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Some New Variational Properties of Hydromagnetic Equilibria

HaroLp GRAD

Courant Institute of Mathematical Sciences, New York University, New York, New York
(Received 6 May 1964)

Earlier variational formulations of problems in hydromagnetic equilibrium are extended by
partially relaxing some of the boundary conditions. The resulting natural boundary conditions
reflect situations of physical interest. Part of the analysis is done in the large and yields a simple
intuitive condition which must be satisfied by an equilibrium which is free to move at its ends (the
magnetic lines are not “tied’’). Applications are made to stability theory.

1. INTRODUCTION

HE distinction between systems in which mag-

netic lines are tied at boundaries or free to move
is frequently discussed in connection with stability
theory.! But it has apparently gone unnoticed that
the class of equilibria (regardless of stability) is
different in the two cases. Not every solution of
the equilibrium equations

Vp =JxB, uJ =culB, divB=0 (1.1

satisfying boundary conditions including tied ends
remains a legitimate equilibrium state if the ends
of the magnetic lines are free to move (holding all
other boundary conditions fixed).

This distinction occurs most naturally in a varia-
tional formulation. Let us take as the definition
of an equilibrium state a stationary solution of an
appropriate potential®

Flp(x), Bx)] = [ (B*/2u — p) dx.

An interior variation yields the equilibrium dif-
ferential equations as “Euler’” equations. But the
potential must also be stationary with respect to
variations at the boundary. If the class of admissible
functions B and p is sufficiently restricted by the
externally imposed boundary conditions, the bound-
ary variation will vanish automatically. If not, a
natural boundary condition will impose its will. If
instead of just stationary states we insist on a
minimum, then the minimum value under the natural
boundary condition is clearly lower than a minimum
attained under any imposed boundary condition.
This has significance with respect to stability.

1.2

1 The earliest quantitative results are those of H. Rubin
in J. Berkowitz, H. Grad, and H. Rubin, Proceedings of
the Second United Nations International Conference on the
Peaceful Uses of Atomic Energy (United Nations, Geneva,
1958), Vol. 31, p. 177.

2 H. Grad and H. Rubin, in Proceedings of the Second
United Nations International Conference on the Peaceful Uses
of Atomic Energy (United Nations, Geneva, 1958), Vol. 31,
p. 190.

Occasionally the physical problem will suggest a
certain boundary condition as being desirable; but
only the equations can say whether it is permissible.
For example, in a problem in plasma stability,®
Taylor suggests that it would be pleasant to have
the current vanish at both ends of a mirror-type
equilibrium. Previous known (macroscopie) equilib-
rium theory” had only described equilibria in which
the current can be specified at one end (e.g., zero);
the value at the other end would only be determined
after solution of the problem. Taylor finds the
integral condition

f——VB'(;pXB) ds =0 (1.3)

which must hold on each magnetic line in order
for the solution to be compatible with the desired
property of vanishing -current at the ends. This
condition seems very awkward and in order to
easily satisfy it Taylor is led to consider much more
special equilibria in which the integrand in (1.3)
vanishes identically.*

We find, however, that the condition J, = 0
results as a natural boundary condition obtained
by partially relaxing an imposed boundary condition
involving the pressure. This suggests that (1.3) is
not awkward but, when interpreted properly, is
even natural to the problem. Of course the pressure
distribution can no longer be specified arbitrarily if
(1.3) is to hold. Our main result is an explicit pre-
scription of how the pressure should be distributed
among the magnetic lines in order to satisfy the
physically suggested boundary condition. We also
describe a plausible method of computing these
equilibria as a modification of the previous theory
with tied ends.”

¢ J. B. Taylor, Phys. Fluids 6, 1529 (1963).

* Taylor’s problem is a microscopic rather than . our
macroscopic one, but the principle is exactly the same (and
:vefsﬁall )apply these results to Taylor’s problem in a paper

o follow).
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By use of these techniques we find a simple
necessary condition for the stability of a conducting
fluid with free ends (this is necessary and sufficient
for stability with respect to interchanges). One
feature of this analysis is that we are able to exhibit
a very large variety of equilibria which, although
stationary, are not minima; they are, indeed, far
more common than the minimum (stable) solutions.
Another point of interest is that, with our techniques,
the special (interchange) variations on which we
concentrate can be easily analyzed with respect to
finite displacements.

Analogous results for the plasma problem (micro-
seopic guiding-center theory) will be presented in a
paper to follow.

2. VARIATIONAL ANALYSIS

First we recall some of the results described in
Ref. 2. Consider solution of the system (1.1) in a

F1c. 1. Tubular domain.

tubular domain (Fig. 1). As boundary conditions
we take

Problem I:

(a) B,givenon S{B, = 0o0nS, B, > 0on 8, and
B, < 0on S, with [, B.dS + [s, B.dS = 0]

(b) p given on S,

(¢) J.given on S, (or on S,).

