
Chapter 15 

Basic concepts of small-amplitude waves in 
anisotropic dispersive media 

Systems of linear differential equations can often be studied conveniently using 
Fourier analysis. If any one quantity oscillates sinusoidally at a particular 
frequency, w ,  then all the others must oscillate at the same frequency (or not 
at all), and the problem becomes one of finding the relative amplitudes and 
phases of the various oscillating quantities. The fluid plasma equations do 
not constitute a set of linear differential equations, so we cannot in general 
assume that nonlinear coupling between frequencies will be absent. However, 
if we consider only situations where the oscillations are small enough, then the 
equations can be ‘linearized’. This means that the fluid equations are solved 
to zeroth order with no waves present. In the simplest case, considered here, 
that solution is the trivial one-a uniform isotropic plasma immersed in a steady 
(or even zero) magnetic field. Next we consider a first-order expansion of the 
equations in terms of small wave-like perturbations, neglecting second- and 
higher-order terms. This means that whenever we see two oscillating quantities 
multiplied together, since they are both small, we consider this to be a higher- 
order term and we neglect it. For any real situation, we then have to go back and 
verify that this neglect is justified: are the amplitudes we calculate in our real 
situation small enough that the nonlinear terms are actually negligible compared 
to the linear ones? For now, however, we will consider just the idealized small- 
amplitude limit. 

15.1 EXPONENTIAL NOTATION 

In the linear regime, all oscillating quantities can be represented with 
‘exponential notation’. For example, the density perturbation could be 

nl = iilexp[i(k - x - ut +a,,)] (15.1) 
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250 Small-amplitude waves in anisotropic dispersive media 

where the overbar on the i i l  indicates that it is serving as a real wave amplitude, 
rather than an oscillating quantity (note that the overbar does not indicate a time 
average.) The quantity k is the vector wave-number, or 'wave-vector', and A, 
the wavelength, is 2 n l k .  The vector k can have components in all directions. 
In an anisotropic medium like a magnetized plasma, the direction as well as the 
magnitude of k plays a crucial role in the wave dynamics. Along directions in 
which the component of k is large, the wavelength is short, so quantities vary 
rapidly in space; along directions in which the component of k is small, the 
wavelength is long, and so quantities vary slowly in space. Of course, the fact 
that we have small-amplitude perturbations does not imply that this plane-wave 
spatial variation necessarily gives the best description of the oscillations. Indeed, 
planar geometry is too simple to treat a cylindrical or otherwise specially shaped 
real situation, if the size of the plasma is not much greater than a wavelength. 
Then only the exp( -iwt + is,) time dependence applies, and a different spatial 
dependence is appropriate. 

For now, we will deal with idealized plane waves only. In the particularly 
simple case where the plane wave-fronts align with surfaces of constant x ,  we 
can write 

nl = iilexp[i(k,x - wt + & ) I .  (15.2) 

For definiteness, we can take 8, to be 0 (i.e. no phase shift, an assumption that 
does not sacrifice generality since we can choose to measure the phase shift of 
everything else relative to n l ) .  If we choose the standard convention that the 
measurable part of nl is its real part, we have 

This represents a wave traveling with a phase velocity up E w/k,. 
In the case of a vector wave-number, we define a vector phase velocity 

vP E wklk2 = (wk,/k2)ri + (wk,/k2)9 + (ok,/k2)2. 

An observer traveling at speed w /  k in the direction of propagation of the wave, 
(k/k), stays at a constant wave phase. We can see this by supposing that x 
varies as v p t ,  in which case the argument of the exponential, i(k x - wt + S,), 
is independent of time. In this Unit we will always consider Re(w) to be 
positive, since a negative Re(w) corresponds to a wave propagating in the 
opposite direction from k; we will handle such a case with k + -k. The 
quantity Im(w) represents damping (Im(w) < 0) or growth (Im(w) > 0) of the 
wave in time. Similarly, Im(k) represents growth or damping in space. 

Other quantities such as flow velocities and electric and magnetic fields will 
have the same character of spatial and temporal variation, i.e. exp[i(k - x - u t ) ] ,  
but will have different phases and amplitudes. Indeed, each vector component 
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of each quantity has its own phase and amplitude. For example, we can write 
the electric field as 

EI = E,I%cos[(k * x - ut + SE,)] + E,lfcos[(k - x - wt + 8,vy)] 
+ E,lZcos[(k * x - wt + &E,)] 

+ E2l2exp[i(k x - wt + SE,)]] 

x exp[i(k - x - wt)] + E,I exp(isE,)fexp[i(k - x - wt)]) 

x exp[i(k x - w t ) ] }  (15.4) 

= Re{E,~%exp[i(k * x - wt + 8 ~ , ) ]  + E,~fexp[i(k x - wt + SE,)] 

