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Chapter 6

Plasma Descriptions II:
MHD

The preceding chapter discussed the microscopic, kinetic and two-fluid decsrip-
tions of a plasma. But we would actually like a simpler model — one that would
include most of the macroscopic properties of a plasma in a “one-fluid” model.
The simplest such model is magnetohydrodynamics (MHD), which is a combi-
nation of a one-fluid (hydrodynamic-type plus Lorentz force effects) model for
the plasma and the Maxwell equations for the electromagnetic fields. The main
equations, properties and applications of the MHD model are developed in this
chapter.

In the first section, we further approximate and combine the two-fluid de-
scription in Section 5.5 to obtain a “one-fluid” magnetohydrodynamics (MHD)
description of a magnetized plasma. Section 6.2 presents the MHD equations in
various forms and discusses their physical content. Subsequent sections discuss
general properies of the MHD model – (force-balance) equilibria (Section 6.3),
boundary and shock conditions (Section 6.4), dynamical responses (Section 6.5),
and the Alfvèn waves (Section 6.6) that result from them. Then, Section 6.7 dis-
cusses magnetic field diffusion in the presence of a nonvanishing plasma electrical
resistivity. Finally, Section 6.8 discusses the relevant time and length scales on
which the kinetic, two-fluid and MHD models of magnetized plasmas are appli-
cable, and hence usable for describing various magnetized plasma phenomena.
This chapter thus presents the final steps in the procedures and approximations
used to progress from the two-fluid plasma model to a macroscopic description,
and discusses the key properties of the resultant MHD plasma model.

6.1 Magnetohydrodynamics Model*

Magnetohydrodynamics (MHD) is the name given to the nonrelativistic single
fluid model of a magnetized (ω, νi << ωci), small gyroradius (%i∇⊥ << 1)
plasma. The MHD description is derived in this section by adding appropri-
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ately the two-fluid equations [(??)–(??)] to obtain a “one-fluid” description and
then making suitable approximations. The philosophy of the “ideal MHD” de-
scription is to obtain density, momentum and equation of state equations that
govern the macroscopic behavior of a magnetized plasma on “fast” time scales
where dissipative processes are negligible and entropy is conserved. Thus, ideal
MHD processes are isentropic. The philosophy of “resistive MHD” is to extend
the time scale beyond the electron collision time scale (∼ 1/νe) by adding to
ideal MHD the irreversible, dissipative effects due to the electrical resistivity in
the plasma.

The pedagogical approach we will use is to first define the MHD plasma
variables and next obtain conservation equations for these quantities. Then, we
discuss the approximations used in obtaining the MHD plasma equations, and
finally (in the next Section) we summarize the equations that constitute the
MHD model of a plasma and its electromagnetic fields. We begin by defining
the one-fluid “plasma” variables of MHD:

mass density (kg/m3): ρm ≡
∑

s

msns = mene + mini ' mini (6.1)

mass flow velocity (m/s): V ≡
∑

s msnsVs∑
s msns

=
meneVe + miniVi

ρm
' Vi

(6.2)

current density (A/m2): J ≡
∑

s

nsqsVs = −nee(Ve −Vi) (6.3)

plasma pressure (N/m2): P ≡
∑

s

[
ps +

nsms

3
|V̆s|2

]
' pe + pi (6.4)

stress tensor (N/m2): Π =
∑

s

[
πs + nsms

(
V̆sV̆s −

1
3

I |V̆s|2
)]

' πe + πi, (6.5)

in which V̆s ≡ Vs − V is the species flow velocity relative to the mass flow
velocity V of the entire plasma. Here, the forms on the right indicate first the
general form as a sum over the species index s, second the electron-ion two-fluid
form, and finally, after an appoximate equality, the usual, approximate forms
for me/mi

<∼ 1/1836 <<< 1, comparable Ve and Vi, and |Vi| << vTi. By
construction, the pressure and stress tensor are defined in the flow velocity rest
frame, which is often called the center-of-mass (really momentum) frame — see
Problem 6.1.

A one-fluid mass density (continuity) equation for the plasma is obtained
by multiplying the electron and ion density equations (??) and (??) by their
respective masses to yield ∂ρm/∂t+∇·ρmV = 0. Multiplying the density equa-
tions by their respective charges qs and summing over species yields the charge
continuity equation ∂ρq/∂t + ∇· J = 0. In MHD the plasma is presumed to
be quasineutral because we are interested in plasma behavior on time scales
long compared to the plasma period (ω << ωp) and length scales long com-
pared to the Debye shielding distance (λD/δx ∼ kλD << 1). Mathematically,
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quasineutrality in the plasma means ρq ≡
∑

s nsqs = e(Zini − ne) ' 0. Thus,
in the MHD model the charge continuity equation simplifies to ∇· J = 0. Note
that this equation is also consistent with the divergence of Ampere’s law when
the displacement current is neglected — see (??). Hence, the charge continuity
equation ∇· J = 0 is also consistent with a nonrelativistic MHD description of
particles and waves in a plasma. Since MHD plasmas are quasineutral and have
no net charge density (ρq = 0), the Gauss’ law Maxwell equation ∇· E = ρq/ε0
cannot be used to determine the electric field in the plasma. Rather, since
a plasma is a highly polarizable medium, in MHD the electric field E is deter-
mined self-consistently from Ohm’s law, Ampere’s law and the charge continuity
equation (∇· J = 0).

A one-fluid momentum equation (equation of motion) for a plasma is ob-
tained by simply adding the electron and ion momentum equations (??) and
(??) (see Problem 6.2 for the structure of the inertia term ρmdV/dt):

ρm
dV
dt

= ρqE + J×B−∇P −∇· Π, (6.6)

in which Π ' πe + πi is the total plasma stress tensor in the center-of-mass
frame defined in (6.5). The electric field term is eliminated in MHD by the
assumption of quasineutrality in the plasma: ρq ' 0. In a collisional plasma
the viscosity effects of the ions are dominant in the stress tensor Π [see (??)].
The dissipative effects due to ion viscosity become important on time scales
long compared to the relatively slow ion collision time scale [see (??)]. For low
collisionality plasmas in axisymmetric toroidal magnetic systems these parallel
ion viscosity effects (due to b̂ ·∇· π‖i) represent the viscous drag on the parallel
(poloidal) ion flow carried by untrapped ions due to their collisions with the
stationary trapped ions, and are included in a model called neoclassical MHD;
there they result in damping of the poloidal ion flow at a rate proportional to
the ion collision frequency νi and consequently to an increased perpendicular
inertia and dielectric response for t >> 1/νi — see Chapter 16. In ideal and
resistive MHD it is customary to neglect the viscous stress effects and thus set
Π = 0 in (6.6). This assumption is usually valid for time scales shorter than
the ion collision time scale: d/dt ∼ −iω >> νi.

Since the magnetic field causes the plasma responses to be very different
along and transverse to the magnetic field direction, it is useful to explore the
responses in different directions separately. Taking the dot product of b̂ ≡ B/B
with the plasma momentum equation (6.6) and neglecting ρqE (quasineutrality
assumption) and the stress tensor Π, the parallel plasma momentum equation
becomes

ρm

dV‖
dt

= −∇‖P − ρmV· db̂
dt

. (6.7)

in which∇‖ ≡ b̂ ·∇ = ∂/∂`. The last term is important only when the magnetic
field direction is changing in time or in inhomogeneous plasmas when the flow
velocity V is large. Neglecting this term, (6.7) in combination with the plasma
mass density (continuity) equation leads to compressible flows due to plasma
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pressure perturbations and hence to sound waves along the magnetic field —
see (??)–(??) in Section A.6 and (6.89) below.

Taking the cross product of B with the momentum equation and using the
bac− cab vector identity (??), again neglecting ρqE and the stress tensor Π, we
obtain the two perpendicular components of the current:

J∗ ≡ B×∇P

B2
, diamagnetic current density, (6.8)

Jp ≡ B×ρmdV/dt

B2
, polarization current density. (6.9)

The diamagnetic current is the sum of the currents produced by the diamag-
netic currents due to flows in the various species of charged particles in the
plasma: J∗ =

∑
s nsqsV∗s. Like the species diamagnetic flows, it is called a

“diamagnetic” current because it produces a magnetic field that reduces the
magnetic field strength — in proportion to the plasma pressure P (see Problem
6.13). The electric field produces no perpendicular current in MHD because
the E×B flows of all species are the same; hence, they produce no current:∑

s nsqsVEs = (
∑

s nsqs)VE = ρqVE ' 0.
Like for the individual species diamagnetic flows [see (??) and Fig. ??], the

(fluid picture) diamagnetic current is equal to the (particle picture) current due
to the combination of the particle guiding center drifts and the magnetization
produced by the magnetic moments (µ) of all the charged particles gyrating in
the B field:

J∗ = JD + ∇×M, (6.10)

in which the particle drift (D) and the magnetization (M) currents are

JD ≡
∑

s

nsqsv̄Ds =
B×P (∇ lnB + κ)

B2
+

P

B
b̂(b̂ ·∇×b̂), (6.11)

JM ≡ ∇×M, M ≡
∑

s

∫
d3v µsfMs = − b̂

B

∑
s

ps = −P

B
b̂. (6.12)

Note that since the (dimensionless) magnetic susceptibility χM is defined by
M = χMB/µ0 [see (??)], in the MHD model of the plasma χM = −(µ0P/B2).
The negative sign of χM indicates the diamagnetism effect of the magnetic
moments of the gyrating particles in a magnetized plasma. As an illustration of
the magnitude of this diamagnetism effect, when the plasma pressure P is equal
to the magnetic energy density [see (??)] B2/2µ0, the magnetic field strength
is halved.

The polarization current is the current produced by the sum of the currents
due to the polarization flows of the various species: Jp =

∑
s nsqsVp. Since

the ion mass is so much larger than the electron mass, the ion polarization flow
dominates: Jp ' niZieVpi. There is no resistivity-driven current (i.e., no Jη)
because the classical diffusion induced by the plasma resistivity η is ambipolar
[see (??)]. Also, there is no viscosity-induced current (i.e., no Jπ) in MHD
because the stress tensor effects are neglected, assuming ω >> νi.
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The total current in MHD is a combination of the parallel current, and the
diamagnetic and polarization perpendicular currents:

J = J‖ + J∗ + Jp = J‖
B
B

+
B×∇P

B2
+

B×ρmdV/dt

B2
. (6.13)

The parallel component of the current density is defined by J‖ ≡ b̂ · J =
(B · J)B. Quasineutrality of the highly polarizable, magnetized plasma is en-
sured in MHD through

0 = ∇· J = (B ·∇)(J‖/B) + ∇· J∗ + ∇· Jp,

MHD charge continuity equation, (6.14)

which is a very important equation for analyzing MHD equilibria and instabil-
ities. The derivative of the parallel current has been simplified here using the
vector identity (??) and the Maxwell equation ∇· B = 0:

∇· J‖ = ∇· (J‖/B)B = (B ·∇)(J‖/B)+(J‖/B)∇· B = (B ·∇)(J‖/B). (6.15)

Taking the divergence of the diamagnetic current equation (6.20), we obtain
(see Problem 6.3)

∇· J∗ = ∇· JD =
B×(∇ lnB + κ)

B2
· ∇P +

1
B

(b̂ ·∇P )(b̂ ·∇×b̂),

= −J∗· (∇ lnB + κ) + (b̂ ·∇P )(µ0J‖/B2). (6.16)

Here, we have used vector identities (??) and (??) to evaluate the divergence
of J∗ and Ampere’s law to write b̂ ·∇×b̂ = µ0J · B/B2 = µ0J‖/B — see
discussion after (??). Thus, like for the individual species current contributions,
the net (divergence of the) electrical current flow in or out of an infinitesimal
volume can be computed from either the divergence of the diamagnetic current
(fluid picture) or the divergence of the particle drift current (particle picture).