This formulation was suggested on the basis of
plausible arguments involving the characteristics of
the system (1.1). In addition, the following plausible
iteration scheme for the solution of problem I was
presented in Ref, 2. To start, take any magnetic
field satisfying div B = 0 and boundary condition
(a) (e.g., the vacuum field if we take as our first
iterate J = 0). Carry the values of p given in (b)
along the magnetic lines; p is now a known function
of x. Evaluate the perpendicular component of J
from the first line of (1.1),

J. = BxVp/B’.
Writing
J=J.+ B
and using div J = div B = 0, we compute

div]J, = —B-Vo = —B 305/9s.

HAROLD GRAD

Knowing do/ds and the initial value of ¢ from the
remaining boundary condition (¢) [¢ = J,./B.], we
can compute o and therefore J in the domain.
Finally we solve the inhomogeneous potential
equation

divB = 0, curl B = »,J

subject to the boundary condition (a) to obtain a
new magnetie field, and continue.

This iteration can be expected to converge if the
tubular domain is not too large and the boundary
conditions are not too wild, but no general con-
vergence proof has yet been given.®

We continue with results from Ref. 2 based on the
variational function (1.2).° We allow into competi-
tion admissible functions B(x) and p(x) which satisfy

divB=0, B-Vp=0, @.1)

and boundary conditions to follow. In other words,
we examine F for any solenoidal field B(x) to which
are assigned arbitrary constant values of p on each
line. The conditions (2.1) can be parametrized in
the form

B =VpxVo 2.2)

[a function w(x), not necessarily single-valued, can
always be found given B(x) and p; see Ref. 2]. In
terms of p and w we now write

Flp, w] = f [éi |Vp xVo|* — p] dx  (2.3)

and restrict the class of admissible pairs p(x), w(x)
by the boundary conditions

Problem II:

(8) VpxVw-n = 0onS,
(b) p given on S, and S,,
(¢) wgiven on 8, and S,.

It is shown in Ref. 2 that F is stationary for any
admissible p(x), w(x) satisfying these boundary con-
ditions and also the “Euler” equations

J»Vo =1, J.Vp=0 2.4)
which, together, imply
Vp = JxB. (2.5)

¢ Convergence in certain special cases (two-dimensional
or axial symmetry) can be verified without difficulty (M.
Schechter, unpublished ).

® This is the most convenient variational formulation for
the study of equilibrium since it contains only the variables
(magnetic field and pressure) which are present in the equi-
librium equations. The connection with the stability problem
is discussed in See. 4.
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To compare problems I and II, we note that the
flux element on any surface is given by
B, d8 = Vp xVw-dS = dp dw. 2.6)
The boundary conditions in problem II determine
B, just as in problem I. Instead of p and J, given
at one end of the tube, p is specified at both ends
in problem II. But the specification of p and » on
S, and S, does more than give B, on these surfaces;
it fixes the ends of each magnetic line (p and w are
coordinates for a line). Alternatively, on a given
cylindrical pressure surface, the assignment of w at
each end specifies a certain amount of “twist” to
the magnetic field. In a less obvious way the assign-
ment of J, accomplishes the same in problem I.

In performing the variation of F[p, ], the interior
variation is found to vanish as a consequence of
(2.4), leaving the boundary variation [Ref. 2,
Eq. (25)]

f [5p(B X Vi) — 8(B x Vp)]-dS.

$1+8.

2.7

This vanishes, of course, if p and « are held fixed
on 8, and S, as in problem II; p = 6w = 0. We
now consider the possibility of widening the class of
admissible functions by relaxing some of the bound-
ary conditions of problem II.

First, still quoting Ref. 2, we relax the boundary
condition on w, keeping p and B, fixed. This allows
the ends of the magnetic lines to move around a
constant p contour in S, or S, and yields the natural
boundary condition

9§ B-dx = 0 (2.8)
on each p contour (this integral is independent of
the path on any given p cylinder). In other words,
relaxing the twist associated with the specification
of w yields zero twist as a natural boundary condition.
A statement equivalent to (2.8) is

f J.dS = 0.
Po<p<Pr

The net current through any ring p, < » < p, on S,
or 8, is zero.

We now proceed to further relax the boundary
condition, allowing p and » to vary arbitrarily at
one end of the tube. This increased latitude in the
admissible class of functions will yield a stronger
natural boundary condition than (2.9), viz. J, = 0.
Specifically, we state

(2.9)

PROPERTIES OF HYDROMAGNETIC EQUILIBRIA
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Problem II1:

(a) B, = 0on S,
(b) B, > 0 given on S,
(¢) p and  given on S, such that

Js.dp dw + [s, B.dS = 0.

