (5.33)
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frictional force density (N/m3 R = / dvmv C(f (5.34)
5 MUY
energy exchange density (W/m? Q= [dv . (5.35)

As indicated in the first of these moments, since Coulomb collisions do not
create or destroy charged particles, the density moment of the collision op-
erator vanishes. The momentum moment of the Coulomb collision operator
represents the (collisional friction) momentum gain or loss per unit volume
from a species of charged particles that is flowing relative to another species:
R. ~ —meneve(Ve — Vi) =need /o and R; = — R, from (??) and (?7?). Here,
rigorously speaking, the electrical conductivity o is the Spitzer value (??). (The
approximate equality here means that we are neglecting the typically small ef-
fects due to temperature gradients that are needed for a complete, precise theory
— see Section 12.2.) The energy moment of the collision operator represents the
rate of Coulomb collisional energy exchange per unit volume between two species
of charged particles of different temperatures: @Q; = 3(m./m;)vene(Te —T;) and
Q. ~ J?/o — Q; from (??) and (??). In a magnetized plasma, the electrical
conductivity along the magnetic field is the Spitzer value [0 = ogp from (?77)],
but perpendicular to the magnetic field it is the reference conductivity [o = oy
from (?7?)] (because the gyromotion induced by the B field impedes the perpen-
dicular motion and hence prevents the distortion of the distribution away from
a flow-shifted Maxwellian — see discussion near the end of Section 2.2 and in
Section 12.2). Thus, in a magnetized plasma R, = nee(BJH/UH +J,/o1) and
Q. = Jﬁ/J” +Ji/0'J_ — Q.

As in the kinetic theory of gases, fluid moment equations are derived by
taking velocity-space moments of a relevant kinetic equation, for which it is
simplest to use the conservative form (5.18) of the plasma kinetic equation:

/d3 {_+8i vf—&-%-%(E—&—va)f—C(f) =0 (5.36)
in which g(v) is the relevant velocity function for the desired fluid moment.
We begin by obtaining the density moment by evaluating (5.36) using g = 1.
Since the Eulerian velocity space coordinate v is stationary and hence is inde-
pendent of time, the time derivative can be interchanged with the integral over
velocity space. (Mathematically, the partial time derivative and [ d* opera-
tors commute, i.e., their order can be interchanged.) Thus, the first integral
becomes (9/0t) [ d3v f = On/0t. Similarly, since the [ d* and spatial deriva-
tive 0/0x operators commute, they can be interchanged in the second term in
(5.36) which then becomes 8/0x - [d*vf = 8/0x-nV = V -nV. Since the
integrand in the third term in (5.36) is in the form of a divergence in velocity
space its integral can be converted into a surface integral using Gauss’ theo-
rem (??): [d*d/0v - (dv/dt)f = [dS, - (dv/dt)f = 0, which vanishes because
there must be exponentially few particles on the bounding velocity space sur-
face |v| — oo — so that all algebraic moments of the distribution function are
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finite and hence exist. Finally, as indicated in (5.33) the density moment of the
Coulomb collision operator vanishes.
Thus, the density moment of the plasma kinetic equation yields the density
continuity or what is called simply the “density equation:”
on on dn

E—l—V-nV:O - Ez—V-Vn—nV-V — E:—nV-V.
(5.37)

Here, in obtaining the second form we used the vector identity (?7?) and the last
form is written in terms of the total time derivative (local partial time derivative
plus that induced by advection” — see Fig. 5.2a below) in a fluid moving with
flow velocity V:

d 0 . e . .

— = —| +V-V, total time derivative in a moving fluid. (5.38)

dt — ot
This total time derivative is sometimes called the “substantive” derivative. From
the middle form of the density equation (5.37) we see that at a fixed (Eulerian)
position, increases (On/0t > 0) in the density of a plasma species are caused
by advection of the species at flow velocity V across a density gradient from
a region of higher density into the local one with lower density (V-Vn <
0), or by compression (V -V < 0, convergence) of the flow. Conversely, the
local density decreases if the plasma species flows from a lower into a locally
higher density region or if the flow is expanding (diverging). The last form
in (5.37) shows that in a frame of reference moving with the flow velocity V
(Lagrangian description) only compression (expansion) of the flow causes the
density to increase (decrease) — see Fig. 5.2b below.

The momentum equation for a plasma species is derived similarly by taking
the momentum moment of the plasma kinetic equation. Using ¢ = mv in
(5.36), calculating the various terms as in the preceding paragraph and using
vv = (v, + V)(v, + V) in evaluating the second term, we find

maonV)/ot+ V- (pl+ 7 +mnVV) —ng[E+VXB]-R =0. (5.39)

In obtaining the next to last term we have used vector identity (??) to write
va/ov-[(dv/dt)f] = 8/0v - [v(dv/dt)f] — (dv/dt)f - (Ov/OV), which is equal
to 9/0v - [v(dv/dt)f] — (dv/dt)f since Ov/Ov = | and dv/dt-1 = dv/dt; the
term containing the divergence in velocity space again vanishes by conversion
to a surface integral, in this case using (??). Next we rewrite (5.38) using (5.37)
to remove the On/0t contribution and V - mnVV = mV(V - nV)+mnV - VV

to obtain IV
mn%:nq[E—l-VxB]—Vp—V-ﬂ'—i-R (5.40)

in which the total time derivative d/dt in the moving fluid is that defined in
(5.38). Equation (5.40) represents the average of Newton’s second law (ma = F)

7 Many plasma physics books and articles call this convection. In fluid mechanics advection
means transport of any quantity by the flow velocity V and convection refers only to the heat
flow (5/2)nTV induced by the fluid flow. This book adopts the terminology of fluid mechanics.
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over an entire distribution of particles. Thus, the mndV /dt term on the left
represents the inertial force per unit volume in this moving (with flow velocity
V) charged particle species. The first two terms on the right give the average
(over the distribution function) force density on the species that results from
the Lorentz force g [E + vxB] on the charged particles. The next two terms
represent the force per unit volume on the species that results from the pressure
tensor P = pl + 7, i.e,, both that due to the isotropic expansive pressure p and
the anisotropic stress w. The R term represents the frictional force density on
this species that results from Coulomb collisional relaxation of its flow V toward
the flow velocities of other species of charged particles in the plasma.

Finally, we obtain the energy equation for a plasma species by taking the
energy moment of the plasma kinetic equation. Using g = mv?/2 in (5.36) and
proceeding as we did for the momentum moment, we obtain (see Problem 5.77)

0 (3 1 9 5 1 9
e (5”T+ §mnV ) +V. {q—i— <§nT+ ian )V—i—V-ﬂ']

—ngV-E-Q-V:-R=0. (5.41)

Using the dot product of the momentum equation (5.40) with V to remove
the V2/0t term in this equation and using the density equation (5.37), this
equation can be simplified to

30p 5
v <q+§pv>+v.vp—w.vv+Q,
3d
or, §d—f+gpv-vz—v-q—mvv+c2 (5.42)

The first form of the energy equation shows that the local (Eulerian) rate of in-
crease of the internal energy per unit volume of the species [(3/2)nT = (3/2)p]
is given by the sum of the net (divergence of the) energy fluxes into the local
volume due to heat conduction (q), heat convection [(5/2)pV — (3/2)pV in-
ternal energy carried along with the flow velocity V plus pV from mechanical
work done on or by the species as it moves|, advection of the pressure from a
lower pressure region into the local one of higher pressure (V- Vp > 0), and
dissipation due to flow-gradient-induced stress in the species (—m: VV) and
collisional energy exchange (Q).

The energy equation is often written in the form of an equation for the
time derivative of the temperature. This form is obtained by using the density
equation (5.37) to eliminate the dn /0t term implicit in dp/0t in (5.42) to yield

3 dT

§n%:—nT(V-V)7Voq—7T:VV+Q, (5.43)
in which d/dt is the total time derivative for the moving fluid defined in (5.38).
This form of the energy equation shows that the temperature T of a plasma
species increases (in a Lagrangian frame moving with the flow velocity V)
due to a compressive flow (V -V < 0), the divergence of the conductive heat
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flux (—V - q), and dissipation due to flow-gradient-induced stress in the species
(—m: VV) and collisional energy exchange (Q).