The important effects of the (mostly radial) pressure gradients in the MHD
model of a magnetized plasma are manifested through the diamagnetic cur-
rent J∗ it induces and, for inhomogeneous magnetic fields, the net charge flows
induced [see (6.16)]. For the MHD charge continuity equation (6.14) to be sat-
isfied, compensating parallel (J‖) or polarization (Jp) currents must flow in the
plasma. These electrical currents can lead, respectively, to modifications of the
MHD equilibrium (Chapter 20) and pressure-gradient-driven MHD instabilities
(Chapter 21).

Next, we obtain an Ohm’s law for MHD. A one-fluid “generalized Ohm’s
law” is obtained by multiplying the electron and ion momentum equations by
qs/ms and summing them to produce an equation for ∂J/∂t — see Problem 6.4.
However, we proceed more physically and directly from the electron momentum
equation. Using Ve = Vi − J/nee ' V − J/nee and the anisotropic frictional
force R in (??), and dividing the electron momentum equation (??) by −nee,
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we find it can be written (to lowest order in me/mi) as

me

e2

d

dt

(
Je

ne

)
= E + V×B−

(
J‖
σ‖

+
J⊥
σ⊥

)
− J×B−∇pe −∇· πe

nee
,

generalized Ohm’s law. (6.17)

Here, we have neglected an ion flow inertia term on the left because it is order
me/mi

<∼ 1/1836 smaller than the inertial flow contribution coming from the
Jp×B term evaluated using the polarization current (6.9). While the first and
third terms on the right indicate a simple Ohm’s law E = J/σ, there are a
number of additional terms. To understand the role and magnitude of these
other contributions to the generalized Ohm’s law and obtain an MHD Ohm’s
law, we need to explore separately their contributions along and perpendicular
to the magnetic field direction.

The parallel component (b̂ · ) of the generalized Ohm’s law is:

(me/e2) b̂ · de(J/ne)/dt = E‖ − J‖/σ‖ + (∇‖pe + b̂ ·∇· πe)/nee. (6.18)

The electron inertia term on the left is small compared to E‖ for scale lengths
longer than the electromagnetic skin depth (see Section 1.5): |(c/ωpe)∇| ∼
kc/ωpe << 1 — see Problem 6.5. Since c/ωpe is typically a very short distance
(c/ωpe ' 10−3 m = 1 mm for ne ' 3×1019 m−3), this is usually a good approx-
imation in MHD which seeks to provide a plasma description on macroscopic
scale lengths. Also, since 1/σ‖ ∼ meνe/nee

2, the electron inertia term is of
of order ω/νe compared to the parallel friction force term J‖/σ‖. In resistive
MHD it is assumed that ω << νe so the electron inertia can be neglected in the
parallel Ohm’s law.

The parallel electron pressure gradient term is neglected in MHD because of
a fundamental approximation in MHD that electric field effects are larger than
pressure gradient effects:

|E‖| >> |∇‖P |/nee, |E⊥| >> |∇⊥P |/nee, MHD approximations. (6.19)

Physically, the MHD model describes situations in which collective electric field
effects are more important than the thermal motion (pressure) effects of both
electrons and ions. Mathematically, this approximation is appropriate (both
along and across magnetic field lines — see Problem 6.6) when the E×B flow
velocity VE is large compared to the diamagnetic flow velocities V∗e,V∗i and
hence for ω, ωE >> ω∗e, ω∗i.

Finally, we consider the contribution due to the parallel component of the
viscous stress. While this term is negligible compared to J‖/σ‖ in a colli-
sional plasma [see (??)], it can be important in more collisionless plasmas where
λe∇‖ >∼ 1 in which λe = vTe/νe is the electron collision length. For low colli-
sionality plasmas in axisymmetric toroidal magnetic systems these parallel elec-
tron viscosity effects (from b̂ ·∇· π‖e) represent the viscous drag on the parallel
electron flow carried by untrapped electrons due to their collisions with the
stationary trapped electrons and ions, and they are included in a model called
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neoclassical MHD; there they result in order unity modifications of the parallel
Ohm’s law (see Chapter 16) — reductions in the parallel electrical conductivity
and a so-called “bootstrap current” parallel to B induced by the radial gradient
of the plasma pressure. In ideal and resistive MHD the parallel electron inertia,
pressure gradient and viscosity effects are all neglected and the parallel Ohm’s
law becomes simply E‖ = J‖/σ‖.

Next, we consider the perpendicular component of the generalized Ohm’s
law. It is obtained by operating on (6.17) with −b̂×(b̂× ):

0 = E⊥ + V×B + J⊥/σ⊥ − [J×B−∇⊥pe − (∇· πe)⊥]/nee (6.20)

in which the ⊥ subscript indicates the component perpendicular to B [see (??)].
The perpendicular electron inertia term has been neglected here because it is a
factor of at least ω/ωce = (ωci/ωce)(ω/ωci) <∼ (1/1836)(ω/ωci) <<< 1 smaller
than the E⊥ term and hence negligible in MHD — see Problem 6.7. The first
two terms on the right give the dominant part of the perpendicular Ohm’s law
and when set to zero yield a perpendicular plasma flow velocity V⊥ = VE =
E×B/B2. The J×B term on the right is known as the Hall term; it indicates
a perpendicular electric field caused by current flowing transverse to a magnetic
field. In MHD the perpendicular current is composed of the diamagnetic and
polarization currents defined in (6.8) and (6.9). The diamagnetic Hall term
component J∗×B = ∇⊥P , and the ∇⊥pe and (∇· π∧e)⊥ terms are comparable
in magnitude; they are all neglected in MHD because of the perpendicular part
of the MHD approximation (6.19). Finally, the ratio of the polarization current
contribution in the Hall term to the electric field term is |Jp×B|/(nee|E⊥|) ∼
(ρm/nee)|dV⊥/dt|/|E⊥| ∼ (1/ωci)|dE⊥/dt|/|E⊥| ∼ ω/ωci, which is small in
the small gyroradius expansion necessary for the validity of MHD. Thus, our
perpendicular Ohm’s law in MHD becomes simply E⊥ + V×B = J⊥/σ⊥.

The perpendicular Ohm’s law can be combined with the MHD parallel Ohm’s
law to yield

E + V×B = J‖/σ‖ + J⊥/σ⊥, complete MHD Ohm’s law. (6.21)

The parallel electrical conductivity σ‖ is at most a factor [see (??)] of 1/αe ≤
32/3π ' 3.4 greater than the perpendicular conductivity σ⊥ = σ0. Thus, it
is customary in resistive MHD to not distinguish the electrical conductivity
along and transverse to the magnetic field, but instead to just use an isotropic
electrical resistivity defined by η ≡ 1/σ0 = meνe/nee

2. Hence, the MHD Ohm’s
law is usually written as simply E + V×B = ηJ.

In MHD the Ohm’s law is used to write the electric field in terms of the flow
velocity V and current J. Taking the cross product of the Ohm’s law with the
magnetic field B, we obtain the perpendicular MHD mass flow velocity V⊥:

V⊥ =
E×B
B2

+
B×ηJ

B2
= VE + Vη. (6.22)

Thus, the perpendicular MHD mass flow velocity is the sum of the E×B flow
velocity (??) and the (ambipolar) classical transport flow velocity (??), which
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although small is kept because it is a consequence of including resistivity in
the Ohm’s law. [The diamagnetic flow velocity V∗ does not appear in the
perpendicular MHD mass flow velocity V⊥ because of the MHD approximation
(6.19); the polarization flow Vp and viscosity-driven flow Vπ are not included in
the MHD V⊥ because they are higher order in the small gyroradius expansion.]

The parallel (b̂ · ) component of the MHD Ohm’s law (??) yields

E‖ = ηJ‖. (6.23)

In the ideal MHD limit where η → 0, this equation requires E‖ = 0, which
for a general E = −∇φ − ∂A/∂t is satisfied in equilibrium by the equilibrium
potential Φ being constant along the magnetic field, and in perturbations by the
parallel gradient of the potential being balanced by a parallel inductive (vector
potential) component: Ẽ‖ = −∇‖φ̃− ∂Ã‖/∂t = 0.

Finally, we need a one-fluid energy equation or equation of state to close
the hierarchy of MHD equations. In MHD it is customary to use an isentropic
equation of state (d/dt) ln(P/ρΓ

m) ' 0. Using P = pe+pe, 3/2 =⇒ 1/(Γ−1) and
working out the time derivative in terms of the time derivatives of the electron
and ion entropies given in (??), (??), (??) and (??), we obtain

d

dt
ln

P

ρΓ
m

=
Γ− 1

P

(
pe

dse

dt
+ pi

dsi

dt

)
' Γ− 1

P

(
−∇ · qe −∇Vi : πi + ηJ2

)
.

(6.24)
The last, approximate form indicates the dominant contributions to the overall
plasma entropy production rate. Its last term indicates entropy production by
joule heating; while this rate is usually small [' νe(|J|/neevTe)2 << νe, of order
one over the plasma confinement time], it should be kept in resistive MHD for
consistency with the inclusion of resistivity in the Ohm’s law. As discussed
after (??), the ion viscous dissipation rate is at most of order the ion collision
frequency νi for fluidlike ions; thus, like the ion viscous stress tensor effects
in the plasma momentum equation, it is usually neglected assuming d/dt ∼
−iω >> νi.

Most problematic for an isentropic plasma equation of state is the electron
heat conduction. In a collisional plasma, parallel electron heat conduction leads
to a plasma entropy production rate of order νe(λe∇‖)2 << νe, which is often
smaller than MHD wave frequencies and hence negligible. However, in low
collisionality plasmas where λe∇‖ >∼ 1, parallel electron heat conduction can
cause entropy production rates of order νe or perhaps larger [see disussion after
(??)], which can be of order MHD wave frequencies. On the other hand, if the
electron fluid responds totally collisionlessly, there is no entropy production from
electron heat conduction (or any other collisionless electron process). In MHD
it is customary to neglect the electron heat conduction contributions to entropy
production on the basis that either: 1) d/dt ∼ −iω >> νe; 2) parallel electron
temperature gradients are quite small because of parallel heat conduction and
thus lead to a negligible entropy production rate [ω >> νeλ

2
e(∇2

‖T )/T ]; or 3) the
relevant electron response is totally collisionless and hence leads to no entropy
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CHAPTER 6. PLASMA DESCRIPTIONS II: MHD 9

production. However, there could be circumstances where entropy-producing
parallel electron heat conduction effects are important on MHD wave time scales.