We implicitly assume that the topology of the field
lines is fixed, i.e. the domain is covered simply by
magnetic lines all of which intersect S, and S,. This
implies certain automatic restrictions on the values
of p and w on S,. For any admissible pair p(x), w(x),
a surface p = const is a flux tube. Therefore a
closed curve p = const on 8; will include the same
amount of flux as on 8,. Since B, is specified on
S, this flux property restricts the p values that can
be found on 8,. A continuous deformation of the
boundary values of p and w on S, is limited to one
which is flux-preserving.

Specifically, if p(S), w(S) and p'(8), «'(S) are
two admissible sets on §;, the Jacobian of the
transformation is unity

', w)/dp, w) = 1.
Setting p” = p 4+ ép and ' = w + dw, to first order
(9/0w)(8w) + (8/3p)(ép) = 0.
Thus there exists a stream function ¥(p, w) such that
op = 9y/dw,
Substituting into (2.7), we obtain

S = —dy/op.

/ [g—(f B x Vo) + % (Bpr)}dS

_ [ (¥ 1 ) :
= f(awvw+6pvP xB-dS

]

—f (V¢ xBn) dS

[ ) ay

where

(¢) = LB-dx

is the line integral of B on a contour ¢ = const.
By taking flows ¥(x) with closed streamlines, we
conclude that r = 0 for every closed curve on S,.
This implies, as a natural boundary condition [sup-
plementing (a), (b), and (c)]

I1T d) J.=0 on S§,. (2.10)

Problem IIT is seen to be a special case of problem I.
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Fia. 2. Pressure contours.

It is convenient to introduce an alternative de-
scription of the allowable values that p and w can
take on S, when they are fixed on S,. We introduce
the flux function ®(p)” which is defined by the

property
cp(p'):f B.dS where p <p on . (2.11)
.

In other words, ®(p’) is the flux through that part
of the surface (8, or S,) where p < p’. The assigned
boundary values on 8, determine ®(p); the admis-
sible values on S, must be compatible with the
same ®(p). This is a more general admissibility
concept than the previous one (and will be necessary
later for the study of finite interchanges). For
example (see Fig. 2), a set of boundary functions
p(8), w(S) which is compatible with $(p) can be
topologically complicated.

" But even for infinitesimal variations, it is neces-
sary to introduce the function ®(p) as a constraint
when we wish to allow p and w to be free on both
S; and 8,. Consider

Problem IV:

(a) Bygivenon S = S, + S, 4+ S, as before,
(b) ®(p) given on S, and 8S..

By (b) we mean that a function ®(p) is prescribed,
and admissible sets p(x), w(x) are to be compatible
with ®(p) at both ends. The topology (e.g., whether
lines p = const are open or closed or disconnected
sets, Fig. 2) is not specified; the reason for this will
become clear later.

Evidently, the natural boundary condition for
problem IV is

1V (¢) J.=0 on 8; and S,. (2.12)

We remark that in problems IIT and IV where
natural boundary conditions appear, an equilibrium
problem is well-posed in terms of solution of the
differential equations (1.1) (rather than as a varia-

7 This is analogous to the procedure in a toroidal domain;
see Ref. 2.
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tional problem) only when subject to the combined
boundary conditions, imposed and natural.

We recall from Ref. 2 that the boundary variation
term (2.7) arises only from the magnetic energy,
| (B*/2u,) dx; the term [ p dx contributes only to
the interior variation which gives rise to the Euler
equations (2.4). It will be illuminating to perform
this magnetic variation ab iniizo, as a self-contained
derivation of the formula (2.7). A flux-preserving,
line-preserving perturbation of a solenoidal field,
div B = 0, can be described by the variational
equation

0B/dt = curl (u xB). (2.13)

The “time’”’ ¢ is merely the parameter in the varia-
tion; u is the first variation of the Lagrangian
independent variable x; and 6B/dt is the first
variation of B at a fixed x. Varying the magnetic
energy in a fixed domain,

1 pe lf 9B

= fu-B xJdx — 9§ (B xu) xB-dS. 2.14)
To relate this boundary term (Poynting vector) to
(2.7), we note that the values of p and w are carried
by the flow

do O

d d
T =Etuvp=0, F="4uVe=0
(2.15)

Interpreting dp/dt as ép and dw/dt as dw, (2.7) takes
the form

[ (@ V) Vp — - Vp) V] xB-ds

= —f (B xu) xB-dS

which agrees with (2.14).

The significance of the boundary condition J, = 0
is further illuminated by a comparison of a force-
free field, curl BxB = 0, and a vacuum field,
curl B = 0 (see also Ref. 2). The variational function
is the same in both cases, viz.