Finally, it often useful to switch from writing the energy equation in terms
of the temperature or pressure to writing it in terms of the collisional entropy.
The (dimensionless) collisional entropy s for f ~ fys is

1 T3/2 3
s=—— [dvflnf~In +C=-In <L> + C, collisional entropy,
n 2 nd/3

n

(5.44)
in which C' is an unimportant constant. Entropy represents the state of disorder
of a system — see the discussion at the end of Section A.3. Mathematically,
it is the logarithm of the number of number of statistically independent states
a particle can have in a relevant volume in the six-dimensional phase space.
For classical (i.e., non-quantum-mehanical) systems, it is the logarithm of the
average volume of the six-dimensional phase space occupied by one particle.
That is, it is the logarithm of the inverse of the density of particles in the
six-dimensional phase space, which for the collisional equilibrium Maxwellian
distribution (5.22) is ~ 73/2v3./n oc T%/2/n. Entropy increases monotonically
in time as collisions cause particles to spread out into a larger volume (and
thereby reduce their density) in the six-dimensional phase space, away from an
originally higher density (smaller volume, more confined) state.

An entropy equation can be obtained directly by using the density and energy
equations (5.37) and (5.43) in the total time derivative of the entropy s for a
given species of particles:

n %:;ni—f—T%:—V-q—ﬂ:VV—FQ. (5.45)
Increases in entropy (ds/dt > 0) in the moving fluid are caused by net heat
flux into the volume, and dissipation due to flow-gradient-induced stress in the
species and collisional energy exchange. The evolution of entropy in the moving
fluid can be written in terms of the local time derivative of the entropy density
ns by making use of the density equation (5.37) and vector identity (?7):

ds . [d(ns) dn] . [0(ns)
ant—T{ 7 Sdt]_T[ 5t + V. nsV|. (5.46)

Using this form for the rate of entropy increase and V - (q/T") = (1/T)[V -q —
q-VInT] in (5.45), we find (5.45) can be written

6(6":) +V- (nsV—|— %) =0 —%(q- VInT+7:VV-Q).  (547)
In this form we see that local temporal changes in the entropy density [0(ns)/0t]
plus the net (divergence of ) entropy flow out of the local volume by entropy con-
vection (nsV) and heat conduction (q/7T) are induced by the dissipation in the
species (#), which is caused by temperature-gradient-induced conductive heat
flow [-q-VInT = —(1/T)q- VT], flow-gradient-induced stress (—m: VV),
and collisional energy exchange (Q).
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The fluid moment equations for a charged plasma species given in (5.37),
(5.40) and (5.43) are similar to the corresponding fluid moment equations ob-
tained from the moments of the kinetic equation for a neutral gas — (?77)—(?7).
The key differences are that: 1) the average force density nF on a plasma species
is given by the Lorentz force density n[E+V X B] instead the gravitational force
—mVVg; and 2) the effects of Coulomb collisions between different species of
charged particles in the plasma lead to frictional force (R) and energy exchange
(Q) additions to the momentum and energy equations. For plasmas there is of
course the additional complication that the densities and flows of the various
species of charged particles in a plasma have to be added according to (5.1)
to yield the charge p, and current J density sources for the Maxwell equations
that then must be solved to obtain the E, B fields in the plasma, which then
determine the Lorentz force density on each species of particles in the plasma.

It is important to recognize that while each fluid moment of the kinetic
equation is an exact equation, the fluid moment equations represent a hierarchy
of equations which, without further specification, is not a complete (closed)
set of equations. Consider first the lowest order moment equation, the density
equation (5.37). In principle, we could solve it for the evolution of the density
n in time, if the species flow velocity V is specified. In turn, the flow velocity
is determined from the next order equation, the momentum equation (5.40).
However, to solve this equation for V we need to know the species pressure
(p = nT) and hence really the temperature T', and the stress tensor w. The
temperature is obtained from the isotropic version of the next higher order
moment equation, the energy equation (5.43). However, this equation depends
on the heat flux q.

Thus, the density, momentum and energy equations are not complete be-
cause we have not yet specified the highest order, “closure” moments in these
equations — the heat flux q and the stress tensor w. To determine them,
we could imagine taking yet higher order moments of the kinetic equation
[¢g = v(mv2/2) and m(v,v, — (v2/3)I) in (5.36) | to obtain evolution equa-
tions for q, 7. However, these new equations would involve yet higher order
moments (vvv, v2vv), most of which do not have simple physical interpreta-
tions and are not easily measured. Will this hierarchy never end?! Physically,
the even higher order moments depend on ever finer scale details of the distribu-
tion function f; hence, we might hope that they are unimportant or negligible,
particularly taking account of the effects of Coulomb collisions in smoothing
out fine scale features of the distribution function in velocity-space. Also, since
the fluid moment equations we have derived so far provide evolution equations
for the physically most important (and measurable) properties (n, V,T) of a
plasma species, we would like to somehow close the hierarchy of fluid moment
equations at this level.
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5.4 Closure Moments*

The general procedure for closing a hierarchy of fluid moment equations is
to obtain the needed closure moments, which are sometimes called constitu-
itive relations, from integrals of the kinetic distribution function f — (5.28)
and (5.31) for q and . The distribution function must be solved from a
kinetic equation that takes account of the evolution of the lower order fluid
moments n(x,t), V(x,t), T(x,t) which are the “parameters” of the lowest or-
der “dynamic” equilibrium Maxwellian distribution fys specified in (5.22). The
resultant kinetic equation and procedure for determining the distribution func-
tion and closure moments are known as the Chapman-Enskog® approach. In
this approach, kinetic distortions of the distribution function are driven by the
thermodynamic forces VI and VV — gradients of the parameters of the low-
est order Maxwellian distribution, the temperature (for q) and the flow velocity
(for ), see (?7?) in Appendix A.4. For situations where collisional effects are
dominant (9/0t ~ —iw << v, AV << 1), the resultant kinetic equation can
be solved asymptotically via an ordering scheme and the closure moments q, 7
represent the diffusion of heat and momentum induced by the (microscopic) col-
lisions in the medium. This approach is discussed schematically for a collisional
neutral gas in Section A.4. It has been developed in detail for a collisional,
magnetized plasma by Braginskii® — see Section 12.2. While these derivations
of the needed closure relations are beyond the scope of the present discussion,
we will use their results. In the following paragraphs we discuss the physical
processes (phenomenologies) responsible for the generic scaling forms of their
results.

In a Coulomb-collision-dominated plasma the heat flux q induced by a tem-
perature gradient VT will be determined by the microscopic (hence the super-
script m on k) random walk collisional diffusion process (see Section A.5):

kK™ (Ax)?

q=—k"VT =—nxVT, x= TV

Fourier heat flux, (5.48)

in which Az is the random spatial step taken by particles in a time At. For
Coulomb collisional processes in an unmagnetized plasma, Az ~ A (collision
length) and At ~ 1/v (collision time); hence, the scaling of the heat diffusivity is
X ~ vA? =2 /v o< T%/? /n. [The factor of 2 in the diffusion coefficient is usually
omitted in these scaling relations — because the correct numerical coefficients
(“headache factors”) must be obtained from a kinetic theory.] In a magnetized
plasma this collisional process still happens freely along a magnetic field (as
long as AV| << 1), but perpendicular to the magnetic field the gyromotion
limits the perpendicular step size Az to the gyroradius o. Thus, in a collisional,

8Chapman and Cowling, The Mathematical Theory of Non-Uniform Gases (1952).
98.1. Braginskii, “Transport Processes in a Plasma,” in Reviews of Plasma Physics, M.A.
Leontovich, Ed. (Consultants Bureau, New York, 1965), Vol. 1, p. 205.
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magnetized plasma we have

q = —nX”BVHT, X|| ~ vA2, parallel heat conduction, (5.49)
qL =-nx1V.T, x1 ~wvo? perpendicular heat conduction. .

Here, as usual, V|| = b-Vand V, = V—BVH = —bx(bx V) with b = B/B.
The ratio of the perpendicular to parallel heat diffusion is

XJ_/XH ~ (9/)‘)2 ~ (l//wc)2 << 1, (550)

which is by definition very small for a magnetized plasma — see (?7). Thus, in
a magnetized plasma collisional heat diffusion is much smaller across magnetic
field lines than along them, for both electrons and ions. This is of course the
basis of magnetic confinement of plasmas.