6.2 MHD Equations

The equations used to describe the MHD model of a magnetized plasma and
the associated electric and magnetic fields are thus given by

MHD Plasma Description (Ideal, η → 0; Resistive, η 6= 0):

mass density:
∂ρm

∂t
+ ∇·ρmV = 0, (6.25)

charge continuity: ∇· J = 0, (6.26)

momentum: ρm
dV
dt

= J×B−∇P, (6.27)

Ohm’s law: E + V×B = ηJ, (6.28)

equation of state:
d

dt
ln

P

ρΓ
m

= (Γ− 1)
ηJ2

P
' 0, (6.29)

total time derivative:
d

dt
≡ ∂

∂t
+ V·∇. (6.30)

Maxwell Equations for MHD:

Faraday’s law:
∂B
∂t

= −∇×E, (6.31)

no magnetic monopoles: ∇· B = 0, (6.32)
nonrelativistic Ampere’s law: µ0J = ∇×B. (6.33)

Gauss’ law (∇· E = ρq) does not appear in the list of Maxwell equations because
in the MHD model plasmas are highly polarizable, quasineutral (ρq ' 0) fluids in
which the electric field is determined self-consistently from Ohm’s law, Ampere’s
law and the charge continuity equation ∇· J = 0.

The MHD model describes a very wide range of phenomena in small gyrora-
dius, magnetized plasmas — macroscopic plasma equilibrium and instabilities,
Alfvèn waves, magnetic field diffusion. It is the fundamental, lowest order model
used in analyzing magnetized plasmas.

The physics content of the MHD plasma description is briefly as follows.
The equation for the mass density (ρm ' mini) is also called the continuity
equation and can be written in the form ∂ρm/∂t = −V·∇ρm− ρm∇·V. When
written in the latter form, it describes changes in mass density due to advection
(V·∇ρm) and compressibility (∇·V 6= 0) by the mass flow velocity V — see
Fig. ??. The charge continuity equation is the quasineutral (ρq ' 0) form of
the general charge continuity equation ∂ρq/∂t + ∇· J = 0 that results from
adding equations for the charge densities of the electron and ion species in
the plasma. [While ∇· J = 0 also results from taking the divergence of the
nonrelativistic (i.e., without displacement current) Ampere’s law, it is often
better to think of it as the equation that ensures quasineutrality of the plasma
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CHAPTER 6. PLASMA DESCRIPTIONS II: MHD 10

in the MHD model — as indicated in (6.14).] The momentum equation, which
is also known as the equation of motion, provides the force density balance for
a fluid element (infinitesimal volume of fluid) that is analogous to ma = F for
a particle: the inertial force (ρmdV/dt) is equal to the magnetic force (J×B)
plus the (expansive) pressure gradient force (−∇P , where P = pe + pi is the
total plasma pressure) on a fluid element. The MHD Ohm’s law, which is a
simplified form of the electron momentum equation, is just the basic laboratory
frame Ohm’s law E′ = ηJ for a fluid moving with plasma mass flow velocity
V: E′ = E + V×B. The MHD equation of state is an isentropic (adiabatic
in thermodynamics) equation of state except for the small entropy production
rate by joule heating (∼ ηJ2/P ∼ 1/τE), which is usually negligibly small but
is retained for consistency with inclusion of resistivity in Ohm’s law. The total
time derivative in (6.30) indicates that time-differentiated quantities change
both because of local (Eulerian) temporal changes (∂/∂t|x) and because of being
carried along (advected) with the MHD fluid (V·∇) at the velocity V.

After some manipulations, it can be shown (see Problems 6.8–6.9) that the
MHD equations yield the following conservative forms of total MHD system
mass, momentum and energy relations:

MHD system mass equation:
∂ρm

∂t
+ ∇·ρmV = 0, (6.34)

MHD system momentum equation:
∂(ρmV)

∂t
+ ∇·T = 0, (6.35)

MHD system energy equation:
∂w

∂t
+ ∇· S = 0, (6.36)

in which

MHD stress tensor: T ≡ ρmVV +
(

P +
B2

2µ0

)
I− BB

µ0
, (6.37)

MHD energy density: w ≡ ρmV 2

2
+

P

Γ− 1
+

B2

2µ0
, (6.38)

MHD energy flux: S ≡
(

ρmV 2

2
+

Γ
Γ− 1

P

)
V +

E×B
µ0

. (6.39)

Here, the contributions to the MHD system stress tensor are due to the flow
(ρmVV, Reynolds stress), isotropic pressure (P I) and both isotropic expansion
[(B2/2µ0)I] and tension (−BB/µ0) stresses in the magnetic field — see (??).
The Reynolds stress is only important in systems with large flow; it is negligible
in MHD systems with strongly subsonic flows (ρmV 2/2P ∼ V 2/c2

S << 1). The
system energy density is composed of the densities of the kinetic (flow) energy
(ρmV 2/2), internal energy (3P/2 for a three-dimensional system with Γ = 5/3)
and the magnetic field energy density (B2/2µ0). Joule heating (ηJ2) does not
appear in the MHD system energy density equation because energy lost from the
electromagnetic fields by joule heating [see (??)] increases the internal energy in
the plasma [see (6.29)]; thus, the total MHD energy density, which sums these
energies, remains constant. The terms in the MHD energy flux represent the
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CHAPTER 6. PLASMA DESCRIPTIONS II: MHD 11

flow of kinetic (ρmV 2/2) and internal [P/(Γ−1)] energies with the flow velocity
V, mechanical work done on or by the plasma as it moves (PV), and energy
flow by the electromagnetic fields (E×B/µ0) [Poynting vector — see (??)].

To illutrate the usefulness of these MHD system conservation equations,
consider the system energy equation (6.36). Integrating this equation over the
volume V of an isolated plasma, the divergence term can be converted using
Gauss’ theorem (??) into a surface integral that vanishes if there is no flow of
plasma or electromagnetic energy across the surface that bounds the volume.
For such an isolated system the integral of the system energy over the volume
must be independent of time:∫

V

d3x

(
ρmV 2

2
+

P

Γ− 1
+

B2

2µ0

)
≡ Wk + Wp = constant, (6.40)

in which

Wk =
∫

V

d3x
ρmV 2

2
, plasma kinetic energy, (6.41)

Wp =
∫

V

d3x

(
P

Γ− 1
+

B2

2µ0

)
, MHD potential energy. (6.42)

Thus, in the MHD model while there can be exchanges of energy between the
plasma kinetic, and internal and magnetic energies, their sum must be constant.
For a plasma motion to grow monotonically (as in a collective instability), in-
creases in plasma kinetic energy due to dynamical motion of the plasma must
be balanced by reductions in the potential (plasma internal plus magnetic field)
energy in the plasma volume. In Chapter 21 the constancy of the total system
energy in MHD will be used as the basis for developing a variational (“energy”)
principle for plasma instability, which can occur for a plasma perturbation that
reduces the system potential energy Wp.

6.3 MHD Equilibrium

In this section we discuss the equilibrium (∂/∂t = 0) consequences of the system
conservation relations for MHD (6.34)–(6.36). In equilibrium the mass density
equation yields ∇·ρmV = 0. In one dimension (x), this equilibrium continu-
ity equation yields ρm(x)Vx(x) = constant. Thus, in a one-dimensional flow
situation the mass density will be higher (lower) where the flow velocity V is
lower (higher). Equilibrium flows are negligible in MHD for many plasma situa-
tions; then the equilibrium continuity equation is trivially satisfied for any mass
density profile ρm(x).

Next, consider the stress-induced forces which contribute to the system mo-
mentum conservation equation (6.35). Consider first the magnetic (subscript
B) contribution that is represented by the J×B force density in the momen-
tum equation (6.27) and the magnetic field part of the system stress tensor T
in (6.37). The stress in the magnetic field exerts a force density fB on a fluid
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Figure 6.1: Schematic illustration of the stresses and force densities on a fluid
element of plasma in the MHD model: a) isotropic expansive pressure stress
TP = P I, b) anisotropic magnetic stresses TB , c) pressure gradient force density
fP = −∇P , and d) magnetic force density fB in the normal (N̂ ∝ curvature)
and binormal (B̂) directions.

element (infinitesimal volume of MHD plasma fluid) given by

fB ≡ J×B =
1
µ0

(∇×B)×B = − B

µ0
b̂×(∇×Bb̂)

= − B

µ0
b̂×(∇B×b̂)− B2

µ0
b̂×(∇×b̂)

= −∇⊥
(

B2

2µ0

)
+

B2

µ0
κ = −∇· B2

2µ0

(
I− b̂b̂

2

)
≡ −∇·TB , (6.43)

in which we have used vector identities (??), (??), (??), (??), (??), (??) and
(??). The corresponding force density fP due to the plasma pressure is

fP ≡ −∇P = −∇·P I ≡ −∇·TP . (6.44)

These stresses and force densities are illustrated schematically in Fig. 6.1 and
discussed in the next few paragraphs.

Consider first the stresses. Adopting êx, êy, b̂ ≡ B/B as the base vectors for
a local magnetic field coordinate system, the sum of the pressure and magnetic
stress tensors can be written (in matrix notation) as

TP + TB ≡
(
êx êy b̂

) P + B2/2µ0 0 0
0 P + B2/2µ0 0
0 0 P −B2/2µ0

 êx

êy

b̂


= êxT⊥⊥êx + êyT⊥⊥êy + b̂T‖‖b̂, (6.45)

with T⊥⊥ ≡ P + B2/2µ0, T‖‖ ≡ P −B2/2µ0.

(For simplicity of presentation, often the directional vectors are omitted and
only the elements of the matrix of tensor coefficients are shown.) The plasma
pressure produces an isotropic tensor (I) expansive (positive) stress, which repre-
sents the thermal motion of particles expanding uniformly in all directions. The
magnetic stress is anisotropic. From TB and (6.45), we see that the magnetic
stress is expansive (positive) in directions êx, êy perpendicular to the magnetic
field B = Bb̂, but in tension (negative) along magnetic field lines. Physically,
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the magnetic field can be thought of as providing a magnetic “pressure” B2/2µ0

perpendicular to magnetic field lines, and tension along field lines — as if the
magnetic field lines are elastic cords with tension stress of B2/µ0 along B press-
ing against the plasma fluid, which is trying to expand perpendicular to the
magnetic field lines due to the combination of the pressure and magnetic energy
density expansive forces.

The force density on an MHD fluid element is given (for subsonic flows where
the Reynolds stress tensor ρmVV is negligible) by the divergence of this stress
tensor:

fP + fB ≡ −∇P + J×B = −∇· (TP + TB)

= −∇P −∇
(

B2

2µ0

)
+

(B ·∇)B
µ0

= −∇P −∇⊥
(

B2

2µ0

)
+

B2

µ0
κ. (6.46)

In the last form, the −∇P term represents the isotropic, pressure gradient force,
the next term represents the perpendicular (to B) force due to the magnetic
“pressure” B2/2µ0 and the last term represents the force due to the parallel
tension of magnetic field lines, as if each “magnetic cord” presses on the fluid
with a force density of (B2/µ0)κ = −(B2/µ0)RC/R2

C where RC is the local
radius of curvature vector [see (??)] of a magnetic field line.

