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An energy principle is used to obtain the solution of the magnetohydrodynamic (MHD)
equilibrium equation J X B — Vp = 0 for nested magnetic flux surfaces that are expressed in the
inverse coordinate representation x = x(p, 8, § ). Here, & and £ are poloidal and toroidal flux
coordinate angles, respectively, and p = p(p) labels a magnetic surface. Ordinary differential
equations in p are obtained for the Fourier amplitudes (moments) in the doubly periodic spectral
decomposition of x. A steepest-descent iteration is developed for efficiently solving these
nonlinear, coupled moment equations. The existence of a positive-definite energy functional
guarantees the monotonic convergence of this iteration toward an equilibrium solution (in the
absence of magnetic island formation). A renormalization parameter 4 is introduced to ensure the
rapid convergence of the Fourier series for x, while simultaneously satisfying the MHD
requirement that magnetic field lines are straight in flux coordinates. A descent iteration is also
developed for determining the self-consistent value for 4.

I. INTRODUCTION

The global analysis of finite-aspect-ratio, high-beta,
three-dimensional (3-D) toroidal configurations with com-
plex external coil configurations of the type envisioned for
fusion reactor applications generally requires numerical
methods. The variational formulation of magnetohydrodyn-
amic (MHD) equilibria"? provides a mathematically effi-
cient prescription for treating the truncation or closure of an
approximate finite-series solution of the nonlinear equilibri-
um equations. Also inherent in any energy principle is an
iteration scheme for obtaining the solution of this truncated
set of equations, which is based on seeking the minimum
energy state.

The practical application of variational principles for
obtaining numerical equilibria has progressed recently, so
that there are currently fully 3-D codes based on either Eu-
lerian? or Lagrangian® formulations. Both of these methods
are numerically inefficient in comparison with moment
methods that have been previously applied to two-dimen-
sional (2-D) problems arising in systems with an ignorable
spatial coordinate® or that result from averaging 3-D equili-
bria.® This has prompted the present formulation of 3-D mo-
ment equilibria, as well as an alternate approach’ based on
the variational principle of Grad.?

The moment expansion of the plasma equilibrium re-
sults in a finite set of coupled, nonlinear, ordinary differen-
tial equations for the Fourier amplitudes of the inverse map-
ping® x = x(p, 8, &), where (p, 6, §) are flux coordinates, p
labels the flux surfaces (constant pressure contours), and &
and § are poloidal and toroidal angle variables, respectively.
In the present paper, a steepest-descent procedure is devel-
oped for solving the nonlinear moment equations that arise
in MHD equilibrium problems. This is the Fourier space
formulation of the numerical scheme used in Ref. 4.
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The success of moment methods is attributable in part
to the rapid convergence of the Fourier series for the inverse
equilibrium coordinates. In the present formulation, this
convergence property is ensured by introducing a renormal-
ization parameter (Sec. II) to distinguish between the geo-
metric and the magnetic poloidal angles {the latter describes
straight magnetic field lines).

The MHD energy principle' is used in Sec. III to obtain
the equilibrium equations in a conservative form. It is shown
that the variational moment equations correspond to the
spectral coefficients of the covariant components of the
MHD force. In Sec. IV, the Fourier decomposition of the
inverse mapping is introduced, and the steepest-descent
method of solution for the moment amplitudes is derived.
The boundary conditions at the magnetic axis and at the
plasma edge are discussed in Sec. V, and the descent algo-
rithm is generalized to include a vacuum region surrounding
the plasma. The moment representation of an analytic 2-D
equilibrium is given in Sec. VI to clarify the role of the poloi-
dal angle 6. Some details of the numerical techniques used to
solve the inverse equations are given in Sec. VII. A Galerkin
method for treating the magnetic axis and plasma shift is
described in Sec. VIII, and some numerical results are pre-
sented in Sec. IX.

The equilibria calculated here have a single magnetic
axis. By applying magnetic perturbations of the form
B = VXA By, whered, =2, , 4,..(plexp[ilim8 — n{)], it
is possible to investigate the stability of these equilibria to a
more general class of (tearing) perturbations.

Il. EQUILIBRIUM EQUATIONS IN FLUX COORDINATES

The equations describing MHD equilibrium of a static
{no fluid flow), isotropic plasma are the force balance equa-
tion and Ampere’s and Gauss’s laws:
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F=—JxB+ Vp=0, (1a)
VXB = u,d, (1b)
V.-B=0, (lc)

where p = p(p) is the pressure and p is a radial coordinate
labeling a magnetic flux surface. The quantity F is the residu-
al MHD force, which must vanish in equilibrium. For the
nested toroidal flux surface geometry considered here, flux
coordinate angles 8 and { may be introduced, where @ is a
poloidal angle (A8 = 27 once the short way around the mag-
netic axis) and § is a toroidal angle (4 = 27 once the long
way around the torus). The conditions B-Vp =0 and
V + B = O can be satisfied by writing B in contravariant form
as follows":

B=V{XVy+ VP xXVo*
=B’%, + B’e,, (2)
where 27y (p) and 27 P (p) are, respectively, the poloidal and

toroidal magnetic fluxes enclosed between the magnetic sur-
face labeled p and the magnetic axis (p = 0, where Vy = 0},

6*=6+1(p,6,¢) (3a)

is the poloidal angle that makes the magnetic field lines
straight® [i.e., the local rotation number B+ V6 */B - V{is a
function of p alone in the (p, 6 *, § ) coordinate system], and A
is a periodic function of @ and { with zero average over a
magnetic surface, {f d6d{ A = 0. The contravariant basis
vectors are ¢ =Va,, where a = (p, 6, { ), and the covariant
basis vectorsaree,=dx/da; = Jge'X e, where(i, j, k )forms
apositive triplet, and g = (Vp - V8 X V)~ ' is the Jacobian.
Thus, from Eq. (2), the contravariant components of the
magnetic field are B ‘=B - ¢/, where

Bf= TIE—(X' 'y %), (3b)
B¢= %gd)’(l " %)’ (30)

B# =0, and the prime denotes d /dp. The covariant compo-
nents B,=B - ¢, are related to B through the metric tensor
gi=e; * ¢;:

B, =B %o + B gggn (3d)
as can be verified by taking the scalar product of Eq. (2) with
e;.

Although the function A (p, 6, {) in Eq. (3a) can be eli-
minated® by taking 8 = @ %, its retention here provides flexi-
bility in specifying the poloidal angle 8. The role of the poloi-
dal angle in the moment expansion of equilibria is to yield
rapidly convergent® Fourier series for the spatial coordinates
x(p, 8, & ). Since only truncated series are used in practice, a
proper choice for 8 is necessary to provide adequate accura-
cy in the approximate moment solution. In general, this val-
ue for @ is incompatible with the requirement that magnetic
field lines are straight in (@ *, £ ) coordinates. The inclusion of
A therefore generates a convergent resummation of the in-
verse equilibrium Fourier moment expansion. In this con-
text, A assumes the role of a renormalization parameter.
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Inserting Eq. (2) into Eq. (1a) yields

F=F,Vp+ Fy 8, (4a)
where

Fp=\/§(J§B”—J"B§)+p’, (4b)

F,=J%, (4c)

B=Vg(B‘V8—B°V{) and J'=J:Va,=pu;'V-(B
X Va;).There are only two independent components of F,
since the component B+ F = p'B - Vp = 0 is already incor-
porated into the representation of B in Eq. (2). Writing J‘ in
terms of the covariant components of B yields expressions
for the forces in terms of the flux functions, y ', @, and p’,
and the metric:

3B JB
F = ~‘(B"—"+B¢——5—B-VB) ' (4d
» =Ho P P L, | +p', (4d)
3B 3B
Fy— (% _ "). (4e)
olg" 99 ¢

Here, for any scalar A, the derivative along a magnetic field
line is
B’VAEBGéi—FB;ﬂ. (4f)
a6 ac
In the 2-D axisymmetric case,>® F; = 0 can be integrat-
ed to yield

B, =F(p). (Sa)

Noting that go, =g,, = 0 and d4 /d{ = 0, due to axisym-
metry, and B¢ = B, /g,, withg,. = R * (where R is the ma-
jor radius, see Fig. 1), Eq. (4d) becomes the inverse Grad-

(o4

TOROIDAL DOMAIN: TQP
VIEW

¢

X(R,¢,2)

TOROIDAL DOMAIN: VIEW
IN PLANE Z=CONSTANT

FIG. 1. Toroidal-cylindrical coordinate system.
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Shafranov equation:

Xgee) a (Xgpo)] FF' ,
+ +p.
,Um/_[ap( N I\ g poR?