Next we compare the relative heat diffusivities of electrons and ions. From
formulas developed in Chapters 2 and 4 we find that for electrons and ions
with approximately the same temperatures, the electron collision frequency is
higher [v./v; ~ (mi/me)*/? 2 43 >> 1], the collision lengths are comparable
(Xe ~ i), and the ion gyroradii are larger [0;/0c ~ (m;/me)Y/? 2 43 >> 1].
Hence, for comparable electron and ion temperatures we have

1/2 1/2
7 € € 1
Xe (ﬂ) >43>>1, e o (m—> < — <<l (5.51)

Me XLi m; ~ 43

Thus, along magnetic field lines collisions cause electrons to diffuse their heat
much faster than ions but perpendicular to field lines ion heat diffusion is the
dominant process.

Similarly, the “viscous” stress tensor 7 caused by the random walk collisional
diffusion process in an unmagnetized plasma in the presence of the gradient in
the species flow velocity V is (see Section 12.2)

pro o (Az)?

= -2u"W, — ~
i H T nm 2At

viscous stress tensor. (5.52)

Here, W is the symmeterized form of the gradient of the species flow velocity:
1 1
=3 [VV+(VV)T] - §I(V -V), rate of strain tensor, (5.53)

in which the superscript T indicates the transpose. Like for the heat flux, the
momentum diffusivity coefficient for an unmagnetized, collisional plasma scales
as pu™/nm ~ vA2. Similarly for a magnetized plasma we have

™ = =2p"Wyj, pi*/nm ~ vAY = 2uTW o, uT/nm o~ vo®. (5.54)

Since the thermodynamic drives W|| = B(B W B)f) and W are tensor quanti-
tites, they are quite complicated, particularly in inhomogeneous magnetic fields
— see Section 12.2. Like for heat diffusion, collisional diffusion of momentum
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along magnetic field lines is much faster than across them. Because of the mass
factor in the viscosity coefficient ™, for comparable electron and ion tempera-
tures the ion viscosity effects are dominant both parallel and perpendicular to
B:

m 1/2 m 3/2
M 1
le <%> < 1, Hle o (E) S13x107° <<<<< 1.

m
i my; m;

(5.55)
Now that the scalings of the closure moments have been indicated, we
can use (5.45) to estimate the rate at which entropy increases in a collisional
magnetized plasma. The contribution to the entropy production rate ds/dt
from the divergence of the heat flux can be estimated by —(V -q)/nT ~
(X”VﬁT +x.LV3T)/T ~ (v/T) ()\ZVﬁ + ¢*V?)T. Similarly, the estimated rate
of entropy increase from the viscous heating is —(7: VV)/nT ~ (uﬂ”|VHV|2 +
p VLV /0T ~ v(]AV |V Jor|* 4+ [0V LV /ur|?). Finally, the rate of entropy
increase due to collisional energy exchange can be esimated from Q;/n;T; ~
Ve(me/mi) and Qc/neTe ~ ve(me/mi) + J? /o ~ ve[me/m; + (VHe - V\|i)2/7f%e]-
For many plasmas the gyroradius p is much smaller than the perpendicular scale
lengths for the temperature and flow gradients; hence, the terms proportional
to the gyroradius are usually negligible compared to the remaining terms. This
is particularly true for electrons since the electron gyroradius is so much smaller
than the ion gyroradius. We will see in the next section that in the small gyro-
radius approximation the flows are usually small compared to their respective
thermal speeds; hence the flow terms are usually negligibly small except perhaps
for the ion ones. Thus, the rates of electron and ion entropy production for a
collision-dominated magnetized plasma are indicated schematically by

dse AVITe AV Ve me (Vie= Vi)

i = maX{ | e () e 630
ds; NVIT ANV 0 VLV (me\ '

i v; max I , I , givVL , (m_) << ;. (5.57)
dt T; (e vT; m;

As shown by the final inequalities, these contributions to entropy production are
all small in the small gyroradius and collision-dominated limits in which they
are derived. Hence, the maximum entropy production rates for electrons and
ions are bounded by their respective Coulomb collision frequencies. For more
collisionless situations or plasmas, the condition AV << 1 is usually the first
condition to be violated; then, the “collisionless” plasma behavior along mag-
netic field lines must be treated kinetically and new closure relations derived.
Even with kinetically-derived closure relations, apparently the entropy produc-
tion rates for fluidlike electrons and ion species are still approximately bounded
by their respective electron and ion collision frequencies v, and v;. However,
in truly kinetic situations with important fine-scale features in velocity space
(localized to ¢ ~ dv | /v << 1), the entropy production rate can be much faster
(ds/dt ~ veg ~ v/59?), at least transiently.
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When there is no significant entropy production on the time scale of interest
(e.g., for waves with radian frequency w >> ds/dt), entropy is a “constant of the
fluid motion.” Then, we obtain the “adiabatic” (in the thermodynamic sense)
equation of state (relation of pressure p and hence temperature T to density n)
for the species:

d 1 d
—SE——lnﬁf:O — pxnl, Ton™}

isentropic equation of state. (5.58)

Here, we have defined
I'=(N+2)/N, (5.59)

in which N is the number of degrees of freedom (dimensionality of the system).
We have been treating the fully three dimensional case for which N =3, T =5/3
and I'—1 = 2/3 — see (5.44). Corresponding entropy functionals and equations
of state for one- and two-dimenional systems are explored in Problems 5.11 and
5.12. Other equations of state used in plasma physics are

pxn, T = constant, isothermal equation of state (I' = 1), (5.60)
p~0, T ~0, cold species equation of state, (5.61)

V.V =0, n = constant, incompressible species flow (I' — 00). (5.62)

The last equation of state requires some explanation. Setting ds/dt in (5.58) to
zero and using the density equation (5.37), we find

1dp 1dn 1 1dp
X 11222 =TI'V:-V — V.V=_-__2Z 5.63
pdt n dt I padt (5:63)

From the last form we see that for I' — oo the flow will be incompressible
(V -V = 0), independent of the pressure evolution in the species. Then, the
density equation becomes dn/dt = On/0t +V -Vn = —n(V - V) = 0. Hence,
the density is constant in time on the moving fluid element (Lagrangian picture)
for an incompressible flow; however, the density does change in time in an
Eulerian picture due to the advection (via the V - Vn term) of the fluid into
spatial regions with different densities. Since the pressure (or temperature) is
not determined by the incompressible flow equation of state, it still needs to be
solved for separately in this model.

When one of the regular equations of state [(5.58), (5.60),0r (5.61)] is used,
it provides a closure relation relating the pressure p or temperature 7' to the
density m; hence, it replaces the energy or entropy equation for the species.
When the incompresssible flow equation of state (5.62) is used, it just acts as a
constraint condition on the flow; for this case a relevant energy or entropy equa-
tion must still be solved to obtain the evolution of the pressure p or temperature
T of the species in terms of its density n and other variables.

DRAFT 11:54
January 21, 2003 ©J.D Callen, Fundamentals of Plasma Physics



CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 23

5.5 Two-Fluid Plasma Description

The density, momentum (mom.) and energy or equation of state equations
derived in the preceding section for a given plasma species can be specialized
to a “two-fluid” set of equations for the electron (¢, = —e) and ion (¢; = Z;e)
species of charged particles in a plasma:

Electron Fluid Moment Equations (d./dt = /0t + V.- V):

d One
density: 2—26 = —n(V-V,) = (,;; +V-n. Ve =0, (5.64)
deve
Mom.:  MeMe—, = —neE+V.xB]-Vp,.—V-m.+R., (5.65)
3 d.T,
energy: QMg = NeTe(V-Ve)—V.eqe —m:VV.+Qe, (5.66)
or eq. of state: T, oc nl =% (5.67)

Ton Fluid Moment Equations (d;/dt = 0/0t + V; - V):

din; on;
density, d—? = —n(V-V) 6’; F VeV, =0, (5.68)
d;V;
mom., mmiw = n;Zie[E+V;xB]-Vp,— V-7, + R, (5.69)
3 d;T;
energy, inz pralie n;(V-V)=V-.q—7:VV;+Q;, (5.70)
or eq. of state: T; o< nj ™ (5.71)