An MHD fluid element will be in force balance equilibrium, which is usually
just called “equilibrium” in MHD, if the force density fP + fB vanishes. Then,
there is no net force to drive an inertial force response via the MHD momentum
equation (6.27) and the system momentum conservation equation (6.35) is sat-
ified in equilibrium [∂(ρmV)/∂t = 0]. When there is no gradient in the plasma
pressure (an unconfined plasma), the force balance equilibrium becomes

fB = J×B = 0, force-free equilibrium with ∇P = 0. (6.47)

In order for a magnetic field system to be able to support a pressure gradient in
force balance equilibrium, the current and magnetic field must not be parallel
to each other; rather, their cross product must satisfy

J×B = ∇P, MHD force-balance equilibrium. (6.48)

Taking the cross product of B with this equation, we obtain the diamagnetic
current J∗ = (B×∇P )/B2 in (6.8), which is the sum of the diamagnetic flows
of all species of charged particles in the plasma given in (??). The perpendicular
[−b̂×(b̂× )] component of the MHD force-balance equation can also be written
[from the last form of (6.46)] as

κ = ∇⊥ lnB +
µ0

B2
∇⊥P, perpendicular equilibrium in MHD. (6.49)

This formula is the same as (??) given previously in Chapter 3 for the magnetic
field curvature if we use the MHD equilibrium condition J×B = ∇⊥P .
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Because the force density on the plasma is different in different directions, it
is of interest to explore its forms and implications in various relevant directions.
Since the magnetic field direction and curvature are two obviously important
directions, a convenient coordinate system is the Frenet coordinate system whose
orthogonal base vectors for a vector field (B here) are (see Section D.6)

T̂ ≡ b̂ ≡ B/B, N̂ ≡ κ/κ, B̂ ≡ T̂×N̂ = b̂×κ/κ, (6.50)

which are unit vectors in the tangent (T̂), normal (N̂, or curvature) and binormal
(B̂) directions of the B field. Decomposing the MHD force density on a fluid
element into its components in these orthogonal directions, we find

fP + fB = − b̂ (b̂ ·∇P )− N̂

[
(N̂ ·∇)(P +

B2

2µ0
)− B2

µ0
κ

]
− B̂ (B̂ ·∇)

(
P +

B2

2µ0

)
.

(6.51)
The conditions for MHD force-balance equilibrium are thus (see Fig. 6.1)

along B: 0 = b̂ ·∇P =
∂P

∂`
, (6.52)

curvature direction: 0 = N̂ ·∇
(

P +
B2

2µ0

)
− B2

µ0
κ, (6.53)

binormal direction: 0 = B̂ ·∇
(

P +
B2

2µ0

)
. (6.54)

Since there is no magnetic force along the magnetic field (B·fB = B·J×B =
0), in order to satisfy the first (parallel) MHD force balance condition the plasma
pressure P must be constant along magnetic field lines. (The axial confinement
of plasma in a magnetic mirror is achieved via anisotropic pressure — see Prob-
lem 6.11.) When nested magnetic flux surfaces exist (see end of Section 3.2),
∂P/∂` = 0 requires that the pressure be a function only of the magnetic flux ψ:

P = P (ψ) =⇒ B ·∇P = (B ·∇ψ)
dP

dψ
= 0, (6.55)

which vanishes (assuming finite dP/dψ), by virtue of the condition for the ex-
istence of a magnetic flux function (??): B ·∇ψ = 0. Further, from the dot
product of the current J with the MHD equilibrium force-balance condition
(6.48) we find

J ·∇P = 0. (6.56)

From these last two equations we see that the vector fields J and B both lie
within, and do not penetrate, magnetic flux surfaces. Further, we see from
(6.48) that in force balance equilibrium the cross product of these two vectors
in the flux surface must equal the pressure gradient, which is perpendicular to
the flux surface (see Fig. 6.2):

J×B = ∇P (ψ) = ∇ψ
dP

dψ
. (6.57)
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Figure 6.2: In ideal MHD equilibrium the cross product of the current density J
and magnetic field B vectors within a flux surface is equal to ∇P = (dP/dψ)∇ψ,
which is normal to the flux surface.

Figure 6.3: Pressure P and magnetic energy density B2/2µ0 profiles for: a)
β << 1, and b) β ' 1.

When there is no magnetic field curvature, the force balance equilibrium
condition is the same in all directions perpendicular to the magnetic field:

∇⊥
(

P +
B2

2µ0

)
= 0, MHD equilibrium with no B field curvature. (6.58)

To illustrate the implications of this equation, consider the MHD equilibrium of
a localized plasma placed in a uniform magnetic field B = B0b̂ = B0êz, For a
given plasma pressure profile P (x⊥) that varies in directions (x⊥) perpendicular
to the magnetic field but does not extend to infinite dimensions, (6.58) yields

∂

∂x⊥

(
B2

2µ0

)
= − ∂P

∂x⊥
=⇒ B(x⊥) = B0

√
1− β(x⊥) . (6.59)

Here, we have defined the very important MHD parameter β by

β(x⊥) ≡ P (x⊥)
B2

0/2µ0
= 4.0× 10−25

( ne

B2

) [
Te(eV) +

ni

ne
Ti(eV)

]
,

ratio of plasma pressure to magnetic energy density. (6.60)

Thus, in an MHD equilibrium, for a situation where the magnetic field B
has no curvature, the plasma digs a magnetic well (region of reduced magnetic
energy density) that is just deep enough so that the sum of the plasma pres-
sure P and magnetic field energy density B2/2µ0 is constant (at B2

0/2µ0) in
all directions perpendicular to the magnetic field. This result is illustrated in
Fig. 6.3 for a cylindrical plasma where the plasma pressure vanishes at r = a for
two cases: small β and near unity β. The cylindrical form of (6.59) can also be
obtained directly (see Problem 6.14) from the radial force balance equation by
calculating the radial variation of the magnetic field Bz(r) using the azimuthal
component of Ampere’s law.

When the magnetic field has curvature, the force balance condition in the
normal (curvature) direction is changed to condition (6.53). Then, the pressure
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gradient in the curvature direction can be supported in force balance equilibrium
by either the curvature-induced force density (κB2/µ0) or the gradient in the
magnetic energy density, or by some combination thereof. When the plasma
pressure is low (β << 1), the magnetic field curvature is equal to the gradient
of the magnetic field energy density [the situation for a vacuum magnetic field —
see (??)] plus a small correction due to the plasma pressure. In the limit where
the magnetic field curvature is weak (radius of curvature RC much greater than
the presssure gradient scale length LP ≡ P/|∇⊥P |), the curvature effects are
small and the variation in magnetic field strength is still approximately as given
in (6.59). [In an axisymmetric tokamak both of these small corrections to (6.59)
are unfortunately comparable in magnitude — see Chapter 20.] In the binormal
direction, (6.54) shows that in force balance equilibrium, even with curvature
in the magnetic field B, P + B2/2µ0 is constant in the binormal direction —
increases in the plasma pressure P in the binormal direction are balanced by
decreases in magnetic energy density B2/2µ0, like in (6.59).

From the preceding discussion is is clear that the parameter β characterizes
the relative importance of the plasma pressure P versus the magnetic field B.
For β << 1 the plasma pressure has a small effect on the MHD equilibrium
and the magnetic field structure is approximately that determined from a vac-
uum magnetic field representation (??). Also, the diamagnetic current is small
(J∗ ' B×∇β/2µ0), as is the (diamagnetic) magnetic susceptibility due to the
plasma magnetization produced by the magnetic moments of all the charged
particles in the plasma gyrating in the magnetic field [χM ' −β/2 — see dis-
cussion after (6.12)]. Since the magnetic field is much stronger than the plasma
pressure in this regime, it can be used to provide a “magnetic bottle” for plasma
confinement. In the opposite limit (β >> 1) where the the plasma pressure in
much larger than the magnetic energy density, in general the plasma “pushes the
magnetic field around” and carries it along with its natural motions (pressure
expansion plus flows). A key question for magnetic fusion confinement systems
is the maximum β they can stably confine in equilibrium; the β ∼ 5–10% that is
needed for economically viable deuterium-tritium fusion reactors is apparently
accessible in many types of toroidal confinement systems — see Chapter 21.

It is often asked: can a finite pressure plasma support itself entirely with the
diamagnetic current and the magnetic field it produces, without any externally
imposed magnetic field? That is, can a plasma organize itself into a closed
magnetic equilibrium that has no connection to the outside world? In order
to examine this question, we consider the equilibrium [∂(ρmV)/∂t = 0] MHD
sytem momentum (or force balance) equation obtained from (6.35): ∇·T = 0.
Taking the dot product of this equation with the position vector x from the
centroid of the plasma system (to obtain a measure of the MHD system potential
energy density), we obtain the relation

0 = x ·∇·T = ∇· (x ·T)−∇x : T = ∇· (x ·T)− tr{T}, (6.61)

in which we have used vector identities (??), (??) and (??). Integrating this
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last form over a volume larger than the proposed isolated plasma, we obtain∫
©
∫

S

dS · (x ·T) =
∫

d3x tr{T}, (6.62)

in which we have used the tensor form of Gauss’ divergence theorem (??) to
convert the volume integral to a surface integral. We now examine the integrals
on the left and right separately. For the integral on the left we assume negligible
flows (V→ 0) and use (6.37) for T. Then, the integral on the left can be written
as ∫
©
∫

dS · (x ·T) =
∫
©
∫

dS ·
[
x

(
P +

B2

2µ0

)
− (x · B)B

µ0

]
∼ 1

r3

r→∞=⇒ 0.

(6.63)
As indicated at the end, in the limit of large radial distances r from the isolated
plasma this integral vaishes — because since there are apparently no magnetic
monopoles in the universe, the magnetic field B must decrease like that for a
dipole field does (|B| ∼ 1/r3) so the integrand scales as 1/r5 and when integrated
over the surface (|dS| → 4πr2) one finds that the integral decreases at least as
fast as 1/r3. Next, we consider the integral on the right. Using the matrix
definition of the stress tensor T given in (6.45), we find (for an isolated plasma
within a finite volume V )∫

V

d3x tr{T} =
∫

V

d3x

(
3P +

B2

2µ0

)
=⇒ constant. (6.64)

The only way this last integral can vanish, as is required by the combination
of (6.62) and (6.63), is if the plasma pressure P and magnetic energy den-
sity B2/2µ0 (both of which are intrinsically positive quantities) vanish. Thus,
we have found a contradiction: no isolated finite-pressure plasma can by it-
self develop a self-confining magnetic field in force balance equilibrium. This
proof and analysis is sometimes called a virial theorem (because it results from∫

d3x x · f =
∫

d3x x ·∇·T = 0) and was first derived by V.D. Shafranov.1

6.4 Boundary Conditions and Shock Relations

The basic subject to be discussed here are the jump conditions at a disconti-
nuity in a plasma or at a plasma-vacuum interface, and then the corresponding
bounday conditions at a vacuum wall or around coils for a “free-boundary” equi-
librium. See Section 3.2 of the Freidberg book. These same equations become
the shock conditions in a plasma. This section will be written later.

6.5 MHD Dynamics

To explore the elementary dynamical (evolution in time) properties of a plasma
in the MHD model, we first assume that the plasma fluid moves with a velocity

1V.D. Shafranov, in Reviews of Plasma Physics, edited by M.A. Leontovich (Consultants
Bureau, New York, 1966), Vol. II.
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V(x, t) and determine the changes in the mass density ρm, pressure P and mag-
netic field B induced by V. Then, these responses are used in the momentum
equation (6.27) which is then solved self-consistently to determine the mass flow
velocity V.

We begin by considering the temporal evolution of the mass density in re-
sponse to V, which is governed by (6.25):

∂ρm/∂t|x = −V·∇ρm + ρm∇·V ⇐⇒ dρm/dt = −ρm∇·V, (6.65)

in which we have used the vector identity (??) in obtaining the first form and the
total time derivative definition in (6.30) in obtaining the second form. Here, as
shown in Fig. ??, in the Eulerian (fixed position) picture [first form of (6.65)], the
flow causes changes in the mass density at a fixed point by advecting (−V·∇ρm)
the mass flow at velocity V into a region of different mass density, or by com-
pressibility (∇·V 6= 0) of the flow. In the Lagrangian (moving with fluid ele-
ment) picture [second form of (6.65)], the mass density only changes due to the
compressibility of the flow (∇·V 6= 0).

