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Preface 

Plasmas occur pervasively in nature: indeed, most of the known matter in 
the Universe is in the ionized state, and many naturally occurring plasmas, 
such as the surface regions of the Sun, interstellar gas clouds and the Earth’s 
magnetosphere, exhibit distinctively plasma-dynamical phenomena arising from 
the effects of electric and magnetic forces. The science of plasma physics was 
developed both to provide an understanding of these naturally occurring plasmas 
and in furtherance of the quest for controlled nuclear fusion. Plasma science has 
now been used in a number of other practical applications, such as the etching 
of advanced semiconductor chips and the development of compact x-ray lasers. 
Many of the conceptual tools developed in the course of fundamental research 
on the plasma state, such as the theory of Hamiltonian chaos, have found wide 
application outside the plasma field. 

Research on controlled thermonuclear fusion has long been a world-wide 
enterprise. Major experimental facilities in Europe, Japan and the United States, 
as well as smaller facilities elsewhere including Russia, are making remarkable 
progress toward the realization of fusion conditions in a confined plasma. The 
use, for the first time, of a deuterium-tritium plasma in the tokamak experimental 
fusion device at the Princeton Plasma Physics Laboratory has recently produced 
slightly in excess of ten megawatts of fusion power, albeit for less than a second. 
In 1992, an agreement was signed by the European Union, Japan, the Russian 
Federation and the United States of America to undertake jointly the engineering 
design of an experimental reactor to demonstrate the practical feasibility of fusion 
power. 

This book is based on a one-semester course offered at Princeton University 
to advanced undergraduates majoring in physics, astrophysics or engineering 
physics. If the more advanced material, identified by an asterisk after the Chapter 
heading or Section heading, is included then the book would also be suitable as 
an introductory text for graduate students entering the field of plasma physics. 

We have attempted to cover all of the basic concepts of plasma physics with 
reasonable rigor but without striving for complete generality-especially where 
this would result in excessive algebraic complexity. Although single-particle, 

... 
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xiv Preface 

fluid and kinetic approaches are introduced independently, we emphasize the 
interconnections between different descriptions of plasma behavior; particular 
phenomena which illustrate these interconnections are highlighted. Indeed, a 
unifying theme of our book is the attempt at a deeper understanding of the 
underlying physics through the presentation of multiple perspectives on the same 
physical effects. Although there is some discussion of weakly ionized gases, 
such as are used in plasma etching or occur naturally in the Earth’s ionosphere, 
our emphasis is on fully ionized plasmas, such as those encountered in many 
astrophysical settings and employed in research on controlled thermonuclear 
fusion, the field in which both of us work. The physical issues we address are, 
however, applicable to a wide range of plasma phenomena. We have included 
problems for the student, which range in difficulty from fairly straightforward 
to quite challenging; most of the problems have been used as homework in our 
course. 

Standard international (SI) units are employed throughout the book, except 
that temperatures appearing in formulae are in units of energy (i.e. joules) 
to avoid repeated writing of Boltzmann’s constant; for practical applications, 
temperatures are generally stated in electron-volts (eV). Appendices A and C 
allow the reader to convert from SI units to other units in common use. 

The student should be well-prepared in electromagnetic theory, including 
Maxwell’s equations, which are provided in SI units in Appendix B. The student 
should also have some knowledge of thermodynamics and statistical mechanics, 
including the Maxwell-Boltzmann distribution. Preparation in mathematics must 
have included vectors and vector calculus, including the Gauss and Stokes 
theorems, some familiarity with tensors or at least the underlying linear algebra, 
and complex analysis including contour integration. Appendix D contains all 
of the vector formulae that are used, while Appendix E gives expressions 
for the relevant differential operators in various coordinate systems. Higher 
transcendental functions, such as Bessel functions, are avoided. Suggestions for 
further reading are given in Appendix F. 

In addition to the regular problems, which are to be found in all chapters, 
we have provided a disk containing two graphics programs, which allow the 
student to experiment visually with mathematical models of quite complex 
plasma phenomena and which form the basis for some homework problems 
and for optional semester-long student projects. These programs are provided 
in both Macintosh’ and IBM PC-compatible format. In the first of these two 
computer programs, the reader is introduced to the relatively advanced topic of 
area-preserving maps and Hamiltonian chaos; these topics, which form another 
of the underlying themes of the book, reappear later in our discussions both 
of the magnetic islands caused by resistive tearing modes and of the nonlinear 

’ Macintosh is a registered trademark of Apple Computer, Inc. 
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Introduction 

After an initial Chapter, which introduces plasmas, both in the laboratory and in 
nature, and derives the defining characteristics of the plasma state, this book is 
divided into six ‘Units’. In Unit 1, the plasma is considered as an assemblage 
of charged particles, each moving independently in prescribed electromagnetic 
fields. After deriving all of the main features of the particle orbits, the topic 
of ‘adiabatic’ invariants is introduced, as well as the conditions for ‘non- 
adiabaticity’, illustrating the latter by means of the modern dynamical concepts 
of mappings and the onset of stochasticity. In Unit 2, the fluid model of a 
plasma is introduced, in which the electromagnetic fields are required to be 
self-consistent with the currents and charges in the plasma. Particular attention 
is given to demonstrating the equivalence of the particle and fluid approaches. 
In Unit 3, after an initial Chapter which describes the most important atomic 
processes that occur in a plasma, the effects of Coulomb collisions are treated 
in some detail. In Unit 4, the topic of small-amplitude waves is covered in 
both the ‘cold’ and ‘warm’ plasma approximations. The treatment of waves 
in the low-frequency branch of the spectrum leads naturally, in Unit 5 ,  to an 
analysis of three of the most important instabilities in non-spatially-uniform 
configurations: the Rayleigh-Taylor (flute), resistive tearing, and drift-wave 
instabilities. In Unit 6,  the kinetic treatment of ‘hot’ plasma phenomena is 
introduced, from which the Landau treatment of wave-particle interactions and 
associated instabilities is derived; this is then extended to the non-uniform plasma 
in the drift-kinetic approximation. 
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