The physics content of the two-fluid moment equations is briefly as follows.
The first forms of (5.64) and (5.68) show that in the (Lagrangian) frame of the
moving fluid element the electron and ion densities increase or decrease accord-
ing to whether their respective flows are compressing (V -V < 0) or expanding
(V -V > 0). The second forms of the density equations can also be written as
on/dtlx = =V -Vn —nV -V using the vector identity (??); thus, at a given
(Eulerian) point in the fluid, in addition to the effect of the compression or
expansion of the flows, the density advection!® by the flow velocity V increases
the local density if the flow into the local region is from a higher density region
(=V - Vn > 0). Deunsity increases by advection and compression are illustrated
in Fig. 5.2. In the force balance (momentum) equations (5.65) and (5.69) the
inertial forces on the electron and ion fluid elements (on the left) are balanced
by the sum of the forces on the fluid element (on the right) — Lorentz force
density (ng[E + V xB]), that due to the expansive isotropic pressure (—Vp)
and anisotropic stress in the fluid (—V - 7r), and finally the frictional force den-
sity due to Coulomb collisional relaxation of flow relative to the other species
(R). Finally, (5.66) and (5.70) show that temperatures of electrons and ions
increase due to compressional work (V -V < 0) by their respective flows, the
net (divergence of the) heat flux into the local fluid element (—V - q), viscous

10See footnote at bottom of page 15.
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Figure 5.2: The species density n can increase due to: a) advection of a fluid
element by flow velocity V from a higher to a locally lower density region, or
b) compression by the flow velocity V.

dissipation (—r: VV) and collisional heating (@) from the other species. Al-
ternatively, when appropriate, the electron or ion temperature can be obtained
from an equation of state: isentropic (I' = 5/3), isothermal (T' = 1) or “cold”
species (T ~ 0).

As written, the two-fluid moment description of a plasma is exact. However,
the equations are incomplete until we specify the collisional moments R and @),
and the closure moments q and mw. Neglecting the usually small temperature
gradient effects, the collisional moments are, from Section 2.3:

Electrons: R ~ —meneve(Ve — Vi) = needJo, Q. ~ J*/o — Q;, (5.72)
Ionss  Ri=-Re, Qi =3"Cvun.(T, —T)). (5.73)
m;

For an unmagnetized plasma, the electrical conductivity o is the Spitzer elec-
trical conductivity og, defined in (??) and (??). In a magnetized plasma the
electrical conductivity is different along and perpendicular to the magnetic field.
The general frictional force R and Q. for a magnetized plasma is written as

J 3 Ji 2
R=-ng (—l + —J‘> , Qe = 0'_|||‘ + j—i — @Q;, magnetized plasma, (5.74)

in which ng is —n.e (electrons) or n;Z;e = n.e (ions), J; = JHB = (B-J/B%B,
J  =J- JHB = —BX(BXJ), o = osp and o) = 0¢. Here, oy is the reference
electrical conductivity which is defined in (??): o9 = n.e?/mev. = 1/n, where
71 is the plasma resistivity.

The closure moments q and 7 are calculated from moments of the distribu-
tion function as indicated in (5.28) and (5.31). The distribution function f must
be determined from an appropriate kinetic theory. The closure moments can be
calculated rigorously for only a few special types of plasmas, such as for plas-
mas where Coulomb collision effects dominate (90/0t ~ —iw << v, AV << 1in
general together with v << w,, oV << 1 for magnetized plasmas) — see Sec-
tion 12.2. Then, they represent the diffusive transport processes induced by the
(microscopic) Coulomb collision processes in a plasma. For such a plasma the
parametric dependences of the closure moments q, 7 on the collision frequency
v and length A, and gyroradius p are indicated in (5.48)—(5.55) above for both
unmagnetized and magnetized plasmas.

We will now illustrate some of the wide range of phenomena that are included
in the two-fluid model by using these equations to derive various fundamental
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Figure 5.3: Density distributions of electrons and ions in adiabatic response to
a potential ¢(x).

plasma responses to perturbations. The procedure we will use is to identify the
relevant equation for the desired response, discuss the approximations used to
simplify it and then finally use the reduced form to obtain the desired response.
Since most of these phenomena can occur for either species of charged particles
in a plasma, the species subscript is omitted in most of this discussion.

We begin by considering unmagnetized (B = 0) plasmas. First, consider
the “Boltzmann relation” adiabatic response (?7?) to an electrostatic pertur-
bation, which was used in deriving Debye shielding in Section 1.1. It can
be obtained from the momentum equation (5.40), (5.65) or (5.69). Physi-
cally an adiabatic description is valid when the thermal motion (pressure in
the two-fluid model) is rapid compared to temporal evolution and dissipative
processes — w,v << vr/dxr ~ kvr in the language of Section 1.6. Divid-
ing the momentum equation by mnvr and assuming for scaling purposes that
V| ~ vp, d/dt ~ —iw, qp ~ T, |V| ~ 1/6x ~ k, its various terms are found
to scale as w (inertia), kvp (E = —V ¢ electrostatic field force), kvr (pressure
force), v(kA)? (stress force), and v (frictional force). Thus, for w, v << kvr (adi-
abatic regime) and kA << 1 (collisional species), the lowest order momentum
equation is obtained by neglecting the inertial force (mn dV /dt) and dissipative
forces due to viscous stress (V - 7r) and collisional friction (R):

0=-nqVe¢— Vp. (5.75)

If we assume an isothermal species [I' = 1 in (5.60), (5.67) or (5.71)], the temper-
ature is constant and hence Vp = T Vn. Then, we can write the adiabatic force
density balance equation in the form V[(g¢/T) + Inn] = 0, which in complete
and perturbed form yields

n(x) = nge 9%/ To, S —@, isothermal adiabatic response, (5.76)
no To
This is the usual Boltzmann relation: (??), (??) or (??). Asindicated in Fig. 5.3,
in an adiabatic response a potential ¢(x) causes the electron (g. = —e < 0)
density to peak where the potential is highest and the ion (¢; = Z;e > 0)
density to be at its minimum there. Thus, for an adiabatic response a potential
hill confines electrons but repels ions, whereas a potential valley confines ions
but repels electrons. The adiabatic response for a general isentopic equation
of state [(5.58), (5.67) or (5.71)] is somehat different, although the perturbed
response is the same as (5.76) with the temperature changed to I'Ty — see
Problem 5.13. In addition, the density equation [(5.37), (5.64) or (5.68)] shows
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that perturbed flows are nearly incompressible (V -V =~ 0) in the (adiabatic)
limit of slow changes.

Next, we consider the inertial response, which in the two-fluid context is
usually called the fluid response. It is obtained from a combination of the den-
sity and momentum equations. Physically, an inertial response obtains for fast
(short time scale) processes (w >> wvp/dx ~ kvrp) for which the response to
forces is limited by the inertial force nm dV /d¢. Using the same ordering of
the contributions to the momentum equation as in the preceding paragraph,
but now assuming w 2 kvy >> v, the lowest order perturbed (linearized) mo-
mentum equation becomes mngy OV /Ot = —nogV ¢ — Vp. For a plasma species
with a spatially homogeneous density (i.e., Vng = 0), the perturbed density
equation [(5.37), (5.64) or (5.68)] becomes d71/dt = —noV - V. Thus, in the
dissipationless, inertial (fluid) limit the density and momentum equations for a
homogeneous plasma species become
(2_7; =-nyV-V, mnO%—\t[ = —noqVe — Vp. (5.77)
These equations can be combined into a single density response equation by
taking the partial time derivative of the density equation and substituting in
the perturbed momentum equation to yield

0%n
a2 =V gy

The potential fluctuation term represents the inertial polarization charge density
derived earlier in (?2): 02ppo1/Ot> = —(nog?/m)V -E = —€w,V - E. The
second term on the right of (5.77) represents the modification of this polarization
response due to the thermal motion (pressure) of the species — see Problem 5.15.
Alternatively, if we neglect the polarization response, and use a general equation
of state [(5.58), (5.67) or (5.71)], then (5.77) becomes 9?7/9t? — (I'pg /no) V37 =
0 which represents a sound wave with a sound wave speed c¢g = (I'pg/ng)*/? —
see (??), (??). Note that in the inertial (fluid) limit the perturbed density
response is due to the compressibility of the perturbed flow (V - v #0).