2#0_/82 = ———f [VpxVo|®dx. (2.16)

Here p is only a flux parameter describing the field.
The two problems differ in the boundary data. The
classical variation of [ B® dx with B, fixed yields
curl B = 0 as the variational condition. The varia-
tion in terms of p and « yields curl BxB = 0 as
the variational condition. Thus when p and w are
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fixed (tied lines), we have a force free field. But if
B, alone is fixed on the boundary, relaxation of w
and p yields J, = 0 as the natural boundary condi-
tion. Writing curl BxB = 0 as curl B = ¢ B where
¢ is constant on each line and using J, = 0, we
conclude that ¢ = 0 or curl B = 0. The vacuum
field is therefore obtained as a relaxation (dropping
the end identification) of a force free field. The more
usual procedure in the classical problem is to intro-
duce a variation which entirely disregards line identi-
fication (e.g., by introducing the vector potential of
4B and integrating by parts).

We may carry the process of relaxing boundary
conditions one step farther and allow B, as well as
p and » to vary, subject only to the total flux
condition

B, dS = fixed.

81

2.17)

It is a classical result [and evident from (2.7) or
(2.14)] that the natural boundary condition is now

Bt = 0) (2.18)

or B is normal to S,. We shall not make use of this
further relaxation because it makes it impossible to
decouple the fluid domain of interest from the rest
of the universe. So long as B, is held fixed on S,
the exterior field can be considered to be fixed and
therefore irrelevant. But if B, varies, we must
consider as the magnetic potential [ (B*/2u,) dx
summed over the outside and inside. In such a
formulation, the natural boundary condition (2.18)
is replaced by a vanishing jump in B,; the vector
magnetic field is continuous.

3. INTERCHANGES

We define an interchange to be a perturbation
which leaves B(x) unaltered and merely reassigns
the constant values of p among the magnetic lines,
keeping fixed the flux function $(p). We recall that
this means that the flux which is associated with a
given range of values of p, po < p < p,, is held fixed
[and is equal to ®(p,) — ®(po)]. This condition is
compatible with a hypothetical perfectly conducting
fluid flow in which the value of p is carried with a
given field line (this could be termed an isobaric
flow as distinguished from the more physical isen-
tropic flow). Such an interchange is an admissible
variation for problem IV in the last section. Of
course, much more general variations are allowed
in problem IV, varying p independently at both
ends, S, and S,, and varying B as well. By consider-
ing these special variations we can obtain necessary

HYDROMAGNETIC EQUILIBRIA 1287
conditions, not only for stationary F but for a
minimum,

It will now be convenient to distinguish the two
roles played by p as pressure and as a magnetic
coordinate, We write

B = Vax V3, 3.1)

where «(x) and B(x) are fixed stream functions for
the given field B(x), and we consider variations of
the function p(a, 8). The class of admissible func-
tions p(a, B) can be described, for continuous varia-
tions, as an incompressible flow in («, §) which
carries the value p; and, in the large, as a class
of functions with the property

[ dads = 26) (3.2)
p<p’
for every p’.

Since B is not varied, instead of F[p, ] we con-
sider the simpler variational function

Plpx)] = —[pdx. 3.3)

We introduce «, 8, and the arc length s along a
magnetic line as coordinates. Since da d8 = B dS
for an element dS normal to B, we have

dx = (1/B) da dB ds. (3.4)
Thus
P = — [ pla, B) da dB ds/B. (3.5)
Or, defining
22 d
e, B) = f 1_5%7%_85 3.6)

integrated the full length of the line (a, 8) from
S, to S;, we have

P = —[pla, B)gle, B) da dB.

Here ¢(a, 8) is fixed and p(e, B8) is to be varied.
The significance of an interchange as a special
variation is that it reduces the integration from
three dimensions to two.

It is intuitively clear how to minimize P.* For
simplicity consider smooth functions p(e, 8) and
g(e, B). The values of p must be rearranged in-
compressibly such that the largest values of p are
placed on the largest values of ¢. The maximum
of [ pg da df is obtained when the contours p = const
coincide with ¢ = const and p is a monotone function
of g. There is a unique function $(e, 8) which
satisfies this condition. On a given contour ¢(a, 8) =q,

3.7

8 This type of analysis has been used in a similar context
by C. 8. Gardner [Phys. Fluids 6, 839 (1963)].
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which encloses a flux ¢,, the value of 5(e, 8) = p, is
determined by ®(p,) = ¢o (see Appendix).

Next we show that P is stationary whenever the
contours p = constant and ¢ = constant coincide.
Let the variation of p(a, 8) be described by an
incompressible flow u(e, 8) which carries p

divu = 0, d—p=%zt—)+u-Vp=0.

dt
We have

aP _ _if
ar = "] Py deds

Il

dp
_fat q do df

= f (u-Vp)q da dg.

We recall the theorem that if [ u-v = 0 for every
incompressible u with u, = 0 at the boundary, then
curl v = 0 (or we write u = n x Vy and integrate
by parts). Thus

VpxVq =0,

which is what was to be proved.’

We shall refer briefly to the condition “p = const
where ¢ = const” as “p is a function of ¢”’, although
the function may not be single-valued. For a mini-
mum, p is in the usual sense a monotone function of g.