(5b)
From Egs. (3c) and (3d), note that Eq. (5a) can be written
(@®'R%*/\g)f1 +31/38)=F(p), which yields @’(p)
= (Vg/R?)F(p) and
9 _ M - (5¢)
9  (Jg/R®

Here, brackets denote a normalized @ average.
Equation (5c) shows that in 2-D geometry, the straight

magnetic field line system for A = 0 is one for which yg/R 2
is constant on a magnetic surface. Consider an equilibrium
that is approximated by shifted, elliptical flux surfaces for
which the cylindrical coordinates (R, Z ) have the low-order
Fourier representation R = Rlp) + R,(p) cos 6,
Z = Z,(p) sin 8. Analysis® of this configuration indicates
that to leading order in the inverse aspect ratio, the condition

A(R 2/\/g)/36 = O in the (p, 8 ) coordinate system leads to an
unphysical inward shift 4 = R(0) — Ry(p)<0 which is inde-
pendent of the plasma pressure. The retention of A allows for
the surface variation of \g/R 2 in the (p, 8) coordinate sys-
tem, where the low-order Fourier series representation for
(R, Z) is appropriate. It also yields the correct variation® of
R(p) with pressure. An explicit analytic calculation of 4 il-
lustrating this behavior is given in Sec. VI.

lil. ENERGY PRINCIPLE IN THE INVERSE COORDINATE
REPRESENTATION

A variational principle' for obtaining the equilibrium
equation (1) is based on the plasma energy

w20 2 Yo o

where y>0 is the adiabatic index. Equation (6) can be shown
to be stationary with respect to virtual displacements of B
and p that preserve the magnetic flux and mass density pro-
files."? For ¥ = 0, W reduces to the Lagrangian (a nondefin-
ite form) introduced by Grad.?

The scalar invariance® of W can be used to compute it
directly in flux coordinates. It is then natural to introduce
the inverse representation, for which the real space coordi-
nates x are considered to be the dependent variables and the
flux coordinates a=(p, 6, { ) are treated as independent var-
iables during the variation of W. In this representation, the
flux and mass conservation constraints must be incorporat-
ed into the expressions for B and p. Equation (2) already
conserves the magnetic flux profiles y ‘(p) and @ '(p). The
adiabatic conservation of mass between neighboring flux
surfaces requires’

Plo)=Mp)V')"7, (7)

where V'(p) = f§ d6 d( |\g| is the differential volume ele-
ment. Here, the mass function M (p) is fixed during the vari-
ation of p(p) in Eq. (6), whereas ¥'(p), which depends on the

3555 Phys. Fluids, Vol. 26, No. 12, December 1983

geometry of the flux surfaces, may vary. Thus, the energy
evaluated in flux coordinates is

(B ) "Mp), ,n—y
W—J"—z . Veld a+J; ;-:T(V) dp, (8a)
where

|B|*=B'B; = (B°)’gos + 2B°B*go, + (B gy, (8b)

d?a =dp df df, and the outermost flux surface is p = 1.
Summation over repeated Roman indices is implied.

For the toroidal configurations under consideration, a
cylindrical coordinate system x = (R, ¢, Z) is appropriate,
where R is the major radius, ¢ is the toroidal angle, and Z is
the height above the midplane (Fig. 1). It then follows that
the metric tensor elements are

g, =R R, +R%,8,+Z 2, (%)

where R, = dR /da;, etc., and (a,, a,, a3) = (p, 6, ). The
Jacobian is

Vg = R det(G,), (9b)
_ (9¢)
v c?aj’

where {x,, X,, x;) = (R, ¢, Z ). Henceforth, it is assumed that
Vg>0 (i.e., there is only a single magnetic axis). Inserting the
metric elements into Eq. (8b) yields a cylindrical representa-
tion for |B |?,
2 252 2
|B|2=bR+R b¢+bz’ (10)
Ve

where b,=\gB+Vx, =b%dx,/30) + b*(Ix,;/9f) are the
cylindrical polar components of B and (b% b%)
=g(B", B*).

To perform the variation of W, suppose that in addition
to being functions of the flux coordinates, the cylindrical
coordinates x and the renormalization parameter A also de-
pend on an artificial time parameter ¢. Then, for any scalar
function S(x,A), 85=aS/dt=(3S /dx)%; + (3S /A .
Then, the “time derivative” (i.e., variation) of W in Eq. (8)
becomes

dW ” |19|2 af l‘/_bb
7

+R2b¢b¢+bzbz+Rb$R)]d3a. (11)

Here, M (p), y '(p), and @ ’'(p) were held fixed in deriving Eq.
(11).
The variation of the polar components of B is
bj =b9§1+b§%+bgﬁ+b§a_xj_,
a6 ac a6 ac
where b %1 ) = b*A ). Next, the variation of the Jacobian
can be obtained by differentiating Eq. (9b):

Ak of)

where (Vg/R )3a,./¢9xj is the classical adjoint of G; (transpose
of the cofactors), which is (yg/R ) times the inverse of G;:

(12a)

(12b)

S. P. Hirshman and J. C. Whitson 3555



Jg 9a; $oZ,—¢:Zy R.Z,—RyZ, Ry¢.—R; 9,
Ta_xfz ¢; Zp_¢p ZC RP Z;——-R;Z RC ¢P_Rp ¢§ . (12¢)
! $,2Zs—00Z, RoZ,—R,Z, R, b,—Ry9,

Using Eq. (12) in Eq. (11) yields
aw _ J‘dea—J‘FA/'ltf’a

dt

@OBI )

— +plx,déd
Lz, el Ox; \ 20 d &

Here, the MHD force components F; are

[I\fl % IB '2 +p)]

+ g NIV [(AB - Vx,B]
LEI(BE, , RB-¥P)
210 Ho

where A, = A, = 1, A, = R ? [the index *“i” is fixed and not
summed in Eq. {14a)], and

F, = ®'|Jg|F,. (14b)
The last term in Eq. {13) is the energy change due to the
moving plasma boundary. In Eq. (14), each of the quantities

|B |, Jg, and da;/dx, is to be expressed in inverse coordi-
nates as given by Egs. (8)-10) and (12c), and
(Fy, F,, F3) = (Fy, F;, Fz). Also, x is to be considered a func-
tion of a. For example, B « Vx, is given explicitly after Eq.
(10).

The identity V « (€*'/R ) = 0, which can also be written

i(_fs_ %) —o
da;\ R 0Jx; ’

may be used to express F; in terms of the forces F, and Fg
previously defined in Eq. (4) (here eS'=3dx/x;):

_ |\/§|[g_;’;Fp + (bﬁﬁ_baﬁg—)pﬁ]. (16)

(13)

+ 8 (14a)

(15)

Ix Ix

It follows from Eqgs. (4a) and (16) that — F,/|\/g| is the covar-
iant component (in the cylindrical coordinate basis) of the
MHD residual force.

For the toroidal systems under consideration here,
@' #0 (except at p = 0). It is then possible to choose* ¢ = ¢.
This choice for the magnetic toroidal angle, which is adopted
here, simplifies the algebraic structure of Eq. (14), effectively
yielding a 2-D Jacobian,

i i

Vg = RG,

G = RoZp

(17a)

—R,Z,, (17b)

and thus reduces the complexity of solving Eq. (14) numeri-
cally. In particular, no ¢ derivatives appear in g once ¢ is
fixed. In addition, the equation F, = 0 is redundant, since it
follows from Eq. (16) that for yg50, F, and F, are linear
combinations of F, and F, when ¢ = ¢&. Thus, for a fixed
boundary plasma, W is stationary when the MHD equilibri-
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‘um equations F, = Fz = 0 are satisfied. This proves the en-

ergy principle in inverse coordinates for the toroidal angle
choice ¢ =¢.