The pressure evolution can be determined from the isentropic form of the
MHD equation of state [i.e., (6.29) neglecting the small entropy production due
to joule heating]:

d

dt
ln

P

ρΓ
m

=
1
P

dP

dt
− Γ

ρm

dρm

dt
=

1
P

dP

dt
+ Γ ∇·V = 0, (6.66)

in which (6.65) has been used to obtain the last form. With the total time
derivative definition (6.30), this yields

∂P

∂t
= −V·∇P − Γ P∇·V = −V·∇P − c2

S ρm∇·V (6.67)

in which
cS ≡

√
ΓP/ρm, MHD sound speed (m/s). (6.68)

Thus, like the mass density, the plasma pressure changes in MHD are due to
advection (V·∇P ) and flow compression (∇·V 6= 0). The presence of the sound
speed in the last form of (6.67) shows that the compressiblity of the flow leads to
pressure changes that move at the MHD sound speed through the plasma. Thus,
the fluid motion at velocity V causes advection and compressibility changes in
the mass density ρm and plasma pressure P , which are scalar quantities.

Note that the MHD sound speed is different from the ion acoustic speed
(??) in Section 1.4 — because in a MHD description both the electrons and ions
have fluidlike (inertial) responses whereas for ion acoustic waves while the ions
have a fluidlike response the electrons respond adiabatically. Unfortunately,in
plasma physics the same symbol is usually used for both wave speeds — which
is meant is usually clear from the context. Also note that for most plasmas
with comparable electron and ion temperatures these two speeds are close in
magnitude.

The next question is: what is the effect of the fluid motion on the magnetic
field B(x, t), which is a vector field? Physically, we know that plasmas have
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a very high electrical conductivity (low resistivity). In the ideal MHD model
we set the resistivity to zero and hence effectively assume infinite electrical
conductivity; thus, the plasma is a “superconductor” in ideal MHD. From the
properties of a superconducting wire of finite cross-section, we know that the
magnetic field is “frozen” into it and moves with the wire as it is moved. Thus,
we can intuitively anticipate that a fluid element in our superconducting ideal
MHD plasma will carry the magnetic field (or at least the bundle of magnetic
field lines penetrating it) with it wherever it moves — and will always contain the
same amount of magnetic flux (number of field lines2). We can also anticipate
that the addition of resistivity in the resistive MHD model will allow some
slippage of the magnetic field lines relative to the fluid element.

We now develop mathematical representations of the idea that the magnetic
field is mostly frozen into an MHD fluid element and moves with it. Consider
the time derivative of the magnetic flux Ψ ≡

∫∫
S
B · dS [see (??)] though an

open surface S in the fluid that moves with the fluid at velocity V:

dΨ
dt

=
d

dt

∫∫
S

B · dS =
∫∫

S

[
dB
dt

· dS + B · d

dt
(dS)

]
. (6.69)

The total time derivative is appropriate here because we are seeking the change
in the magnetic flux penetrating a (changing) surface whose boundary is dis-
torted in time as it moves with the fluid velocity V(x, t), which is in general
nonuniform. The time derivative of the (vectorial) differential surface area dS
represents changes due to changes in its constituent differential line elements
induced by the nonuniform flow — see Section D.4. Using (??) for this time
derivative and the definition of the total time derivative in (6.30), we find

dΨ
dt

=
∫∫

S

[(
∂B
∂t

+ V·∇B
)

+ B (∇·V)−B ·∇V
]
· dS

=
∫∫

S

[
∂B
∂t
−∇×(V×B)

]
· dS, (6.70)

in which we have used vector identity (??) and the Maxwell equation ∇· B = 0
in going from the first to the second line.

For the evolution of the magnetic field B we use Faraday’s law (6.31) together
with the MHD Ohm’s law (6.28) to specify the electric field E:

∂B
∂t

= −∇×E = ∇×(V×B)−∇×ηJ ' ∇×(V×B) +
η

µ0
∇2B

MHD magnetic field evolution. (6.71)

Here, in the last, approximate form we have used J = ∇×B/µ0 (Ampere’s law),
neglected ∇η for simplicity, and used the vector identity (??) and the Maxwell

2While magnetic field lines do not really exist since their properties cannot be measured,
they are a useful concept for visualizing the behavior of the magnetic field B.
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equation ∇· B = 0. Substituting this magnetic field evolution into (6.70), using
Ampere’s law for J again and Stokes’ theorem (??), we finally obtain

dΨ
dt

= −
∫∫

S

dS · ∇×ηJ = −
∮

C

d` · η

µ0
B. (6.72)

In ideal MHD where η → 0, this becomes

dΨ
dt

= 0, ideal MHD frozen flux theorem.3 (6.73)

Thus, in the absence of resistivity the magnetic flux (number of field lines)
through an open surface that moves with the fluid velocity V is “frozen” into
the fluid and hence constant: the magnetic field moves with the superconducting
ideal MHD fluid just as we wanted to prove! The key ingredient in this derivation
is the V×B term in the MHD Ohm’s law. It led to the ∇×(V×B) term in
the magnetic field evolution equation (6.71) and causes the magnetic field to be
carried along with the ideal MHD fluid. Hence, this ∇×(V×B) term represents
the advection of the vector field B by the flow velocity V; note that this vector
field advection operator is different in structure from the advection operator
for scalar quantities such as the mass density (−V·∇ρm). Since the MHD
Ohm’s law is an approximation to the electron momentum balance equation, it
is fundamentally the electron fluid into which magnetic field is frozen (despite
the fact that the advection is induced by the overall plasma mass flow velocity
V).

By taking the limit of an infintesimally small surface S in the preceding
derivation, one can show that an individual magnetic field line is carried along
with the superconducting ideal MHD plasma. This can also be shown directly
by examining the conditions under which the time derivative of the definitions
of magnetic field lines vanish — see Problems 6.15 and 6.16. However, it is
important to note that all these derivations have some ambiguity because the
labeling of a magnetic field line is not unique [see discussion after (??)] and
the properties of magnetic field lines cannot be measured. Thus, while we can
mark infintesimal elements of a fluid (e.g., with radioactive nuclei or fluorescing
partially ionized atoms), and know that the magnetic field is frozen into the ideal
MHD fluid elements as they move, the association with a particular magnetic
field line from one instant in time to the next is not unique. The “frozen flux”
methodology provides a prescription for labeling field lines as they move. While
it is not a unique prescription, it represents a very important tool for visualizing
the motion of magnetic fields in a moving plasma in the MHD model.

The frozen flux theorem provides a very strong constraint on the motions
of the magnetic field in an ideal MHD plasma. In particular, in this model
adjacent magnetic field lines and flux bundles that are originally adjacent to
each other will forever remain adjacent. Also, magnetic flux bundles and fluid

3This theorem is also known as the Alfvén frozen flux theorem. It is the magnetic field
analogue of the Kelvin circulation theorem (??) for the constancy of the circulation or vorticity
flux in a vortex in an inviscid neutral fluid.
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Figure 6.4: Possible MHD evolution of a set of field lines in a sheared slab
magnetic field model: a) initial sheared magnetic field equilibrium, b) sinusoidal
perturbation in ideal MHD (η = 0), and c) resistive MHD (η 6= 0) with magnetic
field reconnection into magnetic island structures.

elements are tied together, cannot break up or tear, and cannot interchange
positions relative to each other. Thus, as illustrated in Figure 6.4, in the ideal
MHD model the topology of magnetic field lines and flux surfaces is conserved
— nested magnetic flux surfaces remain forever nested (even though their shape
may become highly distorted), and plasma in regions “inside” (or “outside”) a
given magnetic flux surface remain inside (outside) forever. The inclusion of
resistivity in the MHD model allows diffusion of the magnetic field relative to
the plasma, and hence reconnection of the magnetic field lines and changes in
the magnetic topology — for example by forming a magnetic island such as
indicated in Figure 6.4c. In section 6.7 we discuss the relative importance of
resistivity in MHD analyses of plasmas.

The most convenient form of the MHD momentum equation (6.27) for dy-
namical analyses uses the middle form of the force density fB in (6.46) and is
given by

ρm
dV
dt

= −∇
(

P +
B2

2µ0

)
+

(B ·∇)B
µ0

. (6.74)

Note that we have now reduced the full MHD equation set (6.25)–(6.44) to
just three (or seven component) equations — the scalar pressure equation in
(6.67), the vector magnetic field evolution equation in (6.71) and this last vector
momentum equation (6.76). These equations are usually all we need to describe
the linear and nonlinear dynamics of plasmas in the MHD model. [The mass
density equation (6.65) is only needed when the equilibrium mass density is
inhomogeneneous.] Note that for these MHD dynamical model equations the
charge continuity equation ∇· J = 0 is automatically satisfied by our having
used Ampere’s law to replace the current J with ∇×B/µ0, which is divergence
free. Also, the electric field E does not appear because it was replaced by
−V×B + ηJ using the MHD Ohm’s law.

6.6 Alfvén Waves

To illustrate the fundamental wave responses of plasmas in the MHD model
(Alfvén waves — named after their discoverer), we consider plasma responses
to small perturbations in the simplest possible plasma and magnetic field model.
Namely, for the equilibrium we consider a uniform, nonflowing (V0 = 0) plasma
in an infinite, homogeneous magnetic field B0 = B0êz = B0b̂. This model
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trivially satisfies the MHD equilibrium force balance condition (6.48) since
µ0J0 = ∇×B0 = 0 and ∇P = 0 because both the equilibrium magnetic field
B0 and pressure P0 are uniform in space. For perturbed responses we assume

ρm = ρm0 + ρ̃m, P = P0 + P̃ , V = Ṽ, B = B0 + B̃, (6.75)

in which the zero subscript indicates equilibrium quantities and the tilde over
quantities indicates perturbed variables. Decomposing the perturbed mag-
netic field into its parallel [B̃‖ = b̂(b̂ · B̃) = B̃‖b̂] and perpendicular [B̃⊥ ≡
−b̂×(b̂×B̃)] components, we find the square of the magnetic field strength B
is

B2 ≡ (B0 + B̃) · (B0 + B̃) = B2
0 + 2B0B̃‖+ B̃2

‖ + |B̃⊥|2 ' B2
0 + 2B0B̃‖. (6.76)

We will use the last expression, which is the linearized form (i.e., it neglects
terms that are second order in the perturbation amplitudes).