= Re{E,l exp(is,v,)%exp[i(k x - u t ) ]  + E,] exp(isE,)f 

= Re{[E,I exp(isE,)% + E,I exp(isE,)f + E,I exp( i s~ , ) f ]  

where AE,,  SE^ and BE, are real phase delays between E , ] ,  E,1, E,] and n l ,  and 
all the amplitude factors (the quantities with the overbars) are again taken to be 
real. This is a painfully non-compact form for El. The same information can 
be written as 

El = Re{&exp[i(k - x - w t ) ] )  (15.5) 

where the underlined italic E ,  is now a complex vector (i.e. it has six scalars 
associated with it), but it is independent of time and space. To translate between 
these two notations recognize that, for example, 

tanas, = Im(El %)/Re@, - 2) (15.6) 

and 
E,1 = I&, -21 = [(El .%)(El 4 ) * ] 1 ’ *  (15.7) 

where the asterisk indicates a complex conjugate. In equations (15.6) and (15.7), 
the terms on the far left-hand side are the real phase delay and the real amplitude, 
while the other terms are built from the complex wave amplitudes. 

As we proceed to use this notation, we will take even more advantage of 
its compactness. All of the first-order terms in our equations (and therefore one 
multiplier in every additive term in the first-order equations) will contain the 
same exponential factor. Therefore we can simply drop the exponential factor 
without difficulty, so long as we are always clear about which are the first-order 
multiplicative terms. (For example, we will often find terms like E ,  x Bo, 
and it is important to remember which one is the perturbed quantity.) Finally, 
in the interest of further conciseness of notation, we will drop the underlined 
italics which indicates a complex wave amplitude: all the first-order terms will 
be complex wave amplitudes, so that we may return to using a simple bold-faced 
vector such as El, with the understanding that the exponential factor is implicit 
and that the physical vector quantity is the real part. We will, however, retain 
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the subscripts indicating order everywhere in this Unit, as well as the distinction 
of boldface versus plain to show vector versus scalar quantities. 

There is one pitfall in this more-or-less standard approach. Sometimes we 
find ourselves multiplying together two first-order quantities to evaluate some 
second-order quantity, and often then time-averaging this second-order quantity. 
For example, suppose we want the time average of A1 - B I ;  the proper answer 
is iRe[AI B;]. 

Problem 15.1: Show that the time average of the dot product of two 
physical vector fields, A, and B1,  is (Al - B1) = iRe[AI 0 By]. The left- 
hand side of this equation represents the time-average of the physical 
fields, while the right-hand side evaluates this time-average in terms of 
the complex wave amplitudes. Allow arbitrary phase differences between 
AI and B 1 .  

15.2 GROUP VELOCITIES 

We have already discussed the phase velocity of a wave-the speed at which 
a point of constant phase propagates forward along klk. If we make up a 
wave-packet of fast oscillations grouped together in time and space, as shown 
in Figure 15.1, this is the speed at which individual crests within the packet 
travel. However, these crests need not travel at the speed that the overall packet 
moves; the crests within the packet can slide forward or backward relative to 
the bundle of energy and information that constitutes the wave-packet. Indeed 
this frequently must be the case, since we will find that phase velocities in a 
plasma often exceed the speed of light, but the velocity of the group of waves 
(the ‘group velocity’) must be less than this, from fundamental considerations 
of special relativity. 

Figure 15.1 shows a packet of oscillations with a Gaussian envelope. The 
amplitude A ( x )  is given by 

A ( x )  = Re[exp( -x2/2a2)exp(ikox)] (15.8) 

where we have chosen koa >> 1, so that there are many oscillations within the 
packet. The question we would like to investigate is: how does this wave-packet 
propagate in a dispersive medium where w depends on k? Without deriving the 
principles of Fourier analysis, let us assert and later prove that the same A ( x )  
given in equation (15.8) can also be written 

m 
A ( x )  = Re (z / exp(ikx)exp[-a2(k - ko)*/2]dk 

&G -m 
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Figure 15.1. Wave-packet with a Gaussian envelope, constructed such that koa << 1. 

Equation (15.9) says that a wave-packet localized in space, x, can be considered 
to have been constructed of an integral over plane waves localized in wave- 
number, k .  

Problem 15.2: Prove that the two forms of A ( x )  given in equations (15.8) 
and (15.9) are equivalent. (A few tricks: transform k’ = k - ko; use 
the technique of completing the square in the exponent to transform the 
integral into an integral over a simple Gaussian; finally, use the facts that 
there are no poles in the complex plane for the resulting integrand, and 
that it goes to zero exponentially as Re k + f m ,  so that any integral 
along a contour parallel to the real axis will give the same result.) 