We next consider plasma transport processes in a collision-dominated limit.
Specifically, we consider the electron momentum equation (5.65) in a limit where
the electric field force is balanced by the frictional force (R) and the pressure
force:

oV -1
= %V%ﬁ + EVZﬁ, inertial (fluid) response. (5.78)

0=—neeE — Vp, — menee(Ve — V) = —neeE — Vp, + need /o (5.79)

Here, we have neglected the inertia and viscous stress in the collisional limit by
assuming d/dt ~ —iw << v, and \.V << 1. In a cold electron limit (7, — 0)
the last form of this equation becomes

J=0E, Ohm’s law. (5.80)

Neglecting the ion flow V; and using an isothermal equation of state [[' =1 in
(5.67)], we can obtain the electron particle flux (units of #/m? s) from the first
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Figure 5.4: Unmagnetized plasma particle flux components due to electron dif-
fusion (D, ) and mobility (for E = —V¢).

form in (5.79):

e

T
r'.=n.Vo=-D.Vn,+ uyneE, D, = , Méw = —

MeVe Meve’
electron diffusion, mobility particle fluxes. (5.81)

The first term represents the particle flux due to the density gradient which is
in the form of a Fick’s law (??) with a diffusion coefficient D, = T,/mev. =
v%,/2Ve = veA2/2. The contribution to the particle flux induced by the electric
field is known as the mobility flux (superscript M). The directions of these diffu-
sive and mobility particle flux components for an equilibrium (T'. ~ 0) electron
species are shown in Fig. 5.4. Note that the electron collision length A. = v, /ve
must be small compared to the gradient scale length (i.e., |[A\.V Inn.| << 1) for
this collisional plasma analysis to be valid. In general, the ratio of the dif-
fusion coefficient to the mobility coefficient is known as the Einstein relation:
D/pyM = T/q — D./uM = —T,./e. The Einstein relation is valid for many
types of collisional random walk processes besides Coulomb collisions.

Finally, we consider the transport properties embodied in the energy equa-
tion for an unmagnetized plasma. Neglecting flows and temperature equilibra-
tion between species, the energy equation [(5.43), (5.66) or (5.70)] becomes

gn%—f =-V.q, = %—1; = ;XvQT, temperature diffusion.  (5.82)
Here, in the second form we have used the general Fourier heat flux closure re-
lation (5.48) and for simplicity assumed that the species density and diffusivity
are constant in space (Vn = 0, Vx = 0). In a single dimension this equation
becomes a one-dimensional diffusion equation (??) for the temperature 7" with
diffusion coefficient D = 2x/3 ~ vA?. Diffusion equations relax gradients in the
species parameter operated on by the diffusion equation — here the tempera-
ture gradient for which Lt is the temperature gradient scale length defined by
1/Ly = (1)T)|dT/dz|. From (??) or (5.82) in the form T'/7 ~ xT/L2 we infer
that the transport time scale 7 on which a temperature gradient in a collisional
plasma (A << L) will be relaxed is 7 ~ (L7/\)?/v >> 1/v.

As we have seen, the two-fluid equations can be used to describe responses
in both the adiabatic (w << kvr) and inertial (w >> kvr) limits. In between,
where w ~ kvp, neither of these limits apply and in general we must use a kinetic
equation to describe the responses. Also, we have illustrated the responses for
a collisional species. When Coulomb collision lengths become of order or longer
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Figure 5.5: Flow components in a magnetized plasma.

than the gradient scale lengths (AV 2 1), the heat flux and viscous stress can no
longer be neglected. However, simultaneously the conditions for the derivation
of these closure relations break down. Thus, for AV 2 1 we usually need to
use a kinetic equation or theory — at least to derive new forms for the closure
relations.

5.6 Two-Fluid Magnetized-Plasma Properties™®

We next explore the natural responses of a magnetized plasma using the two-
fluid model. Because the magnetic field causes much different particle motions
along and across it, the responses parallel and perpendicular to magnetic field
lines are different and must be examined separately. The equation for the evo-
lution of the parallel flow V|| = b-V is obtained by taking the dot product

of the momentum equation [(5.40), (5.65) or (5.69)] with b = B/B and using
b-dV /dt = dV} /dt — V - db/dt:

avj . db

mnﬁ =ngE) -V p—b-V-m — R +mnV - T (5.83)
Here, the parallel (||) subscript indicates the component parallel to the magnetic
field: i.e., B = b- E, Vp= b- Vp, R = b-R = —ngJ) /o). The responses
along the magnetic field are mostly just one-dimensional (parallel direction)
forms of the responses we derived for unmagnetized plasmas. However, many
plasmas of practical interest are relatively “collisionless” along magnetic field
lines (A\VIn B 2 1); for them appropriate parallel stress tensor and heat flux
closure relations must be derived and taken into account, or else a kinetic de-
scription needs to be used for the parallel responses. [See the discussion in the
paragraphs after (??) and (??) in Section 6.1 for an example: the effects of
“neoclassical” closures for axisymmetric toroidal magnetic systems.]

When the magnetic field is included in the momentum equation [(5.40),
(5.65) or (5.69)], the ngV xB term it adds scales (by dividing by mnuvr) to be
of order w,; hence, it is the largest term in the equation for a magnetized plasma
in which w, >> w, v, kvp. Thus, like for the determination of the perpendicular
guiding center drifts in Section 4.4*, the perpendicular flow responses are ob-
tained by taking the cross product of the momentum equation [(5.40), (5.65) or
(5.69)] with the magnetic field B. Adding the resultant perpendicular flows to
the parallel flow, the total flow can be written (see Fig. 5.5)

V=V +eV,y+€eV,, with (5.84)
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. (B-V)B
Vi = Vb = —%—, (5.85)
ExB BxVp
V., = Vg4V, = —ZVE .
= Vet ot (5.56)
BxmndV/dt RxB BxV-
V, = V,+V,+V, = xmn dv/ x VT (5.87)

nqB? nqB? nqB?

Here, the € indicates the ordering of the various flow components in terms of the
small gyroradius expansion parameter € ~ oV | ~ (w,v)/w, << 1 — see (77)
and (?7). As indicated, the “cross” (subscript A) flow is first order in the small
gyroradius expansion, while the “perpendicular” (subscript L) flow is second
order — compared to the thermal speed vy of the species. For example,

V. BxVp T/m Vip

_* ~ ~ oV 1 ~ € << 1. 5.88
v ngB?vr  (¢B/m)vr p eV~ e ( )

For the scaling of the other contributions to V» and V|, see Problems 5.19 and
5.20.

The first order flow VA = Vg + V., is composed of EXB and diamagnetic
flows. The very important EXB flow is the result of all the particles in a given
species drifting with the same EXxB drift velocity (?7):

v :EXB Eg@ BXVCDNLd_‘I)é
E= g2 B2 ~ Bydx Y’

ExB flow velocity. (5.89)

Here and below, the approximate equality indicates evaluation in the sheared
slab model of Section 3.1 with B ~ By&, and for which plasma parameters (and
the potential ®) only vary in the z direction. The diamagnetic flow V, is

v :BXVpNi<ld_p>é LTV
YT ngB?2 T ¢By \pdx) ¥ (q/e)BoL, "’
diamagnetic flow velocity, (5.90)
in which
L, =—p/(dp/dx), pressure-gradient scale length, (5.91)

which is typically approximately equal to the plasma radius in a cylindrical
model. (The definition of the pressure gradient scale length has a minus sign
in it because the plasma pressure usually decreases with radius or x for a con-
fined plasma.) The last form in (5.90) gives a formula for numerical evaluation
(in ST units, except for T in eV). The V, flow is called the diamagnetic flow
because the current density ngV, it produces causes a magnetic field that re-
duces the magnetic field strength in proportion to the species pressure p [see
Problem 5.77?], which is a diamagnetic effect. Note that the diamagnetic flows
of electrons and ions are comparable in magnitude and in opposite directions.
Hoewever, the electrical current densities they produce are in the same direc-
tion. These diamagnetic currents in the cross (&, in slab model) direction cause
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charge buildups and polarization of the plasma, which are very important in
inhomogeneous magnetized plasmas.

Of particular importance is the electron diamagnetic flow obtained from
(5.90) with ¢ = —e:

B X Vpe Te 1 dpe ~ Te (GV) ~
Vie=———~— — &, = ——"8,,
ne.eB? eBy \ pe dx BoLp,
electron diamagnetic flow velocity. (5.92)

This is a fundamental flow in a plasma; flows in a plasma are usually quoted
relative to its direction.