Note that for P either stationary or a minimum,
the topology of the p surfaces is determined; it is
the same as that of the given ¢ surfaces. It is possible
that the more general variation allowed in problem
IV might yield more than one local minimum with
different ¢ topologies. .

Summarizing, p a function of ¢ is necessary and
sufficient for P = — pq da dB to be stationary,
and p a monotone function of ¢ is both necessary
and sufficient for P to be an absolute minimum with
regard to all finite perturbations. Since, as we have
already remarked, interchanges are admissible varia-
tions for problem IV, we conclude that p a function
of ¢ is a necessary condition for F' = [ (B*/2u,—p) dx
to be stationary and p a monotone function of ¢ is
a necessary condition for F to be a minimum. In
other words, every hydromagnetic equilibrium with
freedom to move at its ends must have p a function
of ¢, and every absolute minimum equilibrium

¢ A similar criterion was obtained by B. B. Kadomtsev
[Plasma Physics and the Problem of Conitrolled Thermonuclear
Reactions, edited by M. A. Leontovich (Pergamon Press,
New York, 1960), Vol. IV, p. 17] in a different problem, viz.,
a low pressure toroidal equilibrium with closed lines; cf. the
discussion at the end of Sec. 4 on closed lines.

HAROLD GRAD

(related to stability) must have p a monotone
function of ¢. These restrictions are in addition to
the requirement that p and B satisfy the equilibrium
differential equations.

It is clear that p a function of ¢, which makes the
potential F stationary with respect to interchanges,
must be related to J, = 0 which makes F' stationary
with respect to more general variations. If we per-
form an interchange following the methods of the
preceding section, restricting ép and déw to be the
same on S; and 8,, we find

ja+ =0, (3.8)

where §, = J./B, is the current density taken with
respect to da dB instead of dS

jadadB = J,dS. (3.9)

Instead of zero current at both ends, as in the case
of arbitrary end variations, we have zero difference
in current at the two ends of every magnetic line
when we only admit interchanges. This condition
on j, is exactly equivalent to the condition that
p be a function of ¢. The first criterion is perhaps
more intuitive, but the second is more useful in
construeting equilibria.

A direct proof of the equivalence of j: + 72 = 0
with p ~ ¢ follows from the

Lemma: Given two vector fields J and B and a
scalar p which satisfy div J = div B = 0 and
JxB = Vp (we do not insist on the relation x,J =
curl B); then J can be represented by a stream
funetion ¢,

, J=VixVp (3.10)
where ¢ differs from g¢(e, 8, s) = [¢ ds/B by a
constant on each magnetic line.

For the proof we compute
JxB = (V{xVp)xB = VpB-VY{)
and find that B- V¢ = B d¢/ds = 1 or
** ds
Fo) = 86) = | 5= qls) —gls) (31D

L2Y

with arbitrary endpoints s,, s, on any line. This is
equivalent to

where p and w are coordinates of a line. Note that
our present usage is that ¢ = [ ds/B is evaluated
for arbitrary limits of integration; in the analysis
of interchanges, ¢ was always taken over the full
length of the magnetic line. If a distinction is
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necessary, we shall make it by specifying the argu-
ments ¢q(a, 8) or ¢(a, 8, s). We can use ¢ as the
stream function for J if the end surface on which
we assign ¢ = 0 is assigned the boundary condition
J. = 0. More generally, ¢ can be used instead of ¢
to compute current differences between the twoends
of a flux tube since V{ x Vp-dS = {, Vo xVp-dS =
—f,B+dS gives equal contributions at both ends.
If p is a function of g(a, B), VpxVq = 0, then
the current density is the same at both ends (or
it + 2 = 0 with the positive normal outward).
The condition (3.8) suggests

Problem V:

(a) B, given on S,
(b) ®(p) given,

(¢) J.givenon S,
d) 4. + 4 =0.

Problem IV is a special case of problem V taking
Jn=0.

We now show how to construct solutions to
problems IV and V by a modification of the itera-
tions used in problem I. It suffices to consider
problem V. We start with the vacuum magnetic
field which takes the given boundary values B,.
Using B(x) we compute [ ds/B and evaluate ¢(«, §).
The given pressure function ®(p) is then distributed
so as to maximize [ pq da dB. Using JxB = V»
we evaluate J, and then J, as in problem I, using
the given boundary condition on J, at one end.
Using J we compute a new B and repeat the proce-
dure. Note that there is an infinite variety of choices
of p(g) which will make F stationary as compared
to a presumably unique minimum. In the iteration
we use the value of J, at one end only. But the
assignment of p to be a function of ¢ will insure
that J, takes the appropriate value at the other end.