Equation (15.9) (and Figure 15.1) can be viewed as t = 0 freeze-frames of 
a set of propagating waves. The time evolution of this system is then just 

exp{i[kx - w(k)rI}exp[-a*(k - k0)*/21dk 
(15.10) 

where we have explicitly denoted the k dependence of o by using o ( k ) .  For 
a narrow enough wave-packet in k space (which means a large a ,  i.e. wide 
in physical space), we can approximate w ( k )  M o ( k 0 )  + ( a o / a k ) k , ( k  - ko) .  
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We further assume that the medium is dispersive, but not too dispersive, by 
neglecting quadratic terms in the expansion of w in (k - ko). So, proceeding for 
our moderately dispersive medium, we obtain 

00 

x (J [ exp(i[kx - k(aw/ak)~ot]]exp[-a2(k - ko)*/2]dk 6 -00 

(15.11) 

Now the factor beginning with a/& is exactly A(x  - (aw/ak)kot, 0)-in other 
words, the original t = 0 freeze-frame, but translating at velocity (aw/ak)k. 
This is just what we were looking for: the velocity of our wave-packet, So 
what is the factor on the first line? It is an overall space-independent time 
oscillation corresponding to the fact that the wave fronts are propagating at the 
phase velocity, w / k ,  while the wave-packet moves at the group velocity, aw/ak,  
not equal to w / k .  

15.3 RAY-TRACING EQUATIONS 

In an inhomogeneous plasma the trajectory of a wave-packet will be curved, 
responding to gradients in the plasma properties. We can derive the ray-tracing 
equations for the propagation of localized wave energy in a plasma simply 
from the considerations above. Consider a wave-packet localized not only in 
the longitudinal direction (parallel to b), but also in the transverse direction 
(perpendicular to b). For simplicity (but without loss of generality) let us 
assume b 11 8, giving b = koj2. Then the wave amplitude we desire can be 
expressed as 

A(x) = Re[exp(-x2/2aj - y2/2a3 - z2/2a~)exp(ikox)1. (15.12) 

By analogy with equation (15.9), we can re-express A(x) in terms of its Fourier 
transform: 

x exp[-a2(kx - k 0 ) ~ / 2  - a3ky2/2 - a:ki/2]d3k . (15.13) 1 
As before, we now consider this as a ‘freeze-frame’ picture at t = 0, and include 
a factor exp(-iwt), acknowledging that w = w(k), where k is a vector quantity 
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in our anisotropic medium. Carrying through a Taylor expansion as before, we 
approximate 

0 N w(ko) 4- (k - ko) . Vk@lko (15.14) 

where the meaning of Vkwlb is given by 

(15.15) 

evaluated at k = h. If we carry through the same analysis as equations (15.9)- 
(15.1 l), but in three dimensions, we will find our ‘freeze-frame’ A(x) translating 
at a vector group velocity given by 

a w  
vg = - ak (15.16) 

with an overall time-dependent oscillation superimposed, as before. Note that vg 
may not only have a different magnitude from vp, but even a different direction. 

Problem 15.3: Prove Equation (15.16), following the derivation given in 
one dimension in equations (15.9)-(15.11). 

We are assuming that the plasma medium is inhomogeneous so, based on 
our experience with light rays and lenses, there is no reason to expect the location 
of the peak of the k spectrum, ko, to be preserved. On the other hand, since 
the background medium is by hypothesis linear and time-independent, w (h) 
should be constant. This means that the total derivative of w, moving with the 
wave-packet, must vanish. Assuming we know w = w(x ,  k) for our medium, 
the total derivative of w can be expressed in terms of its partial derivatives by 

(1 5.17) 

The partial derivative with respect to x is at fixed k, and vice versa. Thus 
we have, in general, ‘equations of motion’ or ‘ray-tracing equations’ for our 
wave-packet: 

(15.18) 

As the wave-packet propagates it maintains the peak of its frequency 
spectrum, but its wave-number spectrum transforms. To trace out a ‘ray’ one 
must integrate forward in time the packet’s position in both x- and k-space, 
since the future propagation depends on both xo and b. 
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The analogy to Hamiltonian mechanics is evident, as is the parallel with 
quantum mechanics, where hw is identified as the energy of a photon and h k  as 
its momentum. The ray-tracing equations are only valid in the limit of so-called 
'geometrical optics', where the wave-packet is also well localized in physical 
space such that Sx awfax  << w ,  where Sx = a,% + ay9 + U$, and is well 
localized in k-space such that Sk. awfak  << U ,  where 6k = %/ax +9/ay +2/az. 

In this same limit of geometrical optics, we can use the Wentzel-Kramers- 
Brillouin (WKB) approximation to determine the wave phase at any location along 
the ray trajectory. In this approach we note that b ( t )  is implicitly a function 
of q ( t )  along the ray, since both are explicitly functions of t .  If we imagine 
sending out a steady beam of radiation, rather than a wave-packet, the energy 
will still propagate along the group velocity vector. Along this ray-trajectory, 
now, the continuous spatial derivative of the wave phase will be b, while the 
time-derivative of the phase will continue to be -WO (which does not vary in 
time or space). Thus the phase difference at fixed time between two points xo 
and XI along the ray path, 1, is given by 

A@ = lox' b - dl. 
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