The ExB and diamagnetic flows are called “cross” flows because they flow
in a direction given by the cross product of the magnetic field and the “radial”
gradients of plasma quantities. Thus, they flow in what tends to be the ignorable
coordinate direction — the &, direction in the sheared slab model, the azimuthal
direction in a cylindrical model, or perpendicular to B but within magnetic
flux surfaces in mirror and toroidal magnetic field systems. Since they have no
component in the direction of the electric field and pressure gradient forces (i.e.,
Vg :-E=0and V,-Vp=0), they do no work and hence produce no increase
in internal energy of the plasma [i.e., no contributions to (5.41) or (5.42)].

The presence of the EXB and diamagnetic flows in a plasma introduces two
important natural frequencies for waves in an inhomogeneneous plasma:s:

k,d® kT d [q®
= k. Vpo @ Ryt 447 ExB f .
WE E Bodr = qBy dr ( T > , X B frequency, (5.93)
k, T (1d
wy = k-V, ~ qyﬁ (5%) = _kyQ;TTp’ diamagnetic frequency. (5.94)

The last approximate form of wg is for T" = constant. In the last form of w,
we have used the definitions of the thermal speed vy = /27 /m and gyroradius
0 =vr/we (7). The electron diamagnetic frequency is often written as

kyTe (1 dpe . s _ kyTe(eV)
eBy \ pe dx Y

~ _
Wae

§ Lpe BOLpe ’

electron diamagnetic frequency. (5.95)

in which ¢g = /T /m; is the ion acoustic speed (??) and s = ¢g/we;-

The significance of the EXB frequency is that it is the Doppler shift fre-
quency for waves propagating in the cross direction in a plasma. The significance
of the electron diamagnetic frequency is that it is the natural frequency for an
important class of waves in inhomogeneous plasmas called drift waves (see Sec-
tion 7.6). Both electron and ion diamagnetic frequency drift waves can become
unstable for a wide variety of plasma conditions (see Section 23.3). Because
drift wave instabilities tend to be ubiquitous in inhomogeneneous plasmas, they
are often called “universal instabilities.” The presence of the ko factor in the
diamagnetic frequencies highlights the significance for drift waves of finite gyro-
radius effects, mostly due to the ions — see (??)—(?7?). The maximum frequency
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Figure 5.6: The diamagnetic flow velocity V, can be interpreted physically as
due to either: a) a net &, flow due to the inhomogeneous distribution of guiding
centers because p = p(z), or b) the combination of the particle guiding center
drifts and magnetization current due to the magnetic moments of the entire
species.

of drift waves is usually limited by finite ion gyroradius effects. For example,
for electron drift waves max{w} ~ vy;/(4y/m Ly;) for T, = T; (see Section 8.6).

Figure 5.6 illustrates two different physical interpretations of the diamag-
netic flow. In the “fluid, gyromotion” picture shown in Fig. 5.6a, because the
density of guiding centers decreases as the radial variable = increases, in a full
distribution of ions executing their gyromotion orbits, more ions are moving
downward (—&, direction) than upward at any given x; hence, dp/dz < 0 in a
magnetized plasma with B ~ Byé, induces an ion diamagnetic flow in the —&,
direction — see Problem 5.23. In the “particle” picture shown in Fig. 5.6b, the
flow is produced by a combination of the particle drifts in the inhomogeneneous
magnetic field and the magnetization current due to the magnetic moments of
the charged particles gyrating in the magnetic field, both integrated over the
entire distribution of particles in the species. The electrical current induced by
the guiding center drift velocity dx,/dt = vp =vp. —H)DHB from (??) and (?7?),
integrated over an isotropic Maxwellian distribution function fj; of particles is

ExB N Bxp(VInB + k)

p PPN ~
iee Ve + 5b(B-Vxb). (5.96)

ngvp Eq/d3vaf =ngq

Here, we have used (?7?) in evaluating the two types of velocity-space integrals:
Jd¥(mot/2)fn = [dP(m/2)(v; + vg)fi = nT = p and [dvmuffy =
nT = p. The (macroscopic) magnetization due to an entire species of particles
with magnetic moments p defined in (??) is given by

2
muT ~
M:/d%ufM =—/d3v e

b. (5.97)

SIS

The electrical current caused by such a magnetization is

BxVp N Bxp(VInB+ k)

Juy=VXM = 52 52

- %B(B-VXB). (5.98)
Here, we have used the vector identity (??) and Vxb = b(b-Vxb) + bxk,
which can be proved by splitting V Xb into its parallel and perpendicular (to
B) components using (??)-(??). Comparing these various current components,

we find
ng(Vg + V.) =ngvp + VM. (5.99)
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Thus, for a single species of charged particles in a magnetized plasma, the (fluid,
gyromotion picture) cross (A) current induced by the sum of the ExB and dia-
magnetic (V) flows is equal to the (drift picture) sum of the currents induced
by the guiding center particle drifts and the magnetization induced by the mag-
netic moments of all the particles in the species. Note that no single particle
has a drift velocity that corresponds in any direct way to the diamagnetic flow
velocity V..!! Rather, the diamagnetic flow velocity is a macroscopic flow of an
entire species of particles that is a consequence of the (radially) inhomogeneous
distribution of charged particles in a magnetized plasma. Finally, note that the
net flow of current of a species in or out of an infinitesimal volume does not
involve the magnetization: V -ng(Vg + V.) = V -ngvp since V- VxM = 0.
Thus, the net flow of (divergence of the) currrent can be calculated from either
the fluid or particle picture, whichever is more convenient.

Next, we discuss the components of the second order “perpendicular” flow
velocity V, = V, +V, + V. defined in (5.87). The polarization flow V,,
represents the effect of the polarization drifts (?7?) of an entire species of particles
and to lowest order in € is given by:

~

eX7

nqB? w0t By
polarization flow velocity. (5.100)

v ~ BxmndV,/dt 101 (dq) Tldp)
=N

& T gpdz

Simlarly, we use the first order perpendicular flow V, in evaluating the
frictional-force-induced flow V,, due to the perpendicular component of the fric-
tional force R defined in (5.74):

V. - RxB BxJ _ Bx[-n.e(Vae = Vi) B NeeBX (Ve — Vi)
o ’quB2 o (J'J_B2 - O'J_B2 o O'J_B2
- VL(pe +pi) o VeQi VL(pe +pz’) 2 T, +T; 1 dne .
= - = - ~ —e0 — 8,
00B2 2 neTs ¢ 2T; ne dor

classical transport flow velocity.  (5.101)

Here, for simplicity in the evaluation for the sheared slab model form we have
assumed that the electron and ion temperatures are uniform in space and only
the density varies spatially (in the x direction in the sheared slab model). This
flow velocity is in the form of a Fick’s diffusion law (??) particle flux

'), = nV,, = -D,Vn,, classical particle flux, (5.102)
T. +T; NeZ; InA
D, = v r|= L) ~5. 1072 — ¢t [ 2 .1
N Ve 02 ( oT, > 5.6 x 10 BT, ()72 \ 17 m*/s,(5.103)

This is called “classical” transport because its random walk diffusion process
results from and scales with the (electron) gyroradius: Az ~ g.. The scaling

' Many plasma physics books and articles call V. the “diamagnetic drift velocity.” This
nomenclature is very unfortunate since no particles “drift” with this velocity. Throughout
this book we will call V. the diamagnetic flow velocity to avoid confusion about its origin.
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of the particle diffusion coefficient D with collision frequency and gyroradius
is the same as that for the perpendicular electron heat diffusion coefficient x|
— see (5.49). The particle flux in (5.103) leads to a particle density equation
of the form dn./ot = -V +n.V, = D, V?n, and hence to perpendicular (to
B) diffusion of particles — see (5.82), Fig. 5.4 and (??). It is important to
note that the particle flux (and consequent transport) is the same for either
species of particles (electrons or ions). Therefore, it induces no net charge
flow perpendicular to magnetic field lines; hence, it is often said that classical
transport is intrinsically ambipolar — electrons and ions diffuse together and
induce no polarization or charge buildup perpendicular to B.
The final perpendicular flow component is:

BxV.w

Ve=s——7F—,
ngB2

viscous-stress-induced flow velocity. (5.104)

For a collisional, magnetized species (AV| << 1, oV << 1), this flow is
smaller than the classical transport flow velocity V,. However, in more col-
lisionless plasmas where AV 2 1 this flow represents “neoclassical” transport
due to the effects of particles drifting radially off magnetic flux surfaces and it
can be larger than classical transport. For example, for an axisymmetric, large
aspect ratio tokamak, collisions of particles on banana dift orbits (see Section
4.8*%) induce a radial particle flux similar to (5.103) with D, ~ v.02q%e~3/2
in which ¢ 2 1 is the toroidal winding number of the magnetic field lines and
e =1/Ry << 1 is the inverse aspect ratio — see Chapter 16.