Substituting the equilibrium plus perturbed quantities in (6.75) and (6.76)
into the ideal MHD equations for the evolution of the pressure (6.67), flow
velocity (6.74) and magnetic field [(6.71) with η → 0] and linearizing (neglect
second and higher order terms in the perturbation amplitudes), we obtain

∂P̃

∂t
= −ΓP0∇·Ṽ, (6.77)

ρm0
∂Ṽ
∂t

= −∇
(

P̃ +
B0B̃‖

µ0

)
+

1
µ0

(B0·∇)B̃, (6.78)

∂B̃
∂t

= ∇×(Ṽ×B0) = −B0(∇·Ṽ) + (B0·∇)Ṽ. (6.79)

In the last equation we used vector identity (??) and set to zero terms involving
gradients of the homogeneous equilibrium magnetic field B0. Equations for the
parallel and perpendicular components of the magnetic field are obtained from
the corresponding projections of the magnetic field evolution equation:

∂B̃‖/∂t = −B0(∇·Ṽ) + (B0·∇)Ṽ‖, (6.80)

∂B̃⊥/∂t = (B0·∇)Ṽ⊥. (6.81)

These equations can be combined into a single (vector) equation by taking the
partial derivative of the perturbed momentum equation (6.78) and substituting
in the needed partial derivatives from the other equations (see Problem 6.20):

∂2Ṽ
∂t2

= (c2
S + c2

A)∇(∇·Ṽ) + c2
A[∇2

‖Ṽ⊥ −∇⊥∇‖Ṽ‖ − b̂∇‖(∇·Ṽ)] (6.82)

in which

cA ≡
B0√

µ0ρm0
' 2.2× 1016 B0√

niAi

m/s, Alfvén speed. (6.83)
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Here, Ai ≡ mi/mp is the atomic mass value of the ions, the perpendicular (⊥)
and parallel (‖) subscripts indicate the respective components of the quantities
as defined in (??)–(??). The magnitude of the Alfvén speed can be appreciated
by noting its relationship to the sound speed defined in (6.68):

c2
S

c2
A

=
ΓP0/ρm0

B2/µ0ρm0
=

Γ
2

β. (6.84)

Thus, for β < 1 the Alfvén speed is a factor of about 1/
√

β greater than the
MHD sound speed.

While (6.82) clearly has a wavelike structure, it is a quite complicated and
anisotropic wave equation. We consider here only some special cases to illustrate
the basic waves involved. (Section 7.6* provides a comprehensive analysis.)

First, consider waves propagating purely perpendicular to the magnetic field
by setting ∇‖ = 0. Then, taking the divergence of (6.82) we obtain[

∂2

∂t2
− (c2

A + c2
S)∇2

⊥

]
(∇⊥· Ṽ⊥) = 0 =⇒ ω2 = k2

⊥(c2
A + c2

S),

compressional Alfvén waves. (6.85)

This wave equation describes “fast” compressional Alfvén waves. In the last
form we assumed a wave-like response Ṽ⊥ ∼ exp[i(k·x−ωt)] to obtain the wave
dispersion relation. Compressional Alfvén waves propagate perpendicular to
the magnetic field with a wave phase speed given by Vϕ⊥ ≡ ω/k⊥ =

√
c2
A + c2

S ,
which is the fastest MHD wave phase speed. These waves propagate by per-
pendicular flow compression (∇⊥ · Ṽ⊥ 6= 0) and also involve magnetic field
compression [B̃‖ 6= 0 — see (6.80)] and pressure perturbations [P̃ 6= 0 — see
(6.85)]. Adding the pressure perturbation (6.77) and B0/µ0 times the magnetic
perturbation (6.80) with ∇‖ = 0, one can show that

∂2

∂t2

(
P̃ +

B0B̃‖
µ0

)
= −(c2

A + c2
S)∇⊥· ρm0

∂Ṽ⊥
∂t

= (c2
A + c2

S)∇2
⊥

(
P̃ +

B0B̃‖
µ0

)
(6.86)

in which for the last form we have used (6.78) with ∇‖ = 0. Thus, the compress-
ibility in the perpendicular flow also causes the sum of the perturbed pressure
and magnetic field energy density to satisfy a compressional Alfvén wave equa-
tion. Physically, as can be noted from the importance of the perpendicular
component of (6.78) in these waves, the compressional Alfvén waves are the
responses of the plasma to imbalances in the perpendicular (to B) force balance
in the plasma. Thus, on “equilibrium” time scales (after these wave responses
have propagated away), MHD plasma responses will be in radial force balance
equilibrium and not have any driving sources for compressional Alfvén waves:

J0×B0 = ∇⊥P0, ∇⊥· Ṽ⊥ = 0, P̃ + B0B̃‖/µ0 = 0. (6.87)

These are the lowest order conditions for equilibria and perturbations in an
MHD plasma (even in inhomogeneous magnetic fields — see Chapter 21); they
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Figure 6.5: Perturbations (B̃, Ṽ, P̃ ) in the three fundamental types of MHD
waves: a) compressional Alfvén, b) shear Alfvén, and c) sound.

obtain for time scales long compared to the fast compressional Alfvén wave
period: t >> 1/k⊥

√
c2
A + c2

S .
Next, consider incompressible (∇·Ṽ = 0) MHD waves propagating purely

along the magnetic field (∇⊥ = 0). Then, the perpendicular component of the
general MHD wave equation (6.82) becomes(

∂2

∂t2
− c2

A∇2
‖

)
Ṽ⊥ = 0 =⇒ ω2 = k2

‖c
2
A, shear Alfvén waves. (6.88)

These are called “slow” Alfvén waves because their (parallel) phase speed Vϕ‖ ≡
ω/k‖ = cA is less than the phase speed for the compressional Alfvén waves.
They are called shear (or torsional) Alfvén waves because their Ṽ⊥ induces a
perpendicular magnetic field perturbation B̃⊥ that shears or twists the magnetic
field — see (6.81). In the MHD model, instabilities often arise that indirectly
excite shear Alfvén waves; such instabilities must have exponential growth rates
Im{ω} > k‖cA so they are not be stabilized by the energy required to excite
these shear Alfvén waves.

Finally, consider compressible waves in the parallel flow (Ṽ = Ṽ‖b̂) propa-
gating along the magnetic field (∇⊥ = 0). Then, the parallel component of the
general MHD wave equation (6.82) becomes(

∂2

∂t2
− c2

S∇2
‖

)
Ṽ‖ = 0 =⇒ ω2 = k2

‖c
2
S , parallel sound waves. (6.89)

These are neutral-fluid-type sound waves (see A.6) that propagate along the
magnetic field by parallel compression of the flow (∇‖Ṽ‖ 6= 0). They are elec-
trostatic waves since, as can be seen from (6.80) and (6.81), they produce no
magnetic perturbations (i.e., B̃ = 0 for these waves). MHD instabilities often
indirectly excite parallel sound waves; such instabilities must have exponential
growth rates Im{ω} > k‖cS so they are not be stabilized by the energy required
to excite the sound waves.

The properties of the perturbations in these three fundamental types of
MHD waves are illustrated in Fig. 6.5. As shown in Fig. 6.5a, (fast) com-
pressional Alfvén waves have: oscillatory parallel magnetic field perturbations
B̃‖ that increase or decrease the local magnetic field strength (density of field
lines), compressible pependicular flows, and corresponding oscillatory pressure
perturbations, all in the direction perpendicular to the equilibrium magnetic
field direction B0 = B0êz, which is horizontal in the figure. In contrast, the
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(slow) shear Alfvén waves (Fig. 6.5b) have: oscillatory perpendicular magnetic
fields B̃⊥ and oscillatory perpendicular flows Ṽ⊥ along the magnetic field, but
no pressure perturbation (because these perurbed flows are incompressible). Fi-
nally, as shown in Fig. 6.5c, the parallel sound waves have: no magnetic field
perturbation (because they are electrostatic), an oscillatory compressible paral-
lel flow Ṽ‖ and corresponding pressure P̃ perturbations along the magnetic field
direction.

In the more general case of propagation of MHD waves at arbitrary angles
to the magnetic field direction, these three types of waves become coupled (see
Section 7.6). These waves also become coupled in inhomogeneous magnetic fields
— because the parallel and perpendicular directions vary spatially. Nonetheless,
the basic wave characteristics we have discussed are usually still evident in these
more complicated situations.

6.7 Magnetic Field Diffusion in MHD

In order to examine the effect of electrical resistivity on a plasma in the MHD
model, consider first the evolution of the magnetic field in (6.71) without the
advection term:

∂B
∂t

=
η

µ0
∇2B, magnetic field diffusion equation. (6.90)

This equation describes the diffusion (see Section A.5) of the magnetic field
(both its magnitude and directional components) that is caused by the electrical
resistivity of a plasma. The diffusion coefficient is

Dη =
η

µ0
=

meνe

µ0nee2
' 1.4× 103

(
Zi

Te(eV)]3/2

) (
ln Λ
17

)
m2/s

magnetic field diffusivity. (6.91)

Phenomenologically, since we can write Dη = νe(c/ωpe)2, magnetic field diffu-
sion can be thought of [via D ∼ (∆x)2/∆t — see (??)] as emanating from a
random walk process in which magnetic field lines step a collisionless skin depth
(∆x ∼ c/ωpe) in an electron collision time (∆t ∼ 1/νe). The relative magnitude
of the magnetic field diffusivity can be ascertained from its relationship to the
classical diffusivity D⊥ defined in (??):

D⊥
η/µ0

=
νe%

2
e

νe(c/ωpe)2

(
Te + Ti

2Te

)
=

ne(Te + Ti)
c2ε0B2

=
β

2
. (6.92)

Thus, for a plasma with β < 1 particles diffuse classically across magnetic
field lines slower than the magnetic field lines themselves diffuse relative to
the plasma! However, in most plasmas of interest microscopic turbulence in
plasmas causes an anomalous perpendicular transport that is rapid compared
to the magnetic field diffusion; hence one can usually consider the magnetic field
to be stationary for calculations of anomalous transport.
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To illustrate the spatial and temporal scale lengths involved in magnetic diff-
ision, consider the distance an electromagnetic wave can penetrate (see Section
1.5) into a resistive medium in which the magnetic field behavior is governed by
(6.90). For wavelike perturbations B̃ ∼ exp[i(k·x− ωt)], the diffusion equation
becomes

−iωB̃ = −k2(η/µ0)B̃ =⇒ k =
√

iωµ0/η = (1 + i)
√

(ω/2)(µ0/η). (6.93)

To use the analysis of Section 1.5, we identify this complex wavenumber k as
the transmitted wavenumber kT in (??). Thus, an electromagnetic wave will be
dissipated and damped exponentially, as it oscillates spatially (due to Re{kT })
and propagates into a resistive medium, with a characteristic decay length of

δη ≡
1

Im{(kT }
=

√
2
ω

η

µ0
, resistive skin depth. (6.94)

It is called a “skin” depth because of its analogy with the problem of deter-
mining how far an oscillating magnetic field (e.g., due to 60 Hz AC electricity)
penetrates into a cylindrical wire of finite radius. This skin depth formula is
appropriate for radian frequencies ω < νe, while the collisionless skin depth for-
mula (??) is appropriate for higher frequencies — see Problem 6.25. For Te =
2000 eV, which gives η/µ0 ' 0.016 m2/s (close to the resistivity of copper at
room temperature of η/µ0 ' 0.135 m2/s), the resistive skin depth ranges from
0.07 mm for f = ω/2π = 104 Hz (ω = 2π × 104) to about 1 cm for 60 Hz.

Another way of illustrating the temporal behavior of magnetic field diffusion
in a magnetized plasma is to ask: on what time scale τ will a magnetic field
component diffuse away from being localized to a region of width L⊥? Because
for diffusive processes the diffusion coefficient scales with spatial and temporal
steps as D ∼ (∆x)2/∆t ∼ L2

⊥/τ (see Appendix A.5), we can estimate phe-
nomenologically that τ ∼ L2

⊥/(η/µ0). One often considers a cylindrical model
consisting of a column of magnetized plasma with radius a that initially carries
an axial current. For such a cylindrical model the resistivity-induced decay time
of the current (and induced azimuthal magnetic field) is (see Section A.5)

τη '
a2

6 η/µ0
, resistive skin diffusion time. (6.95)

Here, the numerical factor of 6 is a cylindrical geometry factor which more pre-
cisely is the square of the first zero of the J0 Bessel function: j2

0,0 ' 2.4052 ' 5.78
— see Appendix A.5 and (??). However, the additional accuracy is unwarranted
both because of the approximations involved in the simple model used to derive
τη and because of the intrinsic accuracy of the electrical resistivity (' 1/ ln Λ ∼
5–10%). For a plasma of radius a = 0.3 m with Te = 2000 eV, which gives
η/µ0 ' 0.016 m2/s, the skin time is τη ∼ 1 s.