Two-dimensional inverse equilibrium equations F; = 0
were originally derived from a variational principle in Ref. 5
in a form similar to Eq. (16) with F; = 0 and were subse-
quently generalized to three dimensions in Ref. 7. There are,
however, several advantages associated with retaining the
conservative form of F; given in Eq. (14). Since F; is a second-
order differential operator in flux coordinates, a conserva-
tive finite-difference representation for F; (in p) is readily
derived by integrating Eq. (14} on a radial mesh. Spectral
analysis of F; is facilitated by integrating Eq. (14) by parts in
6 and { (see Sec. VII). In this way, no derivatives of R, Z, or 4
higher than first order are required for the numerical evalua-
tion of F;. Finally, the boundary condition at a free boundary
(o = 1), which requires the continuity of the total pressure, is
easily implemented when F; is in a conservative form.

In contrast to the axisymmetric case, where F, =0
may be analytically integrated [cf. Eq. (5a)], in three dimen-
sions it is necessary to solve this equation numerically. From
Eq. (4e), it is apparent that the relation F;, =0 is a linear
elliptic equation for 4 on each flux surface. As noted pre-
viously, by introducing A in Eq. (2), the number of Fourier
harmonics required for an accurate inverse representation of
x{p, 0, £ ) is reduced. Since the Fourier coefficients of x sa-
tisfy moments of the nonlinear equations F;, = 0 (see Sec. IV),
the introduction of A actually simplifies the solution of the
equilibrium problem by accelerating the convergence of the
Fourier series for x, even though additional linear equations
must be solved.

With the magnetic toroidal angle { chosen equal to the
geometric toroidal angle ¢, the conservative expressions for
the two force components Fr and F, become particularly
simple:

Fo=S4z,p) —iiz P)
dp

o (—(B %) + A b))

%
P _ (RBEP
+G(R ” ) (18a)
Fy= - i(RaP)Jr 2R, P)
e (—(B %,) +5—§—<B sz)) (18b)

where P = R (p + |B |*/2u,) and b; is defined after Eq. (10).

Note from Eqgs. (14b) and (16) that when the angle re-
normalization parameter A is retained, the equations for R,
Z,and A are dependent, since there are only two independent
MHD forces F, and F,. This underdetermination is resolved

S. P. Hirshman and J. C. Whitson 3556



by specifying the poloidal angle variable 6. The choice of 8
adopted here, which is dictated by the economization of the
finite Fourier expansions for R and Z and is different from
previous angle specifications,*>’ is described in the Appen-
dix.

IV. STEEPEST-DESCENT METHOD OF SOLUTION FOR
THE MOMENT EQUATIONS

The inverse mapping x = x(p, 8, { ) can be expressed as
an explicit function of the flux coordinates as follows:

R = Rlp) +prlp, 6, 5) (19a)

Z=Zjp) +p71p. 0,£). (19b)
Here, p; (forj = 1,3) are periodic functions of the angles, that
is, §§ d6 d{ p; = 0. The moment representation of the equi-
librium results from expanding p; and 4 in Fourier series.
Defining (x,, x,, x;)=(R, 4, Z), where A now replaces the
fixed toroidal angle ¢ = { as a coordinate, and introducing
the associated complex Fourier amplitudes X ™", Eq. (19)
becomes

x; =Y X™(plexp[i{m6 — ng)]. (20)
The reality of x; implies X 7" = (X ;™ ~")*. Since 4 is peri-
odic, X = 0.

Using the representation of x; given in Eq. (20}, the vari-
ation of the energy in Eq. (13) becomes (neglecting the sur-

face terms)
[ a,
where

Fr=o | f F, expl — im0 — n£)1d8 dg, (21b)

F,=Fy, F,=F,, F;=F,,anddV = V'dp. The volume
factor V' = dV /dp normalizes the force coefficients to en-
sure the correct asymptotic dependence on p at the magnetic
axis (p = 0) and in practice is chosen to be the differential
volume ¥/ corresponding to the initial plasma state.

The Fourier coefficients F™ = (F,~™ ~")* are the
variational forces that must vanish in equilibrium.>’ By con-
sidering the moment amplitudes X " as independent trial
functions in a Ritz method (subject to the reality constraint),
itis seen that the equations F /" = O represent the most accu-
rate system for determining the X ;*" that result from a finite
truncation of the series in Eq. (20). Previously, this system of
nonlinear, second-order, ordinary differential equations has
been solved in two dimensions by direct Jacobian inversion
methods.>’ In three dimensions, the larger number of mo-
ment amplitudes needed to describe an equilibrium can sig-
nificantly decrease the efficiency and numerical stability of
such direct methods. Therefore, an iteration method is now
developed for following the path, in the phase space of the
moment amplitudes, along which W decreases at a maxi-
muim rate.

Since W is bounded from below due to flux and mass
(p'/") conservation and is positive definite for ¥ > 1, the equi-
librium corresponds to a minimum energy state.! Thus, by
finding the path along which W decreases monotoni-

(21a)
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cally, an equilibrium will eventually be reached. To mini-
mize W in Eq. (2la), note that X,|f F*x dV |
<S Z,|F; 1 dV § 2, |%;)* dV, with equality pertaining if and
only 1f x; = kF}, where k is an arbitrary real constant (k = 1
here). Thus, the descent path is

ax
=F, 22a
ot ! (222)
and the maximum rate of decrease in W along this path is
given by

¥ —— 5 [wmpar
dt A m n

Equation (22) comprises the descent equations for relaxing
W toits minimum energy state. Itis the Fourier space analog
of the descent equations derived in Ref. 4. Note that W = 0if
and only if F["" = O for all j, m, and n (that is, when all the
equilibrium equations are satisfied simultaneously).

Since the F™" correspond to second-order differential
operators in p, the descent equation (22a) comprises a set of
parabolic differential equations. The convergence to an equi-
librium solution is prohibitively slow'®!! for an explicitly
differenced version of Eq. (22a). Implicit schemes,'' which
remove the small time step required for stability of explicit
schemes, are impractical here since the forces F"" are such
nonlinear functions of the amplitudes X ;*". The convergence
of these equations can be accelerated, while retaining an ex-
plicit form for the forces, by converting them to hyperbolic
equations'?® (the second-order Richardson scheme):

(22b)

FXr X
7t e C (23)

The parameter 7> 0 has little effect on the stability of the
numerical scheme'® and can therefore be chosen to maxi-
mize the decay rate of the least-damped mode of Eq. (23),
thereby minimizing the number of iterations required to
reach steady state. The optimum value for 7, leading to criti-
cal damping in Eq. (23), is'°

R _%(m f |F|2dV), (24)

TOp

where § |F|?dV=(Z%,, ., |F7"|*dV. There is an energy
principle associated with the second-order system equation
(23). Multiplying Eq. (23) by V| (X 7)*, taking complex con-
jugates, and using Eq. (21a) for W yields

LW+ W)= - 2wy, 25)
dt T
where Wy = §|X |2/2dV is the kinetic energy. Thus, for

7> 0, the sum of the kinetic and potential energies, which is
bounded from below, decays monotonically until W, =0
and equilibrium is attained.

V. BOUNDARY AND INITIAL CONDITIONS

The magnetic axis (p = 0}is a singular curve of the coor-
dinate system where Vy = 0. For toroidally nested surfaces,
this corresponds to the one parameter space curve
R =Ry(C), Z = Z,|& ). The geometry of the magnetic axis is

S. P. Hirshman and J. C. Whitson 3557



determined by Taylor-expanding ¥ in x =R — R, and
y=2Z-2,

x=all )+ 2y +rEY + ..., (26)

where ay — 8% O for elliptical surfaces encircling the mag-
netic axis. In terms of the moment amplitudes this implies
(forj = 1,3)

X™p=0,t)=0, m#0. (27a)
Infact,if V(p) = f§ V' dpis the volume inside a flux surface,
then X "~ ¥V ™7 as p — 0. Since the magnetic axis corre-
sponds to an extremum of the flux (or pressure) contours, the
radial variation of [Ry(( ), Z,{{ )] must be second order near
p = 0. Hence, forj = 1,3,

axyr

dp
For the typical case when p~+¥V, Eq. (27b) reduces to
(X 9" = 0. Forj = 2(x, = 1), the origin boundary condition
may be deduced by noting from Eq. (4e), together with the
fact that R, and Z, both vanish at the magnetic axis, that

(27b)

(p=0,1)~1lim V'(p).
p—0

lim A, = *
v—0"* " 6 /gd6

Equations (27a) and (27b) imply R = Ry($) + plr,(& )cos 8
+ ry(¢ )sin 8 ] + O (p?), with a similar expansion for Z, and
hence Jg = V'[ goll) + V"%, £)]. Since gyl ) is inde-
pendent of 8, Eq. (27¢) y1e1ds dXp=0,t)/068 =0. The
boundary conditions given here are different from those in
Ref. 4, due to the polar representation used there.