All of the components of the perpendicular flow V| have components in
the z or radial (across magnetic flux surface) direction. The polarization flow
leads to a radial current in the plasma and hence to radial charge buildup and
polarization. Because it is due to an inertial force, it is reversible. The radial
flows induced by the frictional and viscous stress forces are due to (microscopic)
collisions and hence yield entropy-producing radial transport fluxes that tend
to relax the plasma toward a (homogeneous) thermodynamic equilibrium.

Finally, it is important to note that like the species flow velocity V, the heat
flow q and stress tensor 7 have similarly ordered parallel, cross (diamagnetic-
type) and perpendicular components:

q = qteqn+ e2q., total conductive heat flux, (5.105)

m = m +emp+emy, total stress tensor. (5.106)

The scalings of the parallel and pependicular fluxes q|, 9. and m, w, with
collision frequency and gyroradius are indicated in (5.49) and (5.54). The cross
heat flux is

B §nTB><VT

qn = Qx« 9 qB2

. 5T
=nx bXVT, xa= iq_B’ diamagnetic heat flux.

(5.107)
Like the diamagnetic flow, this cross heat flux produces no dissipation [see (5.47)]
since qn + V1 = 0. Similarly, the cross stress tensor is a diamagnetic-type tensor
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Table 5.1: Phenomena, Models For An Unmagnetized Plasma

Physical Process

Time,
Length Scales

Species,
Plasma Model

Consequences

plasma oscillations  1/wpe ~ 107 s inertial Pg =0, w < wpe
Debye shielding Ap ~107° m adiabatic pq =0, kAp <1
cold plasma waves w/k > vp, two-fluid oscillations,
w/k ~cg > vy (T ~0,v=0) dielectric const.
hot plasma waves v < Im{w} Sw, Vlasov dielectric const.
Landau damping v<Im{w} Sw, Vlasov wave damping
velocity-space inst. v < Zm{w} Sw, Vlasov NL, via collisions
Coulomb collisions w ~ v, kA ~1 plasma two-fluid model
frequency 1/v~1077s kinetic
length A~0.1m equation
plasma transport T~ (L/N)? /v two-fluid loss of plasma

34

of the form 7, ~ mnu"bx V'V and produces no dissipation [see (5.47)] since
wan: VV = 0 — see Section 12.2. The cross stress tensor 7w, is often called
the gyroviscous stress tensor. Since the gyroviscous effects are comparable to
those from V, and q., 7w, must be retained in the momentum equations when
diamagnetic flow effects are investigated using the two-fluid equations.

5.7 Which Plasma Description To Use When?

In this section we discuss which types of plasma descriptions are used for de-
scribing various types of plasma processes. This discussion also serves as an
introduction to most of the subjects that will be covered in the remainder of
the book. The basic logic is that the fastest, finest scale processes require ki-
netic descriptions, but then over longer time and length scales more fluidlike,
macroscopic models become appropriate. Also, the “equilibrium” of the faster
time scale processes often provide constraint conditions for the longer time scale,
more Macroscopic processes.

We begin by discussing the models used to describe an unmagnetized plasma.
For specific parameters we consider a plasma-processing-type plasma with T, =
3 eV, n, = 10® m~3 and singly-charged ions (Z; = 1). An outline of the
characteristic phenomena, order of magnitude of relevant time and length scales,
and models used to describe unmagnetized plasmas is shown in Table 5.1. As
indicated in the table, the fastest time scale plasma phenomenon is oscillation
at the electron plasma frequency (Section 1.3) which is modeled with an inertial

DRAFT 11:54

January 21, 2003 ©J.D Callen, Fundamentals of Plasma Physics



CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 35

electron response (5.78). The shortest length scale plasma process is Debye
shielding (Section 1.1), which is produced by an adiabatic response (5.76).

Cold plasma waves (electon plasma and ion acoustic waves) are modeled by
the two-fluid equations by neglecting collisional effects and considering thermal
effects to be small and representable by fluid moments. These natural oscilla-
tions result from the dielectric medium responses of the plasma — see Chapters
1 and 7. The corresponding hot plasma (kinetic) waves and dielectric functions,
which include wave-particle interaction effects, are modeled with the Vlasov
equation (5.21) and discussed in Chapter 8. Consequences of this kinetic model
of an unmagnetized plasma include the phenomena of “collisionless” Landau
damping (Section 8.2) of waves and velocity-space instabilities (Chapter 19).
The use of the Vlasov equation is justified because the natural growth or damp-
ing rates [Zm{w}] for these phenomena are larger than the effective collision
frequency. However, velocity-space diffusion due to collisions is required for ir-
reversibility of the wave-particle interactions involved in Landau damping (see
Section 10.2) and to produce a steady state saturation or bounded cyclic be-
havior during the nonlinear (NL) evolution of velocity-space instabilities (see
Sections 10.3, 24.1, 25.1).

On longer time scales (w S veg), Coulomb collisions become important and
are modeled using the plasma kinetic equation (5.13). Finally, on transport
time scales 7 ~ (L/\)?/v (see Section A.5) long compared to the collision time
1/v and length scales L long compared to the collision length A = vp/v, the
electron and ion species can be described by the two-fluid equations (5.64)—
(5.71). Plasma radiation (caused by particle acceleration via Coulomb collisions
or from atomic line radiation — see Chapter 14) can also beome relevant on the
plasma transport time scale. Modeling of plasma particle and energy transport
in collisional plasmas is discussed in Section 17.1.

A similar table and discussion of the relevant phenomena and plasma de-
scriptions on various time and length scales for magnetized plasmas is deferred
to Section 6.8 in the following chapter — after we have discussed the important
fast time scale physical effects in a MHD description of a plasma, and in par-
ticular Alfven waves.
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PROBLEMS

5.1 In the year 2000, single computer processor units (CPUs) were capable of about
10° floating point operations per second (FLOPs). Assume a “particle push-
ing” code needs about 100 FLOPs to advance a single particle a plasma period
(1/wpe) and that the CPU time scales linearly with the number of particles. How
long would a year 2000 CPU have to run to simulate 0.03 m® of plasma with
a density of n. = 3 x 10"® m™ for 10™% seconds by advancing all the particles
in a plasma? Taking account of Moore’s (empirical) law which says that CPU
speeds double every 18 months, how long will it be before such a simulation can
be performed in a reasonable time — say one day — on a single CPU? Do you
expect such plasma simulations to be possible in your lifetime? /

5.2 Consider a continuum (“mush”) limit of the plasma kinetic equation. In this
limit charged particles in a plasma are split in two and distributed randomly
while keeping the charge density, mass density and species pressure constant.
Then, the particles are split in two again, and the splitting process repeated an
infinite number of times. What are the charge, mass, density and temperature
of particles in one such split generation relative to the previous one? Show that
in this limiting process the plasma frequency and Debye length are unchanged
but that the term on the right of the averaged Klimontovich equation (5.12)
becomes negligibly small compared to the terms on the left. Use these results to
discuss the role of particle discreteness versus continuum effects in the Vlasov
equation and the plasma kinetic equation. //

5.3 Show that for a Lorentz collision model the right side of the averaged Klimon-
tovich equation (5.12) becomes the Lorentz collision operator:

0 (AvAv) of

=50 "3mr ov
in which (AvAv)/At is given by (??). [Hint: First subtract the averaged
Klimontovich equation (5.12) from the full Klimontovich equation (5.8) and show
that dof™/dt = —(q/m) dE™- 8f/0v. Then, for an ensemble average defined by
(9) =ni [d*xg=mn; [vdt [bdb [ dp g show that (q/m)* (5Emfjoo dt' 6E™) =
(Av AvY/2AL] /]]