Finally, we discuss the relative importance of the two contributions to mag-
netic field evolution (6.71) in the MHD model: advection of the magnetic field
by ∇×(V×B), and resistive diffusion by (η/µ0)∇2B. The relative importance
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of these two terms is indicated by the scaling properties of their ratio:

S =
|∇×(V×B)|
|(η/µ0)∇2B| ∼

cA/L‖
(η/µ0)/a2

' 1.6× 1013 a2B[Te(eV)]3/2

L‖Zi

√
niAi

(
17

ln Λ

)
,

Lundquist number.4 (6.96)

Here, we have taken the typical velocity to be the Alfvén speed cA and assumed
scale lengths L‖ [e.g., periodicity scale length along B — see (6.81)] for the
advection process and a (e.g., plasma radius) for the magnetic diffusion. Typical
Lundquist numbers range from 102 for cold, resistive plasmas, to 105–1010 for
the earth’s magnetosphere and magnetic fusion experiments, to 1010–1014 for
the sun’s corona and astrophysical plasmas.

Because the Lundquist number is large for almost all magnetized plasmas
of interest (and extremely large for high temperature plasmas), one might be
tempted to just set the resistivity to zero (S → ∞) and always use the ideal
MHD model. Indeed, throughout most of a plasma the magnetic field is frozen
into and moves with the plasma fluid. However, a small resistivity can be
very important in resistive boundary layers. The boundary layers occur in
the vicinity of magnetic field lines where the parallel derivative (B0·∇)Ṽ⊥ in
(6.81) vanishes so the B̃⊥ evolution becomes dominated by resistive evolution
of B̃⊥, rather than by advection. The width of these resistive boundary layers
scales inversely with a fractional power of the Lundquist number (S−1/3 or
S−2/5) and hence is not negligible — see Chapter 22. Since resistivity allows the
magnetic field lines to slip relative to the plasma fluid, they relax (in the resistive
layers) the frozen flux constraint and thereby allow new types of instabilities
— resistive MHD instabilities, which are described in Chapter 22. Since the
resistivity only relaxes the frozen flux constraint in thin layers, resistive MHD
instabilities grow much slower (by factors of S−1/3 or S−3/5) than ideal MHD
instabilities. However, resistive MHD instabilities are quite important, because
they can lead to turbulent plasma transport (see Section 25.3) and because
in these narrow resistive boundary layers the magnetic field lines can tear or
reconnect and thereby lead to changes in the magnetic topology (see Section
22.3). For example, they can nonlinearly evolve into a magnetic island structure
like that shown in Fig. 6.4c.

6.8 Which Plasma Description To Use When?

In this section we discuss which types of plasma descriptions are used for describ-
ing various types of plasma processes in magnetized plasmas. This discussion
also serves as an introduction to most of the subjects that will be covered in the
remainder of the book. The basic logic is that the fastest, finest scale processes

4Many plasma physics textbooks refer to this as the “magnetic Reynolds number.” How-
ever, S is the ratio of linear advection to a dissipative process rather than the ratio of nonlinear
advection to a dissipative process, as the neutral fluid Reynolds number is — see (??). We
will call S the Lundquist number to avoid the implication that this dimensionless number is
indicative of nonlinear processes that always lead to turbulence when it is large.
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require kinetic descriptions, but then over longer time and length scales more
fluidlike, macroscopic models become appropriate. Also, the “equilibrium” of
the faster time scale processes often provide constraint conditions for the longer
time scale, more macroscopic processes.

In a magnetized plasma there are many more relevant parameters, and their
relative magnitudes and consequences can vary from one application to another.
Thus, to provide a table similar to Table ?? for magnetized plasmas, we need to
specify the parameters for a particular application. We will choose parameters
toward the edge (r/a = 0.7) of a typical 1990s “large-scale” tokamak plasma
(e.g., the Tokamak Fusion Test Reactor: TFTR): Te = Ti = 1 keV, ne = 3×1019

m−3, B = 4 T, deuterium ions, Zeff = 2, L‖ = R0q ' 6 m, a = 0.8 m, Lp = 0.5
m. In a magnetized plasma the unmagnetized phenomena listed in Table ??
still occur; however, their effects only influence responses along the magnetic
field direction. Parameters for the gyromotion, bounce motion and drift motion
of charged particles in this tokamak magnetic field structure are approximately
the same as those indicated in (??) and (??).

Table 6.1 presents an outline of magnetized-plasma-specific plasma phenom-
ena, and their relevant time scales, appropriate models and possible conse-
quences for the tokamak plasma parameters indicated in the preceding para-
graph. In it time scales are indicated in “half order of magnitudes” (100.5 =
3.16 · · · ∼ 3). As indicated, the fastest magnetic-specific process in magnetized
plasmas is the gyromotion of particles about the magnetic field, for which the ap-
propriate model is the Vlasov equation. The ion gyromotion leads to cyclotron
(Bernstein) waves, finite ion gyroradius (FLR) effects and a perpendicular di-
electric response (Sections 7.5, 7.6). There are of course also electron cyclotron
motion and waves. The propagation of (electron and ion) cyclotron-type waves
in plasmas and their use for wave heating of magnetized plasmas are discussed
in Chapters 9 and 10. If the electron or ion distribution function is peaked at a
nonzero energy (so ∂f0/∂ε > 0), it can lead to cyclotron instabilities (Chapter
18) whose nonlinear evolution to a steady state or bursting situation is often
determined by collisions (Section 24.1).

The next fastest time scales are typically those associated with the the Alfvén
wave and sound wave frequencies which are described by the ideal MHD model:
(6.25)–(6.39) with η → 0. As indicated in Table 6.1, in the usual situation
where compressional Alfvén waves are stable, their effect is to impose radial (⊥
to B) force balance equilbrium [(6.48) and Chapter 20] on the plasma and lower
frequency perturbations in the plasma. The shear Alfvén and sound waves
can lead to virulent macroscopic current-driven (kink) and pressure-gradient-
driven (interchange) instabilities (Chapter 21). The nonlinear consequences
of an ideal MHD instability is often dramatic movement or catastrophic loss
of the plasma in a few to ten instability growth times; hence most magnetic
confinement systems are designed to provide ideal MHD stability for the plasmas
placed in them.

Next, we turn to the sequentially slower particle and plasma motions along
(‖), across (∧) and perpendicular (⊥) to the magnetic field B. The fastest
motion along a magnetic field line is the electron bounce motion, which is de-
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Table 6.1: Phenomena, Models For A Magnetized Plasma

Species,
Physical Process Time Scales Plasma Model Consequences

cyclotron waves 1/ωci ∼ 10−8 s Vlasov dielectric resp.
cyclotron inst. 1/ωci ∼ 10−8 s Vlasov NL, via collisions

Alfvén waves ideal MHD
compressional a/cA ∼ 10−7 s ∇P = J×B
shear L‖/cA ∼ 10−6 s J-driven inst.

sound waves a/cS ∼ 10−5.5 s ideal MHD ∇P -driven inst.

parallel (‖) to B parallel kinetic
electron bounce 1/ωbe∼10−6.5 s ‖ Vlasov ne, Te const. ‖B
electron collisions 1/νe ∼ 10−5 s drift kinetic η, q‖e, b̂ ·∇· π‖e
ion bounce 1/ωbi∼10−4.5 s ‖ Vlasov ni, Ti const. ‖B

Ohm’s law in MHD >1/νe∼10−5 s resistive MHD resistive inst.

cross (∧) to B
diamagnetic flow 1/ω∗ <∼ 10−5 s gyrokinetic drift wave inst.
cross flow equil. 1/νi ∼ 10−3 s drift kinetic cross flow damp.

perp. (⊥) to B
plasma transport τE ∼ a2/4χ⊥ two-fluid loss of plasma
B field evolution τη ∼ a2µ0/6η res./neo. MHD B field diffusion,

magnetic islands

scribed by a parallel motion version of the Vlasov equation [the drift kinetic
equation (??) without the collision operator and drift velocity vD]. On time
scales longer than the electron bounce time (1/ωbe), the lowest order distribution
function becomes constant along field lines (∇‖f0e = 0 and hence density and
temperature become constant along B), and distinctions between trapped and
untrapped electrons and their differing particle orbits become evident. For the
parameters chosen, we have an electron collision length λe = vTe/νe ' 200 m
∼ 33L‖ and hence λe∇‖ ∼ 33 >> 1. This is a typical toroidal plasma which is
often (confusingly) called “collisionless” — because the collision length is long
compared to the parallel periodicity length. Since the electron gyroradius is
negligibly small, the collisional evolution of the electron species on the collision
time scale (1/νe) is governed by the (electron) drift kinetic equation (??). Its so-
lution for axisymmetric toroidal plasmas is discussed in Section 16.2*. For times
long compared to the electron collision time the plasma acquires its electrical
resistivity η and the collisions of untrapped electrons produce entropy through

DRAFT 10:31
January 28, 2003 c©J.D Callen, Fundamentals of Plasma Physics



CHAPTER 6. PLASMA DESCRIPTIONS II: MHD 30

“neoclassical” heat conduction (q‖e) and parallel viscosity (b̂ ·∇· π‖e) — see
Chapter 16. Similarly, the lowest order ion distribution function, density and
temperature become constant along magnetic field lines for time scales longer
than the ion bounce time (1/ωbi) and their collisional effects (in relaxing cross
flows within a magnetic flux surface) become evident on the ion collision time
scale (1/νi).

The plasma exhibits an electrical resistivity for time scales longer than the
electron collision time (1/νe). Its introduction into MHD leads to the resistive
MHD model: (6.25)–(6.39). Since the introduction of resistivity relaxes the
ideal MHD frozen flux constraint (in narrow layers), it can lead to resistive
MHD instabilities related to their ideal MHD counterparts (kink → tearing,
∇P -driven “interchange” → resistive interchange), which, however, grow more
slowly and hence are less virulent — see Chapter 22.

The next set of phenomena concern the effects of particle drifts and plasma
species flows in the cross direction (∧ — perpendicular to B and within a flux
surface if it exists). On this time scale a global (as opposed to local) description
of the magnetic field is usually required. The diamagnetic flows of electrons
and ions lead to drift-wave-type oscillations (Sections 7.4* and 8.6*) and insta-
bilities (Section 23.3*). Since these “universal” instabilities involve modes with
significant ion gyroradius (FLR) effects (%i∇⊥ ∼ k⊥%i ∼ 1), the gyrokinetic
equation is used to describe their nonlinear evolution into microsopic plasma
turbulence (Chapter 25) that leads to anomalous radial transport (Chapter 26)
of the plasma. On the same time scales the combination of the E×B and dia-
magnetic flows come into “equilibrium” (a steady state saturation or bounded
cyclic behavior); flow components within a magnetic flux surface in directions
in which the magnetic field is inhomogeneous (e.g., the poloidal direction in an
axisymmetric tokamak) are damped on the ion collision time scale (1/νi) — see
Section 16.3*. Steady-state net radial transport fluxes can only be properly cal-
culated after the flows within magnetic flux surfaces are determined and relaxed
to their equilibium values. Also, in determining transport fluxes it is implicitly
assumed that nested magnetic flux surfaces exist and that “radial” transport is
to be calculated relative to them.