Now consider two types of boundary conditions that
may be imposed at the plasma edge.

(27¢)

A. Fixed boundary

In this case, the shape of the outermost flux surface
(p = 1) is fixed for all times. When the poloidal angle renor-
malization parameter A is retained, this is equivalent to pre-
scribing the individual Fourier harmonics of both R and Z at
p = 1 (see the Appendix):

XMp=11t)=X}", (28)
for j = 1,3. No boundary condition is needed for x, =4,
since F, is local in p (there are no radial derivatives of A in
F,). In this representation, the angle coordinate A accounts

for the rotation of the magnetic field lines in the poloidal
direction during the minimization of W.

B. Free boundary

The position of the free plasma boundary is determined
by the continuity of the total pressure |B |2/2u, + p at the
plasma—-vacuum interface (p = 1) and by the vanishing of the
normal component of the vacuum field over this surface.
These boundary conditions can be incorporated into the
variational principle'* by appending the vacuum magnetic
energy to the plasma energy W, given in Eq. (8). The total
energy functional then becomes
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2
T N (T N
plasma 2/10
2
— f IAAYH d>x, (29)
vacuum 2,uo
where B, = — Vv is the vacuum magnetic field. (This repre-

sentation for B, conserves the total plasma and vacuum coil
currents.) The minus sign in Eq. (29) guarantees the contin-
uity of the total pressure at the plasma-vacuum interface. In
the plasma, where the magnetic flux is conserved on each
flux surface, a change in the position of the boundary pro-
duces a reciprocal variation in the energy. [Thus, there is a
minus sign in the last term of Eq. (13).] In general, the vacu-
um region will contain current-carrying coils surrounded by
a conducting wall. The vacuum integral in Eq. (29) must then
be separated into regions bounded by the coil surfaces, with
appropriate jumps in v to account for the coil currents.

Taking the time derivative of Eq. (29) and using Eq. (13)
to evaluate the plasma energy change yields

aw _ J-F}xid3a+y0*‘j vF, d>x
dt vacuum
——f S;x; d8 d¢
p=1
—ug ! (J vB, -dSp ~—f vB, 'dS), (30)
p=1 wall
where

(31a)

5= [N 22 (2L, - 1220
2110 210

is the pressure jump at the plasma~vacuum interface, |B |* is
the magnetic field strength in the plasma given by Eq. (8b),

dS, = Vp|\g|d@ d¢, and
F,=-V.B, =V (31b)
is the vacuum *“force.” The last term in S, represents the

vacuum energy change due to the motion of the free bound-
ary. Thus, the descent equation for the vacuum potential is

v=F (31¢)

Equation {30) is a minimax principle for the plasma~-
vacuum equilibrium configuration. The physical boundary
conditions, which require B, -+ dS, =0and S; =0atp =1
and B, +dS =0 at the conducting wall, are also natural
boundary conditions for the extremization of W.

Now, consider the initial conditions needed to integrate
Eq. (23). Both X " and X 7" must be prescribed at the begin-
ning of the descent. To guarantee that ¥ will decrease at
t =0, it is convenient to take
X< aF . (32a)
In practice, a=~0 provides a sufficiently well-behaved start
for the descent equations. The initial profiles X [*(p) are cho-
sen consistent with the boundary conditions at p = 0 and
p = 1. From Eqgs. (27) and (28}, it follows that for j#2,

n X 3" m#0,
Xj (f)vo) [Xb ! m=0
jb» s

where X" are the initial boundary data. For j=2,
A™ =X 7"p, 0) = O is used in practice.

p=1

(32b)
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In Eq. {32b), v(p) is 2 monotonic function of p satisfying
v(1) = 1 and v(0) = O. [A small boundary layer near the mag-
netic axis where X " ~ ¥ ™2 is neglected by the ansatz in Eq.
(32b).] Geometrically, v(p) is simply related to the initial plas-
ma volume in an equivalent infinite-aspect-ratio system
(R— owo):

vp) = [V, ,0/V . (1,0)]"3 {(32¢)

where V_ = R,, § GdOd{. Here, G is the 2-D Jacobian de-
fined in Eq. (17b), and R,, is the mean radius of the magnetic
axis. The radial grid can be adjusted by choosing the func-
tional form for v{p). For example, v(p) = p identifies p with
the usual polar radius, whereas v(p) = p'/?> makes p a mea-
sure of the volume inside a flux surface.*

There are other possible ways of choosing p. For toka-
maks and stellarators with strong uniform toroidal magnetic
fields, @ (p) is monotonic and a magnetic prescription

p=I1@pyo(1)]'"? (32d)

can be used. In Refs. 5and 7, — p was chosen to be the cos &
harmonic of R. The poloidal flux y (o) was then determined
from the surface-averaged force balance equation,
(VgF,)=$§ gF, d0 d{ = 0, which results from varying
the energy with respect to y at fixed ¢(y ) and p(y). This equa-
tion is not, however, independent of the other moment equa-
tions F ™" = 0. Indeed, Eq. (16) can be used to show that

(BF,)= — 3 [XRVFR* + X ZVEFZ*].

Thus, the various prescriptions for p are related, but only
those given by Eqs. (32¢) and (32d) preserve the symmetry of
the descent equations.

Once the radial coordinate is specified, the initial mag-
netic and pressure profiles can be chosen so that the surface-
averaged pressure balance equation (JgF, ) = O will be satis-
fied at ¢t = 0. (In the 2-D problem considered in Ref. 5, the
average pressure balance was satisfied at all times by chang-
ing from magnetic flux to current flux variables. This proce-
dure does not, however, generalize to three dimensions.) For
example, for fixed ¢ and p profiles, the toroidal flux & may be
rescaled with respect to p so that the average pressure ba-
lance

(Wgd V& )(gB - V8)) — ((gJ - VO)\gB - V&)

+uop’V' =0, {33a)
where (4 ) = ffd6d¢ A and V' = (\g), is initially satis-
fied. This generally improves the convergence rate of the
descent algorithm. Using the explicit forms for B® and B¢
givenin Eq. (3), integrating the A, and A, derivative terms by
parts, and assuming Fz; ~0, Eq. (33a) becomes

¥t — DTy +uopV' =0, (33b)

where  J,=(JgJ:V8)= —3(B;)/dp and J;
=(JgJ - V¢ ) = (B, )/dp are the current fluxes. Equation
(33b) is exact when F; = Oor A = 0. Assuming that the pres-
sure and rotational transform profiles are prescribed func-
tions of the initial volume v(p), so that y' = ()&’ and
P’ = (dp/dv)(dv/3dp), Eq. (33b) becomes a linear first-order
differential equation for 4 (p), where @ ’(p)=(3v/dp)
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X [2k (p)]'/? and h is regular at p = 0,
a ~ ~ - ~ A' A'
;[("Zgae + 2go. + 80 ] + (¢°8o0 + 2igo + 8 )h
+haps V' =0 (34

Here, g, =(dv/dp){g,/V8), p,=0p/dv, and Vg
= R (3v*/3p)G (6, {).
Equation (33b) provides a practical numerical criterion
for the convergence to an equilibrium. Forming the quantity
0= XJi:—PTo+uop'V’
Wil + 19T 5| +uolp'| V'
note that a converged equilibrium is attained when Q is less
than the spatial discretization error.