5.4 Use the Lorentz collision operator defined in the preceding problem to show that
for a Maxwellian distribution with a small flow (|V|/vr << 1) the Coulomb
collision frictional force density on an electron species in the ion rest frame is

R. = —meneveVe. [/
5.5 Show that the partial time derivative of the Maxwellian distribution (5.22) is

Ofar {1 On 10T (mv,% 3) " m

ot not TOT\ 2T 2 T

ov
V- §:| fM

Also, derive similar expressions for V fi; = 0fn/0x and Ofar/Ov. [/
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5.6 Write down a one-dimensional Vlasov equation governing the distribution func-
tion along a magnetic field line neglecting particle drifts. What are the constants
of the motion for this situation? What is the form of the general solution of this
Vlasov equation? Discuss what dependences of the distribution function on the
constants of the motion are needed to represent electrostatic and magnetic field
confinement of the charged particles in a plasma along B. //

5.7 Show the integration and other steps needed to obtain the energy equation
(5.41). [Hint: For the velocity derivative term derive and use the vector identity

mv? 9 o mv?

o v AV =503

A(v)—mv-A(v)]

Also, use the origin of the energy flux (5/2)nTV to show that it represents a
combination of the convection of the internal energy and mechanical work done
on or by the species moving with a flow velocity V. //*

5.8 Show the steps in going from the first energy equation (5.41) to the second
(5.42). [Hint: Use vector identities (??) and (?7).] //*

5.9 Parallel electron heat conduction often limits the electron temperature that can
be obtained in a collisional magnetized plasma that comes into contact with
the axial end walls. a) Develop a formula for estimating the equilibrium central
electron temperature T, (0) produced by a power source supplying Qs watts per
unit volume in a plasma of length 2L that loses energy to the end walls primarily
by parallel electron heat conduction. For simplicity, neglect the variation of the
parallel heat conduction with distance ¢ along a magnetic field line and assume
a sinusoidal electron temperature distribution along a magnetic field line given
by Te(¢) = Te(0) cos(m/2L). b) How does T.(0) scale with Qs? c) For a plasma
with singly-charged ions and n. = 10*? cm™2 in a chamber with an axial length
of 1 m, what T¢(0) can be produced by a power source that supplies 0.1 W/cm?
to the plasma electrons? d) How large would Qs need to be achieve a T¢(0) of
25 eV? //*

5.10 The irreducible minimum level of perpendicular heat transport is set by classical
plasma transport. Consider an infinitely long cylinder of magnetized plasma.
Estimate the minimum radius of a 50% deuterium, 50% tritium fusion plasma
at T, = T; = 10 keV, n. = 10° m~3 in a 5 T magnetic field that is required to
obtain a plasma energy confinement time of 1s. //*

5.11 Write down one- and two-dimensional Maxwellian distribution functions. Use
the entropy definition in (5.44) to obtain entropy functionals for these two dis-
tributions. Show that the entropy functions are as indicated in (5.58). //*

5.12 First, show that in N dimensions the energy equation (5.42) can be written, in
the absence of dissipative effects, as

N Op _ N+2
2 at__v'(

Then, show that in combination with the density equation (5.37) this equation
can be rearranged to yield the isentropic equation of state in (5.58). //*

5.13 Derive the adiabatic response for an isentropic equation of state. Show that the
perturbed adiabatic response is 71/no ~ — q¢/T'Ty in which Ty = po/no. //
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5.14 Use the ion fluid equations (5.68)—(5.71) to derive the ion energy conservation
relation (?7) that was used in the analysis of a plasma sheath in Section 1.2.
Discuss the various approximations needed to obtain this result. //

5.15 Use the inertial electron fluid response (5.78) with a general isentropic equation
of state to obtain the thermal speed corrections to the electron plasma wave
dielectric ér (?7). Set the dielectric function to zero and show that the normal
modes of oscillation satisfy the dispersion relation

W* = wpe + (T/2) K*v7e. //

5.16 Use the two-fluid equations (5.64)—(5.71) to obtain the ion sound wave equation
(??). Also, use the two-fluid equations and an isothermal equation of state for
the ions to obtain the ion thermal corrections to the ion acoustic wave dispersion
relation (?7?). //

5.17 Show how to use the electron fluid equations to derive the electromagnetic skin
depth defined in (?7). /

5.18 Consider a collisional unmagnetized plasma where the electron density distribu-
tion ne(x) is determined by some external means, for example by a combination
of wave heating and ionization of neutrals. Use the equilibrium Ohm’s law (elec-
tron momentum equation) in (5.79) to determine the potential distribution ®(x)
(for E = —V®) required to obtain no net current flowing in the plasma. For
simplicity assume isothermal electrons. Then, use this potential to show that
the equilibrium distribution of isothermal ions of charge Z; in this plasma is

m(x)/m(O) = [ne(o)/ne (X)]ZiTe/Ti'

What is the role of the potential ®(x) here? Explain why the ion density is
smallest where the electron density is the largest in this plasma situation. //

5.19 Show that for ¢® ~ T the ExB flow is order € relative to the thermal speed of
the species in the small gyroradius expansion. /

5.20 Show that all the terms in the V| defined in (5.87) are of order ¢* (or smaller)
relative to the thermal speed of the species in the small gyroradius expansion.
[Hint: Use the first order EXB and diamagnetic cross flows to estimate the
various contributions to V..] //

5.21 Suppose a drift-wave has a real frequency of 0.5 w.; in the EXB rest frame and
that n;q; Vi® = —2V.ip;, ky = 0.1 cm™! and d®/dz = 100 V/cm with a mag-
netic field of 2.5 T. What is the frequency (in rad/s and Hz) of the wave in the
laboratory frame? Does the wave propagate in the electron or ion diamagnetic
flow direction in the laboratory frame? /

5.22 Calculate the diamagnetic flow velocity in a uniform magnetic field from a sim-
ple kinetic model as follows. First, note that since the relevant constants of the
motion are the guiding center position 24 = x + vy/we from (??) and energy
£g, an appropriate solution of the Vlasov equation is f = f(x4,&4). Assume
a Maxwellian energy distribution and expand this distribution in a small gyro-
radius expansion. Show that the flow velocity in this expanded distribution is
the diamagnetic flow velocity (5.90). Discuss how this derivation quantifies the
illustration of the diamagnetic flow in Fig. 5.6a. //
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5.23 Consider electron and ion pressure profiles peaked about x = 0 in a sheared slab
magnetic field model with no curvature or shear. a) Sketch the directions of
the diamagnetic flows of the electrons and ions. b) Show that the currents they
induce are in the same direction. c¢) Show that these currents have a diamagnetic
effect on the magnetic field strength. d) Finally show that for each species the
induced diamagnetic change in the magnetic field energy density is proportional
to the pressure of the species. /

5.24 Consider a plasma species with an anistropic Maxwellian-type distribution that
has different temperatures parallel and perpendicular to the magnetic field but
no dependence on the gyrophase angle . a) Show that for this anisotropic
distribution the pressure tensor is P = p, (I — bb) +pr)B. b) Show that for an
anisotropic species the diamagnetic flow velocity is

_ BxV-P _ BX[Vpy +(p| —pL)K]

nqgB? nqgB?

c) Calculate the velocity-space-average drift current ngvp, magnetization M
and magnetization current Jys for an anisotropic species. d) Show that your
results reduce to (5.96)—(5.98) for isotropic pressure. e) Finally, show that (5.99)
is also satisfied for a plasma species with an anisotropic pressure. ///

5.25 In the derivation of (5.99) we neglected the guiding center drift due to the
direction of the magnetic field changing in time — the 85/625 contribution.
Show how, when this drift is included in vp, (5.99) must be modified by adding
the part of the polarization flow V,, caused by V to its left side to remain valid.
(Assume for simplicity that the magnetic field is changing in direction slowly
compared to the gyrofrequency [(1/w.)|db/dt| << 1] so the small gyroradius
expansion used to derive the guiding center orbits is valid.) //

5.26 Show that classical diffusion is automatically ambipolar for a plasma with mul-
tiple species of ions. [Hint: Note that because of momentum conservation in
Coulomb collisions Re = =~ Ri.] //
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