Finally, we reach the transport time scales on which the plasma and mag-
netic field diffuse radially out of the plasma confinement region, and radiation
(Chapter 14) can be significant. Plasma transport (relative to the magnetic
field) is usually modeled with two-fluid equations averaged over magnetic flux
surfaces to yield equations that govern the transport of plasmas perpendicular
to magnetic flux surfaces — see Chapter 17. However, the radial particle and
heat diffusion coefficients D⊥, χ⊥ are usually assumed to be the sum of those
produced by anomalous transport (Chapter 26) and those due to classical [(??),
(??) and Chapter 15] and neoclassical (Chapter 16) transport processes. For a
cylindrical-type plasma model the characteristic time scale for the usally dom-
inant plasma energy loss is (see Section 17.3) approximately τE ∼ a2/4χ⊥ in
which a is the plasma radius; for the plasma parameters we are considering it
is of order 0.1 s. Simultaneously, the magnetic field is diffusing. The character-
istic time scale for diffusive transport of magnetic field lines out of a cylindrical
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plasma is τη ∼ a2/(6η/µ0); for the plasma parameters we are considering it is of
order 1 s. If resistive or neoclassical MHD tearing-type instabilities are present,
they can reconnect magnetic field lines on rational magnetic flux surfaces and
evolve nonlinearly by forming magnetic islands which grow (to saturation or
total plasma loss) on a fraction (∼ 0.1) of the magnetic field diffusion time scale
τη. Since the magnetic field typically diffuses more slowly than energy is lost via
anomalous transport (i.e., τη >> τE or η/µ0 << χ⊥), it is usually reasonable
to assume that the magnetic field is stationary and the plasma moves relative
to it via Coulomb-collision-induced or anomalous plasma transport processes.
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PROBLEMS

6.1 Use the definition of the pressure in (??) with vr ≡ v − V to show that the
isotropic pressure of a species in the center-of-mass frame (V) of an MHD plasma
is

pCM
s = ps + (nsms/3)|Vs −V|2. /∗

6.2 Show that the plasma momentum equation (6.6) obtained by adding the electron
and ion momentum equations is exact (i.e., it does not involve an me/mi << 1
approximation). [Hint: To obtain the inertia term on the left it is easiest to use
(??) for the electron and ion momentum equations. Also, first show that∑

s

msnsVsVs = ρmVV +
∑

s

msns(Vs −V)(Vs −V)

in which V is the MHD mass flow velocity defined in (6.19).] //*

6.3 Evaluate ∇· JD and show that it is equal to ∇· J∗, and to the terms on the
right of (6.16). Explain the physical significance of the equality of these two
quantities. //*
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6.4 Multiply the electron and ion momentum balance equations (??) by qe/me and
qi/mi and add them to obtain the exact generalized Ohm’s law

∂J

∂t
+ ∇· (JV + VJ− ρqVV) = ε0ω

2
p

{
E + V×B−

(
J‖

σ‖
+

J⊥
σ⊥

)
− (1− Zime/mi)J×B−∇· [PCM

e − Zi(me/mi)P
CM
i ]

(1 + Zime/mi)nee

}
in which PCM

s ≡ psI + πs + nsms(Vs − V)(Vs − V) is the pressure tensor of
a species in the center-of-mass frame (V) of the plasma. Show that this result
simplifies to (6.17) for me/mi << 1 and strongly subsonic relative species flows
(|Vs−V|/vTs << 1). [Hint: Use ne/ni = qi/e = Zi for this two species plasma
and

Ve = V − mini(J/nee)

mene + mini
, Vi = V +

mene(J/nee)

mene + mini
.] ///∗

6.5 Show that the electron inertia term is negligible compared to the electric field
in the parallel generalized Ohm’s law for kc/ωpe << 1. [Hint: Use the parallel
component of the nonrelativistic Ampere’s law: ∇2A‖ = −µ0J‖ from (??).] //*

6.6 Show that for a wavelike perturbation in a sheared slab model magnetic field
the perturbed electron pressure gradient is negligible in the parallel generalized
Ohm’s law when (6.19) is satisfied and ω >> ω∗e. [Hint: When the magnetic
field is perturbed in MHD B → B0 + ∇×Ã ' B0 + ∇Ã‖×b̂ and ∇‖ ≡ b̂ ·∇
is changed accordingly.] //*

6.7 Show that the perpendicular electron inertia term is a factor of at least ω/ωce

smaller than E⊥ in (6.20) and hence negligible in MHD. [Hint: Show that for the
diamagnetic and polarization MHD currents the electron inertia term is smaller
than that due to the electron polarization flow (??).] //*

6.8 Derive the MHD system momentum density equation (6.35). [Hint: Rewrite the
momentum equation (6.27) using Ampere’s law and vector identities (??), (??)
and (??).] //

6.9 Derive the MHD system energy density equation (6.36). [Hint: Take the dot
product of V with the MHD momemtum equation (6.45), and simplify the result
using Ohm’s law in the form V×B = ηJ − E, vector identities (??) and (??),
and

V·∇P =
1

Γ− 1

∂P

∂t
+

Γ

Γ− 1
∇·PV − ηJ2,

which is obtained from a combination of the equation of state (6.29) and the
mass density equation (6.25).] //

6.10 Use the tensor form of Gauss’ theorem (??) to calculate the force on a volume
of MHD fluid in terms of a surface integral over the stress tensor. Use an
infinitesimal volume form of your result to discuss the components of the force
in the êx, êy, b̂ directions. //

6.11 The pressure tensor in an open-ended magnetic mirror is anisotropic because
of the loss-cone. a) Show that for species distribution functions fs which do
not depend on the gyroangle ϕ the pressure tensor is in general of the form
P = P⊥(I − b̂b̂) + P‖b̂b̂ in which P⊥ = P⊥(α, β, B) and P‖ = P‖(α, β, B). b)
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Work out ∇· P. c) Show that the condition for force balance along a magnetic
field (b̂ ·∇· P = 0) can be reduced to

∂P‖

∂B

∣∣∣∣
α,β

=
P‖ − P⊥

B
.

d) Discuss how this result indicates confinement of plasma along the magnetic
field in a magnetic mirror. ///

6.12 Obtain the angle between J and B in a screw pinch equilibrium as a function
of a relevant plasma β. //*

6.13 Consider a pressure profile given by P (x)/P (0) = exp(−x2/a2) in a sheared slab
magnetic field model with no curvature or shear. a) Calculate the diamagnetic
current. b) Determine the Bz(x) profile induced by this diamagnetic current.
c) Show that the plasma pressure produces a diamagnetic effect. d) Show that
your Bz(x) agrees with (6.59). //

6.14 Consider the MHD radial force balance equilibrium of a cylindrical plasma with
a pressure profile P (r) that vanishes for r ≥ a which is placed in a uniform
magnetic field B = B0êz. Use the azimuthal component of Ampere’s law for Jθ

and solve the resultant force balance equation for Bz(r). Show that your result
agrees with (6.59). /

6.15 One definition of a magnetic field line is d`×B = 0. Show that its time deriva-
tive yields the magnetic evolution equation (6.71). How does this show that a
magnetic field line is advected with the moving plasma in the ideal MHD limit?
[Hint: Use vector identities (??) for (d/dt)d` and (??), (??).] //

6.16 Show that for a Clebsch magnetic field representation B = ∇α×∇β the ideal
MHD evolution equation (6.71) is satisfied by dα/dt = dβ/dt = 0. Why does
this show that a magnetic field line is advected with an ideal MHD plasma? //

6.17 Derive the canonical flux invariant for an isentropic plasma species that is a
combination of the magnetic flux and species vorticity flux which is deduced
from the canonical momentum (??) ps = msv + qsA as follows. a) First,
average the canonical momentum over a Maxwellian distribution to obtain p̄s =
msVs + qsA. b) Next, use this result to define a species canonical flux invariant

ψ#s ≡
∫∫

S

dS ·∇×
(

A +
ms

qs
Vs

)
=

∫∫
S

dS ·
(

B +
ms

qs
∇×Vs

)
.

c) Obtain dψ#s/dt and use the species momentum equation (??) to show that

dψ#s

dt
= −

∫∫
S

dS ·∇×
(

∇ps + ∇· πs −Rs

nsqs

)
.

d) Show that dψ#s/dt = 0 for an isentropic plasma species. e) Discuss how the
canonical flux invariant ψ#s combines the ideal MHD frozen flux theorem (6.73)
and the Kelvin circulation theorem (??). f) Indicate the physical processes
that can cause net transport of a plasma species relative to the canonical flux
surfaces ψ#s. g) Why doesn’t inertia contribute to transport relative to the ψ#s

surfaces? [Hint: Use vector identities (??), (??) and (??) in part c).] ///*
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6.18 Show that for the MHD model the electron and ion canonical fluxes defined in
the preceding problem are, to lowest order in (me/mi)

1/2 << 1,

ψ#e '
∫∫

S

dS ·
(

1− c2

ω2
pe
∇2

)
B, ψ#i '

∫∫
S

dS ·
(

B + B
c

ωpi
∇× V

cA

)
.

Use these two relations to discuss the degree to which the magnetic field is frozen
into the electron and ion fluids in an ideal MHD plasma. //*

6.19 Show that the total mass M of an MHD plasma in a volume V that moves with
the plasma flow velocity V will be conserved if the mass density satisfies the
mass density equation (6.25). [Hint: Determine the condition for dM/dt = 0
and use vector identity (??) for (d/dt)d3x.] //

6.20 Work out the terms on the right of (6.82). [Hint: Since B = B0b̂ is spatially
uniform, it commutes with the ∇‖ ≡ b̂ ·∇ and ∇⊥ = ∇− b̂∇‖ operators.] //

6.21 Work out formulas for the ratio of the electron and ion thermal speeds to the
Alfvén speed in terms of βe ≡ 2µ0pe/B2 and βi ≡ 2µ0pi/B2. What are these
ratios for a β = 0.08, Te = Ti, electron-deuteron plasma? /

6.22 How large would the magnetic field strength B have to be for the Alfvén speed
to be equal to the speed of light for ne = 1020 m−3 and Ai = 2? /

6.23 Show that for perturbations on the equilibrium time scale for compressional
Alfvén waves

B̃‖/B0 = − (β/2) (P̃ /P0). /

6.24 Since to lowest order in me/mi << 1 the MHD momentum equation results from
the ion momentum equation, on the equilibrium time scale for compressional
Alfvén waves the radial component of the ion momentum equation should be in
equilibrium. Show that the equilibrium radial ion momentum (force) balance
equation in a screw pinch plasma yields the following relation for the axial flow
in terms of the radial electric field, pressure gradient and poloidal flow:

Viz = − 1

Bθ

(
dΦ0

dr
+

1

n0iqi

dp0i

dr
− ViθBz

)
. /∗

6.25 Determine the frequency ranges where an electromagnetic wave impinging on
an unmagnetized plasma: a) propagates through it, b) is evanescent on a c/ωpe

length scale, and c) dissipatively decays in a resistive skin depth (6.94)? [Hint:
review Section 1.5 and consider a time-dependent electrical conductivity.] //

6.26 Show that the Lundquist number can be written in terms of fundamental mi-
croscopic variables as

S =
ωce

νe

a

c/ωpi

a

L‖

Should S always be a large number for a magnetized MHD plasma? /
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