(35)

VI. MOMENT ANALYSIS OF SOLOV’EV EQUILIBRIUM

An exact analytic solution of a 2-D equilibrium prob-
lem'? in the inverse coordinate representation will now be
considered. This will emphasize the importance of distin-
guishing between the geometric angle 8 appearing in the
Fourier representation of the flux surfaces and the magnetic
angle 8 * = 6 + A [Eq. (3a)], which describes straight mag-
netic field lines. A solution of the axisymmetric Grad-Sha-
franov equation,'? when the magnetic field is represented as
B=y'V{ XVp + Flp)V§, is

P = %[ZZR%) +(83—B°1)(R2—Ri,>2], (36)

where y ' = 2py, (0’ is the normalized poloidal flux, 0<p< 1),
plo) =Bl —p?), and F?=R2(1 — 48, p?). The toroidal
field is normalized to unity if R, is identified with the mean
major radius. Note that R = R,, is the magnetic axis, which
is determined by the boundary curve p = 1. The spectral
analysis of Eq. (36) is trivial in terms of the variables u = R 2
and Z, yielding

u=R2 — y,(8/Bo)" % cos 6, (37a)
Z = (yo/Ro)B [ *psin 8. (37b)

Here, 0 is a geometric angle yielding a rapidly convergent
Fourier expansion for R and Z, which is not equal to the
magnetic angle @ * in which field lines are straight. To show
this, note that the Jacobian is

V& = (xa/Ro)(2/Bo 1) p. (38)

Thus, yg/R ?is not a function of p alone, as Eq. (5c) requires
for A = 0. Therefore, even though the geometric solution
given in Eq. (37) satisfies the equilibrium Grad-Shafranov
equation, it apparently fails to simultaneously satisfy
J? = Fg = 0 when A = 0. By introducing the angle renor-
malization parameter A, the angle & can be chosen for its
geometric properties while the constraint F; = 0 is satisfied
by A. For the present example, it is easy to evaluate A expli-
citly from Eq. (5c):

Ao =(1—a’"?/(1 —acos §)—1, (39a)

where alp) = yo(8/8,)"/%p/R?% <1. Thus, A=3%,_, 4,
X sin m@, where

A = 2/m){[1 — (1 — a¥)"'2) /a}™. (39b)
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Note that for @’ < 1, 4,, decays exponentially with 7. Simi-
larly, the magnetic flux profile is found to be

D X[ 1 (1-48,p%\]"
x'_q“’) R 18,8\ 1-2 )] - W

The results in Egs. (38)—(40) provide an analytic basis for
testing the computational methods developed here (see Sec.
IX). They also reveal the fundamental incompatibility, in the
absence of angle renormalization, between an economical
Fourier description of the flux surface geometry and the
MHD constraint, J# = 0.

Vil. NUMERICAL METHOD

In this section, some numerical aspects of solving the
descent equations are considered. First, the time discretiza-
tion of Eq. (23} is discussed, and an estimate for the maxi-
mum stable time step is obtained. Then, the spatial discreti-
zation of the forces F[™ is performed, including the
incorporation of the boundary conditions considered in Sec.
V.

A. Time discretization
The descent equation {23) for the plasma can be written
d X mn mn
—‘ES(I)XI =S(t)F, (41)

where S(¢)=exp 77 'dt’. Integrating Eq. (41) from
t=t,_ ,,tot=1,,,,wheret, isthe time at the nth iter-
ation, yields
X7ty s 10) = (1= 00X, 1)

+ (1 —1b,)4tF™(t,),
- tn - 1/23

X7, 1) — X2,

At

is the discretized “velocity,” and

fn v 172 1
b,,=1—exp(—f —dt)
t T

"~ 1/2

(42a)

where At =1t,

X7, 1 pn)= + 0(4r? (42b)

(42c)

is the incremental damping factor. Using the expression for
1/7 given in Eq. (24) and adding a small minimum damping
rate (77 '), (to guarantee convergence near the energy min-
imum?) yields

bn =1 —yn(l - bmin)’ (42d)

where y, = min{(F?),/(F?),_, {F?),_/(F?),), b,
= (77 Y)in 4%, and (F?), = f|F(t,)]* dV. With this form
for b,, Eq. (42a) reduces to the conjugate gradient part of the
Fletcher—Reeves algorithm used in Ref. 3. In practice, since
b, is proportional to the algebraically largest eigenvalue of
F, y, should be averaged* over several iterations to reduce
the effect of a mixture of eigenvectors. Since the longest
damping time scales as N, 4¢, where N, is the number of
radial mesh points, an average over N, previous iterations is
approximately equivalent to averaging over one e-folding de-
cay time.

The maximum stable time step 47 may be estimated
from a von Neumann analysis*! of the linearized version of
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Eq. (42a}. The result is
Atmax = (4//1max)l/2’ (43)

where |4,,,,| is the modulus of the algebraically smallest
eigenvalue of F. Equation (43) is (|4,,,,|)"/2 > 1 times larger
than the stable time step for an equivalent first-order time
scheme.

To estimate 4,,,,, consider the eigenvalues of the spa-
tially discretized and linearized operator F. Noting that the
shortest radial wavelengths in the F, and F, operators will
determine A, , the eigenvalue condition can be approxi-
mated by using only the highest-order p derivatives in Eq.
(18). Denoting the & th eigenvector by (R, Z,}, Eq. {18) re-
duces in the short-wavelength limit to

Dpgr RY — Dz Z{ = — AR, (44a)
—DRZR;:+DZZ Zi= _/lkzkr (44b)
where Dgpp =Z5dy, Dp, =Z4R,d,, D,,=R3%d,

do=R |B|*/(GV | o), and G =/g/R. For short-wave-
length modes, the diffusion coefficients in Eq. (44) can be
treated as constants (in a WKB sense). The spatial discretiza-
tion for the second-order derivatives in Eq. (44) is taken to be

R"p=p.)=~[Rp, 1) — 2R (p,) + Rp, \)]/ldp)’, (45)

and similarly for Z *, where 4p = p,, — p,, _, is the uniform
radial grid spacing. Letting R, (n) = R, expl(inf3,), where B,
is a real phase factor, it is apparent that
R (n) = — 4R, (n)sin*(By/2)/(4p)*. Using this result and
applying Gerschgorin’s theorem'’ to account for a nonuni-
form p dependence of the diffusion coefficients, it follows
from Eq. (44) that

m:lx |Ax1<[4/(4p)*] max{ [max(Drg, Dzz)] 1z
6¢
o 2
X0 + D)) ~ e (1]

~arly)

where g, = 2Rgy,/(GV !). Obviously, A ' is related to the
time for an Alfvén wave to travel across the radial mesh.
Note that 4p = (N, — 1)~', which implies max|4,|~N].
When the cylindrical nature of the eigenfunctions of Eq. (44)
is accounted for, it is found that 4p in Eq. (46) is replaced by
(N, +M/2—1)"", where M is the maximum poloidal
mode number.

It is now possible to make a heuristic comparison
between the steepest-descent method and the Jacobian in-
version methods used previously>’ to solve the equilibrium
moment equations. The Jacobian methods involve inverting
the linearized F operator and hence determining all the
eigenvalues of this operator. In contrast, the steepest-des-
cent method requires only a bound for the largest eigenvalue
of F. When the number of eigenvalues is large (i.e., for a stiff
system), an accurate inversion of F becomes prohibitively
time-consuming, and the accelerated-descent method seems
preferable.

B. Spatial discretization of the forces

The continuous expressions for the MHD residual
forces obtained in Secs. 111 and IV may be transformed into
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discrete forms by numerical integration of W.'* Discrete
conservative forms for the Fourier-transformed forces are
then obtained by varying the individual nodal amplitudes.*
The asymptotic behavior of the solutions near the magnetic
axis is used to appropriately modify these nodal equations in
the vicinity of p = 0.

The angle integrals in Eq. (8) are replaced by discrete
sums as follows'>:

WEJdpffw(p, 6, £ )d6 d¢

—\ldp z 2 wlp, 0, ~12, 61,2146 A4S,

i=1j=1
where 40 =2n/N;, A; =2n/N, (N, and N, are the
number of discrete @ and § mesh points, respectively), 6, _ ,,,
=(i~1/2)46,§;_,, =(j— 1/2)4¢, and
w=RG [|B*/2p0 + p/ly — 1)]
is the energy density functional evaluated at the angular
half-mesh points, where yg = RG, p = M (p)(V') ~ 7, and

V'(P) = z Z ‘/g(Paoi_ 172 gj— 1/2)AOA§-

i

(47a)

(47Y)

(47¢)

A rectangle integration rule accurate to second order in 46
and A was used in Eq. (47a). Because this rule preserves the
discrete orthogonality of the trigonometric functions, it is
more accurate'® in the present problem than certain nomi-
nally higher-order schemes (e.g., Simpson’s rule or Gaussian
quadrature). If there are M theta modes and N zeta modes in
the spectrum of R, Z, and A, then Ny =2M + 1 and
N, = 2N + 1 are the minimum number of points required in
the sum in Eq. (47a). (This estimate assumes that the modes
are consecutive and counts M>0, N>0.)