In all the iteration procedures described, the
computation of J from J xB = Vp and a boundary
condition on J, can be stated compactly in terms
of the auxiliary function ¢(e, B, s). For example,
if J,=00n §,, from a given B we compute ¢(a, 8, s) =
Ji.ds/B(g=00n8,), and then evaluate J=Vq x Vp.
If J, = 0, we also compute the function {,(p, «)
on S; to satisfy dp df = J.dS (8¢/00 = J./B,
defines ¢ within an arbitrary and irrelevant added
funetion of p), and then obtain J = V(¢ + ¢,) x Vp.
This is exactly equivalent to the previous computa-
tion of J, followed by J,.

Some of the previous results are particularly
iluminating in the low pressure (low “g”) limit.
In problems I, II, and V, the limit is a force free
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field, whereas in III and IV it is a vacuum field.
In problems I and V, the given boundary condition
J. # 0 precludes a vacuum field. In problem II,
we define the limit by considering fixed functions
2:(8,) and p,(S,) each multiplied by a small param-
eter. In the limit, the pressure is zero but the line
identification is kept. Only by relaxing the line
identification do we get J, = 0 and a limiting field
which is a vacuum.

When the limit p — 0 is a vacuum field, the
iterations previously described are expansions about
p = 0. In problem III (or problem I with J, = 0),
we start with the vacuum field, assign the small
pressure values imposed by the boundary condition
and then compute the small perturbation current
as a first order correction. In problem IV we start
with the vacuum field, compute ¢(e, 8) = [ ds/B,
assign the small pressure values accordingly, and
and then compute the perturbation of the current.
To lowest order, the equilibrium configuration is a
vacuum field together with an assigned pressure
function. In the first case p is arbitrarily assigned
to the vacuum magnetic field lines; in the second
case it is a function of ¢ (which is computed from
the given vacuum field). In the one case, the topology
of the p-surfaces is arbitrary; in the other case it
is determined by the vacuum field. It is evident
in the second case, where p is a function of g, that
there are infinitely more stationary equilibria than
there are minima.

If p is assigned arbitrarily in problem III, a
finite current (i.e., first order, comparable to p)
is created at the end where it is not fixed to be
zero. It is interesting to note that this residual
current can be computed explicitly in terms of the
given pressure assignment and the known vacuum
value of ¢ by the formula

J.dS = dpdq = VpxVq-dS.
4. STABILITY

The variational function F = [ (B*/2u, — p) dx
was originally proposed for the study of equilib-
rium.”’ In a special case (fluid and field separated
at an interface) it was also successful for a study
of stability.’® But for more general stability analysis
we must consider the energy

¢= (—2—}‘; B* + pe) dx @.1)

0 H. Grad in ‘“Proceedings of Princeton Thermonuclear
Conference, 1954.” Published in U. S. Atomic Energy Com-
mission report WASH-184, p. 144, 1955. Also in Refs. 1 and 2.
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where ¢ is the internal energy per mass and p is
the mass density. We will show, however, that a
minimum value for F is sufficient for stability in
complete generality. We will also find simple neces-
sary and sufficient conditions for interchange stab-
ility similar to the previous criteria on F involving
p and ¢. Most stability analyses have been based on
alinearized version (Rayleigh’s principle) depending
on the second variation of G.’' A general variation of
G can be defined by a displacement of the Lagrangian
position x. The magnetic energy variation is the
same as for F. The internal energy variation is
constrained by the conservation of mass in each
flux tube and the constant entropy which is earried
by a fluid particle. This is to be compared with the
variation of F in which p (not entropy) is carried
as a constant,.

But we recall a basic thermodynamic inequality
which states that in any domain (for example a
flux tube), if the total mass is fixed and the entropy
is constant following each displaced particle, then
the energy is a minimum for a state with constant
pressure over the domain. It therefore suffices, in
investigating G for a minimum, to consider only
special thermodynamic variations which keep p a
constant on each line. Since the variation is adiabatic,
the pressure value on a varied line will not be the
same as on the original line, in contrast to theisobaric
variation previously considered for F.

For interchanges which do not vary B and for the
comparison between F and ( in which the magnetic
energy enters similarly, if suffices to consider

U = [ pedx. 4.2)

We shall compare P and U by an elementary thermo-
dynamic argument (cf. Ref. 1). The internal energy
e(r, 1) is a convex function of its arguments (r = 1/p
is the specific volume, 5 is the entropy per mass).
Actually we need only the property that it is convex
in = when 7 is fixed, and we recall that de/or = —p.
The function

P = —[pdx,

&(r) = e(r, n)) + por

is also convex in 7 (p, is a given constant and », is
held fixed). It therefore assumes an absolute mini-
mum where ¢'(r) = 0, viz., at the unique value
70 determined by —de/dr = p(ro, N0) = Po. We can
write this minimum property as an inequality

e(r, no) + por 2> e(rq, 10) + PoTo. (4.3)
Now consider two domains D and D, in which the