The Fourier analysis of the coordinates R, Z, and A
appearing in the energy density w permits an exact evalua-
tion of w at the half-mesh points (6, _,,,, §; _,,)- It is this
interpolation property of the trigonometric functions, to-
gether with the application of fast transform techniques, that
makes harmonic analysis desirable even for the very nonlin-
ear equilibrium problem under consideration here. "

What remains in Eq. (47a) is now a one-dimensional
integration in p. Consider the set of N, discrete radial mesh
points (nodes) p,=(k —1)4p for k=1,...,N,, where
4p = (N, — 1)~". The Fourier coefficients X J"(p = p, ) for
a = (R, A, Z) will be denoted X "(k ). They are the nodal
amplitudes, which are to be obtained as the solution to the
discrete force equations. In analogy with the angle discreti-
zation in Eq. (47), it is useful to introduce the radial half-
mesh points g , 1, = (o +pi41)/2, fork=1,.,N, — L.
Then, the p integration in Eq. (47a) becomes

N,—1 Ny Ng

W= Z Z WPk 41720 0i_ 125 65— 1,2)4p 86 AL,
(48)

k=1 i=1j=1
Henceforth, for brevity, the angular subscripting is sup-
pressed. To evaluate w at the radial half-mesh points, central
sum and difference formulas'® can be used: X, (k + 1/2)
= [X (k) + X, (k+ 1)]/2 and Xik+1/2)
= [X,(k + 1) — X_(k)]/4p. Since w depends only on X,
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and X/, but no higher-order radial derivatives, these rela-
tions are sufficient to discretize w.

The discrete forces are obtained by taking the time de-
rivatives of the nodal amplitudes X J"(k, ¢ ) appearing in the
discrete form for W, in exact analogy with the procedure
developed in Sec. III for the continuous case. The result is
not unique, since several radial discretizations of w, all of
which agree to O (4p?), are possible. The particular discrete
form for w used here was chosen to minimize the radial cou-
pling between the nodal amplitudes, which is desirable both
for numerical stability and for minimizing truncation er-
rors.* In the pressure contribution to W [the second term in
Eq. (47b)], V' is differenced to conserve the volume, thus
preserving the feature that the MHD forces depend on p only
through dp/dp. This is accomplished by introducing

- U= R ?/2 and writing

Vik+1/2)=3 3 (U, Z, — U, Z,)* * A6 A,
J

i

(49)
where each term on the right of Eq. (49) is evaluated individ-
ually at p.,,,; for example, Uglk + 1/2)

= RR4(k)+ RR,(k + 1).
The quantity Vg|B |* appearing in the magnetic field
energy Wy, = W — W, is evaluated at p, _ ,,, as follows:

(J&;lBlz)k+l/z=(ﬂ)*+”2(b2(k)+b2(k+ 1)),

Mo G 2
(50a)
where
Glk+1/2)=(R, Z, — R, Z,)* "7, (50b)
bk) = (b3 gop + 2b5 b, gor + b2 g ), (50c)

é,.j(k }=g,(k)/R (k) are the normalized metric coefficients,
bolk)=uk)—A k), b (k) =1+ Ag(k),and ¢(k )is the dis-
crete rotational transform profile. The ratio @ /G, which is
proportional to the toroidal magnetic field, has been differ-
enced on the half-grid to preserve the slowly varying radial
behavior of this physical variable.
Using these expressions to complete the discretization
of W in Eq. (47a) and taking a time derivative yields
aw _ Y [Aalk)—imB,(k)+inC, (k)]
dt ik
X, X™k)dp A AL, (51)

where ¥,,,=exp[imb,_,,, —n; _,,,}]. The coefficients
A, B, and C at interior radial mesh points are

(ZaP)k+ 172 (ZGP)k— 172

Anlk)= - +(RZ,)p'(k)
p
bUk) .
+¢z(——2R i g(k)), (52a)
Bulk)= —3[(Z,P)* 172
+(Z,P) ] + (by b (52b)
Crlk)= (bgbk )kv (52¢)
R Pk—l/Z_R Pk+l/2
Ay (k)= BeP) . R LY R, (K),
o
(52d)

S. P. Hirshman and J. C. Whitson 3561



B (k)=4[(R,PY* '+ (R,P) 1] +(by bg),

(52¢)
Clk) = (b bz, (52f)
Ayk)=0, (52g)
B, (k)= Py(bg 8o + b, &) (52h)
Calk) = — Py (by 8oo + b 8oe V- (52i)
Here,
._ L (¢ 1)2 k+ 172 (¢ ')2 k—-1/2
2% 2y0[( G ) +( G ) ] (33a)
B, =L@+ 4 (@) 1]
4o
¢' k+1/2 ¢l k—1/2
(T (%)) 53
¢*
belk) = ;(7:—)(1;9 R, + b, R, ), (53¢)
¢*
bylk)= ?(;—)(b,, Z,+ b Z,), (53d)
k+1/2___l_ £2k+1/2 2 2
o (8] e
(53¢)

The discrete variational procedure yields @ ¥, instead of @ s
in Egs. {52h) and (52i). Departure from the rigorous vari-
ational result is introduced to preserve the correct asympto-
tic behavior for the discretized A as p — 0.

At the origin, the correct discrete expressions for the
forces can be obtained by integrating Eq. (18) from p = 0 to
p = Ap/2. The asymptotic forms for R, Z, and A at the mag-
netic axis, which were derived in Sec. V, can then be used to
obtain the following expressions:

3/2 -
ant = 22 (Bt )

? (54a)
4p 2R (1)
Cr(1)=[@¥/R (1)]R.(1), (54b)
Az(1)=2(R,P)**/4p, (54c)
C,(1)= [P ¥/R(1)]Z,(1), (54d)
where
Pt =[(D)/2,G 1", (Sde)

and P®/? is given by Eq. (53¢) for k=1. Note that
b*(1) = g, (1), and B (k) and B, (k ) do not contribute to the
m = 0 force components [since they are multiplied by im in
Eq. (51)). The result in Eq. (54) differs from the variational
discretization by the factor of 2 appearing in the radial deri-
vative terms of 4; and 4. This discrepancy can be traced to
the inadequacy of the differencing scheme for |B |* in Eq.
(50a) as p — Q.
At the plasma boundary p, = 1, either R and Z are
prescribed for a fixed-boundary equilibrium, or P(b)
=R (b)|VP |*(b)/2u,(wherebd denotestheboundary)canbe
used in Eq. (52) for a free-boundary equilibrium. The A force
may be obtained by using backward differences for R, and
Z, toevaluate G (b ). Then B, and C, have the same forms as
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those given in Eq. (52), with & replaced by

Qb)=(P,) /1 G(b). (55)
Here, G(b)=Ry(b)Z,(b) — R,(b)Zy(b),
Z,(b )zZp(NP —1/2)and R, (b)~R (N, — 1/2).

Comparing Egs. (52){54) with Eq. (18}, it is apparent
that 4, arises from the p derivative terms in the MHD forces
(together with the centrifugal force in F), and B, and C,
arise from the total ¢ and { derivative terms, respectively.
The coefficient of X J"(k) in Eq. (51) yields the following
nodal equations for the discrete Fourier-transformed MHD
forces:

(VIFZ"(k)=AZ"(k)+imB 7 (k) — inCZ"(k), (56)

where 4 "k =2, ; A,k )¥ ¥, 46 A is the discrete Four-
ier transform of 4, (k ).

where

VIil. GALERKIN METHOD FOR MAGNETIC AXIS

Because of the singular behavior of the force equations
in the neighborhood of the magnetic axis, it was necessary in
the previous section to modify the discretization process as
p— 0. As the number of Fourier mode amplitudes in-
creases, there is a greater sensitivity to small numerical er-
rors in the position of the axis, as well as the plasma shift, so
that the convergence of the descent algorithm is adversely
affected. Improved numerical stability of the descent iter-
ation can be realized by applying the Galerkin method to the
axis shift components,

Ryt p)s_zl; f RdO=" R(pexp(—in{), (57a)

zy6. =1 [ Zdo = 3 Z*plexp( — ing), (5T

comprising the m = 0 Fourier components of R and Z. The
method consists of expanding the Fourier amplitudes R
and Z °" in the polynomial series in p, rather than discretiz-
ing them on a radial mesh. The improved numerical proper-
ties associated with this Galerkin procedure arise from two
features of the method: (1) the magnetic axis R(£,0}, Z,($,0)
is now determined by an average force balance over p, rather
than by the force at the singular point p = O alone; and (2) the
radial variation of R, Z, will be smooth as a function of p,
thus guaranteeing a well-behaved Jacobian vg (which is
strongly affected by the radial gradients of R,, Z,).

Let X )" denote R °" or Z°" for j = 1 or 2, respectively.
Then

X7lo)= 3 cutrlo)

where u, (p} = y4k + 1 P, [p} and P,, is the Legendre po-
lynomial of order 2k. This choice of basis functions was mo-
tivated by noting that u,(0) = O satisfies the boundary condi-
tion Eq. (27b) at the magnetic axis. The u, are orthonormal
polynomials on the interval p = [0,1] with unit weight func-
tion. Since the boundary condition X (1) = X ;' may be pre-
scribed, the ¢/, are not independent but satisfy
2 _o V4k + 1 ¢/, = X?*(1). Using this relation to elimi-

(58a)
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nate ¢, yields an unconstrained Galerkin expansion for
X }‘-)":
Xp)=X"(1)+ 3 cliiilp) (58b)
K=
where @i, (o) = 4k + 1 [P,i(p) — 1]. Inserting this expan-
sion into Eq. (21a) for W yields descent equations for ¢/, :

1
el =L i, Fav. (59)

Obviously, the expansion coefficients are determined by ra-
dially weighted averages of the MHD residual forces.

For the examples discussed in the next section, the Ga-
lerkin method has been used when mode convergence stud-
ies, requiring many Fourier modes, were performed. In all
instances examined so far, the Galerkin approach has been
as accurate as, but more stable than, the discretization meth-
od when increasing numbers of Fourier modes are retained.
Also, good radial resolution is generally achieved by retain-
ing only two or three expansion coefficients in the series, Eq.
(58b).

IX. NUMERICAL EXAMPLES

Some numerical results obtained using the method de-
scribed in the previous sections are now presented. In all the
examples, the effect of the angle renormalization parameter
A is substantial. A symmetry property of particular preva-
lence in stellarator designs, which permits a reduction in the
number of equilibrium equations, has been used to obtain
these numerical results. Many systems of practical interest
possess at least one toroidal plane (¢ = O, specifically) where
the coil symmetry imposes a flux surface shape with vertical
symmetry. In this plane, R (p, 6,0)=R (p, — 6,0) and
Z(p, 0,0)= — Z(p, — 6,0). By analytic continuation, this
symmetry property implies the following Fourier series for

-2.0 | | l |
25 30 35 40 45 50

FIG. 2. Flux surfaces for Solov’ev equilibrium (R /4)* = 1 — (p/2)cos 6,
Z = (V10/2)sin 8, p = (1 — p*)/8, and y = p*.
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le
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FIG. 3. Normalized profiles R,, =R,o/R% and Z,, =Z,,/Z% for
Solov’ev equilibrium, where R 3 = 3.999, R*=1.026 R$=0068 Z¢
=1.58,and Z* = 0.01.

R, Z for all values of ¢:

Rip,0,6)= > R™(p)cos(mb — ng), (60a)

Z(p,6,4)= S Z™plsin(mf — ng). (60b)

Thus, half the possible terms in the general Fourier expan-
sion of R, Z have been eliminated by symmetry. Further-
more, by examining the structure of the F, operator defined
in Eq. (14b), it is possible to infer that

Alp, 6,8)= 3 A lp)sin(mé — ng). (60c)

Figures 2—4 show the flux surfaces, normalized Fourier
amplitudes, and residual decay, respectively, for the particu-
lar 2-D Solov’ev equilibrium discussed in Ref. 4. With a radi-
al mesh of 10-20 points, a discretization error of less than
0.1% in the value of R,(0) (which should be 4) was obtained
using more than two harmonics for R, Z, and A. For the

0 5 T
[ J
[
e )
- N—o : 8 o
N <
W o O O o 2 O O 0o © |z
P . -l g
: ® . °
o] ° Irs!
-2 |
o] 1000

n

FIG. 4. Residual decay and change in energy as a function of iteration num-
ber for Solov’ev equilibrium.
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FIG. 5. Flux surfaces for high-beta, D-shaped plasma, { 8 )~0.03, with R,
=3.51 —cos & + 0.106 cos 26, Z, = 1.47 sin 8 + 0.16 sin 26.

example shown, a total of 12 harmonic amplitudes was re-
tained (although a minimum of six harmonics produces es-
sentially the same flux surface configurations). In Fig. 2, the
solid lines represent the magnetic surfaces and the dashed
lines correspond to constant 6 contours. Note that after the
first 100 iterations the energy has already converged to with-
in three significant figures, whereas the residuals
|F?|=§ F?dV (which are normalized to W) continue to de-
cay at a more or less uniform rate.

Figures 5-7 illustrate the same features for a high-beta
((B) = 3%), axisymmetric, D-shaped plasma. The pressure
profile was taken to be p = py(1 — p?)* and the rotational
transform was given by ¢ = 1 — 0.67p>. Because the-Jacobi-
an for the D-shaped configuration is not uniform with re-
spect to the poloidal angle 6, there is a substantial decrease in

Z4

N
lx

P

FIG. 6. Normalized profiles R,, = R ,/R* and Z,, = Z,,,/Z % for high-
beta, D-shaped plasma, with R =3.97, R* =1.00, R$=0.107, Z*
=147, and Z% = 0.16.
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FIG. 7. Residual decay and change in energy as a function of iteration num-
ber for the high-beta, D-shaped plasma.

the rate of residual decay in this case compared with the
Solov’ev equilibrium for which dyg/d6 = 0 [see Eq. (38)}.
The figures correspond to a total of 12 poloidal harmonics,
although convergence has been achieved with up to 30 har-
monics. This limited convergence study indicates that after a
certain minimum number of harmonics is present, the values
of the lowest-order harmonics seem to remain invariant to
the addition of further harmonics.

Figures 8-10 present the flux surface and residual decay
for the heliotron model configuration,'® which has an outer
boundary (p = 1)

R =10 — cos 8 — 0.3 cos(@ — N¢ ), (61a)
Z =sin 8 — 0.3 sin(@ —- N¢), (61b)

where N = 19 is the number of field periods. A total of 18
mode amplitudes (six modes each for R, Z, and A, corre-
sponding to all combinations of m =0,1,2 and n =0, N)
was used to obtain the equilibrium configurations shown.
Here, the pressure is p = py(1 — p?), and ¢ = 0.5 + 1.50%.
The low-beta result shows the approximate vacuum topol-
ogy, whereas at high beta (( 8 ) = 2%), a substantial Sha-
franov shift 4 ~0.2 is apparent. To obtain the residual decay
shown in Fig. 10 for { #) = 2% took about 32 sec of CPU
time on the CRAY computer. The results of a beta scan are
summarized in Fig. 11, where the average toroidal shift
AR = (R,, — 10)isdisplayed versus { 8 ). This s in approxi-
mate agreement with the free boundary calculations report-
ed in Ref. 16.

Finally, Figs. 12 and 13 represent the flux surfaces for
the Advanced Toroidal Facility (ATF)'” model configura-
tion, with an outer boundary (in meters):

R =2.05—0.29 cos 8 + 0.09 cos{d — NS)

+ 0.125[cos 268 — cos(26 — N1, (62a)
Z =0.29sin 6§ + 0.09 sin(@ — N§)
+ 0.00675[sin 20 — sin(28 — NG )], (62b)
where N =12. The pressure was chosen to be

p=pol —p*?, and ¢ =0.35+0.650. In Eq. (62), the
{cos 6, sin @) terms produce an axisymmetric circular plas-
ma and the [cos(@ — N¢), sin(@ — N¢ )] terms represent a he-
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FIG. 8. Low-beta ({ #) = 0.1%) flux surfaces
for heliotron model configuration.
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lically varying elliptical distortion. The last terms in Eq. (62)
describe the D-shaped distortion of the plasma most notable
in Figs. 12 and 13 at N{ = 7. At the higher ( 8) value, a
marked helical distortion (cos N§, sin N terms) of the mag-
netic axis develops, even though there is no pure helical mo-
dulation of the boundary surface. Figure 14 shows the mean
toroidal axis shift AR = (Ry, — 2.05) vs ( B for this ATF
model, which is in good agreement with the results obtained
in Ref. 17.
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APPENDIX: OPTIMAL CHOICE FOR THE POLOIDAL
ANGLE

The rate at which a magnetic flux surface is traversed in
the poloidal direction can be chosen independent of its
shape. This leads to the interdependence of the MHD forces
Fg, F,, and F;, when the renormalization parameter 4 is
introduced. This degeneracy may be resolved by specifying
the poloidal angle 8. Several choices for & have been dis-
cussed in the literature.**"'® In this Appendix, it is argued
that the requirement of rapid convergence for the Fourier
moment expansions of R and Z selects a particular angle §
that has not been previously considered.