4 1. B. Bernstein, E. A. Frieman, M. D. Kruskal, and
R. M. Kulsrud, Proc. Roy. Soc. (London) A244, 17 (1958
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functions 7(x), e(x), n(x) and 7o(x), €(x), n0(x),
respectively, are defined. We suppose that there is
given a one-to-one mapping which identifies cor-
responding points x <> X,. The functions 5 and 7,
are assumed to be equal at corresponding points,
7(x) = no{X,), and the elements of mass are the
same at image elements pdx = p,dx,. In other
words, the state in D could have arisen by a mass-
conserving adiabatic flow originating from D, (the
two volumes are not necessarily the same). In
particular we assume that p, is a constant in Dy
(but no(x), €,(x), 7o,(X) are not necessarily constant).
We integrate the inequality (4.3) with respect to
mass, dit = p dX = p, dx,, and obtain

f e(r, no)p dx — f (o, m0)po dX,
D Do
2 (Ve — V), (4.4)

where Vo, = [ dx, and V = [ dx are the volumes
of D, and D respectively. First, as a special. case,
taking D = D, and V = V,, we conclude that
the energy [ ep dx is a minimum with respect to
any adiabatic variation in a given domain for the
state where p = p, is constant in the domain (this
ig the result quoted above).

In our application we consider the domams D
and D, to be two magnetic lines with dx = ds/B
and V = [ ds/B = ¢ (or, more intuitively, as flux
tubes with dx = dadS ds/B). The coordinates of
D, are (as, B,) and of D {a, 8). Any variation (general
as well as interchange) is a mapping from an original
line (o, Bo) to a new position (@, 8) together with
an adiabatic mass-preserving variation of p, e, etc.
along the line. But to investigate a minimum, it is
only necessary to consider varied states in which
p = constant. We therefore now consider the in-
equality (4.4) under the restriction that p as well
as P, is constant. Integrating (4.4) with respect to
da dB = da, dB, we obtain

U~U,>P - P, 4.5)

The left side is the change in U = [ pe dx due to
an arbitrary adiabatic variation. The right side is
the change in P due to an isobaric variation which
carries the value p, unaltered to the new location.
This inequality holds for all admissible variations
of the potentials P and U, not ounly interchanges,
and not only variations of U in which p is constant
on a line (the inequality is only strengthened other-
wise).

This inequality contains one of our results: if a
given equilibrium is a minimum for F considered
with respect to isobaric variations, it is also a
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minimum for ¢ with respect to adiabatic variations
(i.e., stable).

For a more special equilibrium of a perfect gas
in which the entropy 7 is a constant on each line
(it may vary from line to line), we find a simple
necessary and sufficient condition for U to be a
minimum with respect to adiabatic interchanges.
(This is therefore a necessary condition for absolute
stability.) We have

1
¥y—1

U= qu da dB. (4.6)
In displacing the gas adiabatically from one line to
another, pq¢” = const; thus p = pyglg~" and the

varied U becomes

1
U_’Y‘*l

fp(,q?)ql_“’ da dB
1
¥y —1

f aoql_" da dB

where
Dol = o.

We wish to minimize U subject to arbitrary inter-
change of the values o,(a, 8) carried as a constant.
The minimum is attained when ¢ is a monotone
decreasing funetion of ¢'~7. This is equivalent to
o a monotone increasing function of ¢ (v > 1).
We therefore state the theorem that pq” a monotone
function of ¢ is necessary and sufficient for U to be
a minimum with respect to interchanges. We can
compare this condition, p¢” monotone in ¢, with
the condition on P varied isobarically, viz., p mono-
tone in ¢. Clearly the latter implies the former, but
not conversely.

For an axially symmetric equilibrium at low pres-
sure (B is a vacuum field), the following criterion
has been given for stability with respect to inter-

changes':
 k ds
[ 5>

1

4.7)

Here 7 is the radius and « is the curvature of the
magnetic line (signed). It is easily verified that this
inequality is equivalent to the statement that ¢
decreases outward in this speecial case of a vacuum
axially symmetric magnetic field provided that the
domain terminates at end surfaces S, and S; which
are orthogonal to the magnetic field. In this special
case, (4.7) is a sufficient condition (equivalent to
minimum P) but not a necessary condition (mini-
mum U) for interchange stability. It is neither

2 M. N, Rosenbluth and C. L. Longmire, Ann. Phys. 1,
120 (1957).
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necessary nor sufficient for absolute stability and
has no significance even with regard to interchange
stability for more general end surfaces.

Given an arbitrary equilibrium configuration, we
can choose new flux coordinates («, 8) such that
const on the isobars; p = p(a) and ¢ = ¢(a).
The stability eriterion pg” ~ ¢ now can be written

@/p+vd/9d 2 0. (4.8)

In particular, for a general axially symmetric prob-
lem, the proper coordinate « is evident a priors.
The condition (4.8) is necessary and sufficient for
interchange stability in complete generality. A sim-
ilar condition has been stated to be necessary and
sufficient for absolute stability in the limit of low
pressure in a periodic axially symmetric geometry,
but the proof given there is incomplete. The question
whether interchange stability implies absolute stabil-
ity for sufficiently low pressure is still open.