One choice* for @ is a polar representation for which
6 =tan—(Z /R), where (R, Z) are local Cartesian coordi-
nates (in the plane ¢ = const) measured from the magnetic
axis. In this system, Eq. (16) is replaced by a single equation
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FIG. 9. High-beta ({ 8) = 2%) flux surfaces for

1.4 - .
heliotron model configuration.
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FIG. 10. Residual decay for the high-beta heliotron configuration.

F~F,, where r = (R + Z?"? is the polar radius. Because
r( p, 6, § ) must be a single-valued function of the flux coordi-
nates, this representation is limited to star-like domains (or
boundary shapes that can be mapped into star-like domains)
and cannot describe, for example, strongly pinched surfaces
that might appear in a plasma preceding the development of
magnetic islands. In addition, the polar angle 8 may not lead
to a rapidly convergent Fourier expansion of r. (This diffi-
culty poses no problem in Ref. 4, where Fourier analysis is
not used.) For example, an elliptical flux surface R 2
+Z%K*=1 becomes (for k31) r=[1—(1 -«
xsin? 8 ] ~!/2, which develops a significant Fourier spec-
trum as « departs from unity. The same problem exists for
certain other angle choices. For example, the angle produc-
ing equal arc lengths around a flux surface requires
0g40/30 = 0and has a substantial Fourier spectrum even for
the simplest noncircular geometric shapes.

To avoid the restriction to star-like domains imposed
on the polar system, the cylindrical system (R, ¢, Z ) was in-
troduced in Sec. III. In this system, a natural unique
choice'® for the poloidal angle is 8 = 0 *, where 0 * is the
angle that, together with { = ¢, defines a straight magnetic

03 r !

S

01+ 1

AR

0 1 2
(8)%

w
»

FIG. 11. Toroidal shift AR vs ( 8 ) for heliotron configuration.

field line coordinate system. Although this choice for 9 is
adequate in the context of Ref. 18, where the MHD equilibri-
um equations are solved on a Lagrangian grid, it is generally
inappropriate for use in conjunction with Fourier analysis.
{An explicit analytic example of this is given in Sec. VI.) The
poor convergence properties associated with 6 * may be un-
derstood by considering a fixed plasma boundary with the
following finite parametric representation:

M,  Ng
R,6,¢)= Zo -E_N R ™ cos{m8 — nt ), (Ala)
Z,6,¢)= io _2; Z™sin(mb—nf).  (Alb)

It is assumed that Egs. (A1) are the most economical series
representations of the boundary, in the sense that any peri-
odic displacement of & increases the total number of har-
monics, My N + M;N,. Note that the shape of the bound-
ary, at a fixed toroidal angle &, is invariant to such
displacements, which merely change the rate at which the
boundary is traversed as 8 increases. In general, the parame-
tric (geometric) angle @ in Egs. (A1) does not coincide with
0*. (Evenif 0 and 8 * agreed initially, it would be impossible

FIG. 12. Moderate-beta ({ 8) = 2%) flux sur-
faces for ATF model configuration.
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to guarantee their equality as the plasma evolved toward
equilibrium. This is because the operator F,, which deter-
mines the evolution of 8 *, depends on g, which is not a
function of the boundary coordinates alone.) Thus, in terms
of @* =0+ A ¥6* ¢), where A ¥ is a periodic function, Eq.
(Ala) becomes (with a similar result for Z,)

Mg Ng
RO%() =S 3 R™cos[m(@*—A3)—ng]
m=0n= — Ny
M% N
= Y  Ry"cos(m@* —ng), (A2)
m=0,— _N%

where M N3 + M2 N%>M, Ny + M, N,. Notonlyis
the number of Fourier harmonics in general (substantially)
increased in the & * system, but also the boundary coefficients
R " are no longer constant during the energy minimization
even for a fixed boundary equilibrium. Rather, they un-
dergo'® periodic Lagrangian displacements along the
boundary curve that are of the form 8R, =R, A and
8Z, =Z, A, withi= — F,. Thus, simply to conserve the
outer boundary shape requires a large number of harmonics
in the 8 * system. For these reasons, it is preferable to trans-
form to the geometric coordinate system @ =6* — 1%,
where the boundary Fourier coefficients can be fixed and

0.6 T T T T
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FIG. 14. Toroidal shift AR vs ( 8) for ATF configuration.
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where the number of harmonics is minimized. Because of the
large number of harmonics generated by the transformation
to 8 * in Eq. (A2), it may be concluded that the development
in Ref. 7, though technically correct, is of little practical
importance.

Having transformed to & at the boundary, it becomes
necessary to extend this coordinate system into the plasma.
This is exactly what Eq. {3a) accomplishes. The coefficients
(R™, Z™" in Eqgs. (A1) are specified boundary values. This
yields a unique transformation from 8 * to 8 at the boundary.
However, the transformation equation (3a) is not unique in
the plasma interior, where the same flux surface can have an
infinite number of parametric representations under the
family of transformations given by Eq. (3a). This underdeter-
mination of @ is irrelevant in practice where only finite Four-
ier expansions are used to represent the equilibrium solu-
tions. For finite-term series expansions of R and Z, there
exists a unique poloidal angle 6 (the geometric angle) that
leads to the most accurate solution of the inverse equilibrium
problem in the sense of convergence in the mean. (This con-
clusion concerning series economization follows from the
Fourier—Bessel theory of finite-series approximation.) We
now demonstrate that the variational principle given in Sec.
II1 is capable of determining the geometric poloidal angle as
a result of the minimization process (with fixed boundary
conditions). That is, the variational principle automatically
performs the series economization when the angle renormal-
ization parameter A is retained. As a consequence, no con-
straint between the Fourier harmonics need be imposed ab
initio whenever a finite-series approximation to R and Z is
sought.

To prove this remarkable property of the variational
equations it suffices to show that when A #0, the equations
for R and Z are independent whenever finite Fourier series
approximations for R and Z are used. Without loss of gener-
ality it may be assumed that F, = 0 can be satisfied by an
appropriate choice of A. Then Eq. (16) yields

S. P. Hirshman and J. C. Whitson 3567



R=2Z,F, (A3a)

Z= —R,F,, (A3b)

where I_’p = RF, is the 3-D inverse Grad—Shafranov opera-
tor. In the infinite mode number (continuous) limit, the un-
derdetermination of € is manifested in Eqgs. (A3) by the fact
that R and Z are not independent equations. However, for a
finite-series expansion of R and Z, and hence of R, and Z,,,
the Fourier moments of the variational equations (A3) need-
ed to extract the appropriate harmonics of R and Z yield
exactly the correct number of independent equations for de-
termining each of the harmonics of R and Z. This is due to
the mode coupling produced by Z, and R, in Egs. (A3). (Itis
assumed that because of the strong nonlinearity of F,,, the
harmonics of F, are independent at least up to a mode num-
ber equal to the sum of the R and Z mode numbers. Also,

since yg#0, R, and Z, do not both vanish.)

Because Eqs. (A3) are indeterminate in the continuous
limit, they are probably ill-conditioned for finite but large
mode numbers. Limited-mode convergence studies (see Sec.
IX) suggest that lack of uniqueness does not seem to produce
any deleterious numerical effects when used in conjunction
with the steepest-descent method. This is probably due to the
fact that the initial guess for (R ™", Z ™") is sufficient to yield
a unique descent path and thus determines a unique poloidal
angle even when many modes are present (up to 30 mode
amplitudes have been successfully converged).

When a unique poloidal angle choice is desired, it is
possible to scale A from its value at the plasma boundary
(which is unique) into the plasma, e.g., A = pA,. In this way,
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the renormalization features of A are retained, while Egs.
(A3) are no longer ill-conditioned.
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