The stability problem in a toroidal system with
closed magnetic lines is identical to that in the
open-ended systems considered up to now. But the
equilibrium problem is much more subtle. The reason
is that the property of lines closing can be easily
destroyed by a small perturbation. For example,
the iterations previously described are useless in
looking for perturbed closed-line equilibria in the
neighborhood of a known vacuum field with closed
lines.”® But let us assume that we are somehow
given a toroidal equilibrium with closed magnetic
lines. First we remark tha the condition that p be
a function of ¢ is automatically satisfied, since it is
equivalent to the statement that J is single-valued.™
The criterion for a minimum of F with respect to
interchanges is that p be monotone in ¢, and the
criterion that ¢ be a minimum with respect to
interchanges is that pq” ~ ¢; the latter is therefore
a necessary condition for absolute stability.

o =
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APPENDIX: A VARIATIONAL PROBLEM

There does not seem to be any proof of the

inequality that we desire in the literature,'® although

18 They are also useless in computing equilibria with
closed (ergodic) flux surfaces contrary to an opinion expressed
i(n J. )M. Greene and J. L. Johnson, Phys. Fluids 4, 875
1961).

14 See Eqs. (3.10) and (3.11); also Ref. 9.

15 In one dimension, a similar theorem can be found in
G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities
(Cambridge University Press, London, 1934), Chap. X.
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it is intuitively elear and has been used previously
for similar stability analyses.®

For simplicity of exposition it is convenient to
consider two different differentiability classes for
the functions g(e, 8) and p(e, 8). We consider a
simply connected, bounded plane domain D. The
given function ¢(e¢, 8) has a continuous gradient
which vanishes only at isolated points. This assures
us of the existence of a family of curves ¢ = constant
inside D. Consideration of the area A within which
g > ¢, leads to the monotone continuous function
A(g) with inverse (also monotone and continuous)
g*(4).

Tor p(e, B), we take a continuous bounded func-
tion in D and construct a similar function p*(4).
The function p* is also monotone and continuous
but the inverse function, although monotone, is not
necessarily continuous; e.g., there may be stretches
of finite area where p = const. Given a monotone
continuous function p*(A) (defined on 0 < 4 < 4,
where A4, is the area of D), we consider the class
of associated functions {p(e, 8)} which are con-
tinuous in D and are equimeasurable with p*(4);
ie., for any function p the area A4, of the subset
of D on which p > p, is a monotone function of p,
whose inverse is p*(4).

Our main theorem is that there is a unique
representative p(e, 8) which is equimeasurable with
p*(4) and which maximizes the integral

1= [ vl B, ) da dp.

We construct 7 explicitly as follows. For each value
A, we assigh the value p*(4,) to the contour
g{a, B) = const on which ¢ takes the value ¢*(4,).

HAROLD GRAD

As A, ranges from 0 to 4,, every point of D is
covered once and only once. Also it is easily seen
that p(e, B) is continuous.

We now show that any admissible p(a, 8) which
differs from p(e, B) gives a smaller value to the
integral I. For a given value ¢,, we denote by S7 the
set where ¢ < ¢, and S, the set where ¢ > ¢, (the
common boundary is the contour ¢ = ¢,, and on it
P = Po). If every value taken by p(a, 8) in S7 is
less than every value taken in 87, then by continuity,
» = P, on the boundary, If p in S7 is less than p
in S} for every g, then p(a, 8) = (e, 8). Since
p # P, there exists a pair of points (o, 8') and
(', B'") with the property that q(¢’, B’} > q(«’’, 8'')
and p(a’, B) < p(a”, 8”). By continuity, there
exist two small domains of equal area surrounding
(o/, B') and (a’/, §”) within which the same in-
equalities are satisfied. An isometric transposition
of the values of p within these two areas increases
the value of 1."® Thus no function p(a, 8) different
from p(e, B) yields a maximum,

This theorem can be extended to more general
classes of functions, but at the expense of a certain
degree of awkwardness. For example, if ¢(a, 8) is
allowed to be constant in a finite region, then I
still has a maximum, but the maximizing function
P{a, B) will not be unique (any interchanges of p
within a region where ¢ is constant do not affect
the value of I). The simplest way to include such
generalizations is to consider measurable functions.
This we shall not do because it is not necessary
for our application.

16 Strictly speaking the transposition is not allowable
since it violates continuity. This difficulty can be sidestepped
in many ways. Perhaps the simplest is to extend the class of

admissible p(a, 8) to include piecewise continuous functions
which are compatible with the given (continuous) p*(4).



