
GTS User Manual For Finite Element Solver

gts team

Princeton Plasma Physics Lab

P.O. Box 451, Princeton, NJ 08543

May 9, 2014

Contents

1 First Of All: How To Get The Code . 1
2 Second Of All: How To Run The Code . 2
3 GTS Mesh Grids and Safety Factor . 3
4 Poisson Equation and new gk solver . 4
5 Poisson Equation and new fem solver . 6
6 Finite Elements Method . 7

6.1 C0 linear elements . 9
6.2 C0 2nd order elements . 11
6.3 C1 5th order elements . 11
6.4 Find Derivatives . 13
6.5 Boundary Conditon . 14
6.6 Numerical Difficulty: periodic domain . 17

Appendices 19

1 Flux Coordiante Basics . 19
2 Numerical integration . 20

1 First Of All: How To Get The Code

GTS is under version control at

svn+ssh://svnsrv.pppl.gov/svn/gts

If you do

1) module load subverison

on portal, you can check what are there using command

2) svn list -R svn+ssh://svnsrv.pppl.gov/svn/gts

As a start, you need to check out a working copy for yourself using command

3) svn co svn+ssh://svnsrv.pppl.gov/svn/gts/trunk/GTS

To check your working copy status, go to GTS directory and do

4) svn status -u

To check who did commits, go to GTS directory and do

5) svn log

To check the difference of your working copy against the distribution, do

6) svn diff

To update your working copy with newest changes in the distribution, go to GTS directory and do

1

7) svn update

To commit your changes into the distribution, the easiest way is to go to the parent directory of GTS
and do

8) svn ci GTS -m "your message"

Note: before you commit, you must do ”svn update” after you committed, you must do ”svn update”
again to avoid any future conflicts. To add a new file or directory under GTS dir into svn, go to GTS dir
and do

9) svn update

svn add filename/dirname

svn ci GTS -m "your message"

svn update

2 Second Of All: How To Run The Code

GTS runs on hopper and edison at NERSC. The finite element solver starts from input parameter

order

given in the input file with default name

INPUT.d

It sets the order of finite elements to be used throughout the run:

order = 0 original new_gk_solver solver \\

order = 1 linear finite element \\

order = 2 2nd order finite element \\

and is save as

solverobject%order=order

where the solverobject can be either solver1, solver dphi dt, or masssolver defined in

main.F90

There is another variable declared in the solverobject

solverobject%fem%oder

which is set to

solver1%fem%oder=order

as well for solver1 and solver dphi dt when boundary condition will be imposed for poisson equation in
subroutine

petsc_solve

If the solverobject is masssolver, called to find the partial derivative along the coordinate directions a
and/or θ where (a, θ) is the flux coordinates used in GTS, then we set

masssolver%oder=0

which means masssolver doesn’t need a boundary condition to proceed in subroutine

petsc_solve

2

Each solverobject has its own set of mesh and elements so that different order of elements can be used
to improve efficiency. If order is set to 1 or greater, then the solverobject is created through calling

new_fem_solver

Otherwise,

new_gk_solver

is to be called as the default solver. In new fem solver, first a triangular mesh is generated through
utility triangle, then finite elements are created on this mesh, and finally the type of matrix and boundary
condition are applied to modify the stiffness matrices. The code returns the successfully created solver
contents if no error has been encountered. The solverobject can be used to solve the fem resulted linear
systems stored in

solverobject%ksp

The rhs is modified according to section 6.5 in subroutine

petsc_solve

depending on the type of boundary condition, which is the second one must-be-set parameter. From

INPUT.d

the boundary is given by

a0 : a_min is the flux surface closest to magnetic axis

a1 : a_max, the outmost flux surface

which set the following 4 type of boundary conditons

bc_type = 0 neumann boundary conditions at both a=a0 and a=a1

bc_type = 1 dirichlet boundary condition at a=a0,

neumann boundary conditions at a=a1

bc_type = 2 dirichlet boundary conditions at both a=a0 and a=a1

bc_type = 3 neumann boundary condition at a=a0,

dirichlet boundary conditions at a=a1

and bc type is passed as an argument to new fem solver. In the case of solver dphi dt is solved, only
homogeneous Dirichlet boundary conditions will be imposed on boundaries at a = a0 and a = a1.

The third important parameter is mat type passed to new fem solver in the same way as that bc type
is argumented. But we don’t use it in the current version of finite element solver. It is reserved for future
use.

3 GTS Mesh Grids and Safety Factor

GTS mesh setup has been described in reference [1]. Here we only record the part important to understand
finite element mesh. The GTS mesh is constructed using modified safety factor q̄(a), which is used
everywhere in the code. In the magnetic flux coordinates (a, θ, ζ), the field lines are straight and the
radial coordinate labels magnetic surface

a =

√

ψ

ψe

where ψ and ψe are the toroidal flux and its value on the plasma boundary, repectively. Therefore,

a0 ≤ a ≤ a1, 0 < a0 < a1 ≤ 1

a0 and a1 are input parameters explained in section (2).
In the poloidal direction, the total number of radial grids, each one representing one flux surface, is

given by the global parameter

3

mpsi

in

INPUT.d

and the θ grid with grid size ∆θ(a) is computed and saved in array

mtheta(0:mpsi)

which is uniform on each flux surface, while varying from surface to surface. It is determined so as to
make poloidal arc length ∆lθ near the midplane correlated with ρi in the loop

do i=0,mpsi

tdum= ...

mtheta(i)= ... tdum ...

enddo

in code

setup_v2.F90

and the total number of grid on each poloidal plane is evaluated and saved in parameter

mgrid=sum(mtheta+1)

Note that the mesh points are doubly counted when θ = 2π meets θ = 0 in mgrid caused by polidal 2π
periodicity. By excluding this repeated redundancy, the total number of grids in each poloidal plane is
computed by

neq=sum(mtheta)

where [1 : mtheta(0)] corresponds to boundary at a = a0, and [neq −mtheta(mpsi− 1) + 1 : neq] corre-
sponds to boundary at a = a1.

Once the 2D mesh was constructed on the ζ = 0 plane, a 3D mesh is constructed by starting from a
grid point, following each (approximate) field line which satisfies

q̄(a)θ − ζ = const

q̄(a) is slightly different from the usual safety factor q(a) and makes approximate come back to one of
the grid points on the ζ = 0 plane.

The number of toroidal grids, i.e., the number of poloidal planes,

mzetamax

is chosen as input parameter to give adequate resolution for the parallel structure of the modes.

4 Poisson Equation and new gk solver

new gk solver uses four-point averaging scheme to solve GK poisson eq.
Generally, with distribution function defined as a 7D function f(x,v, t) of real space x, velocity space

v, and time t, the density can be given as a 3D function of real space x

n(x, t) ≡

∫

f(x,v, t)d3v (1)

Similarly, we can defined the perturbed ion density and electron density

δni(x, t) =
∫
δfi(x,v, t)d

3v

δne(x, t) =
∫
δfe(x,v, t)d

3v
(2)

4

in real space. The quasi-neutrality becomes

δni(x, t) ≃ δne(x, t)

But in gyro-kinetic studies, the distribution function is defined at guiding center R, as a 6D function
fgc(R, µ, v‖, t) of guiding center position R, magnetic moment µ, the parallel velocity v‖, and time t.
Thus, the transformation between the particle position x and the guiding center position R should be
applied.
Briefly, we have the guiding center density

ngc(R, t) ≡

∫

fgc(R, µ,v‖, t)J dµdv‖

the potential φ

φ̄(R, µ) =
1

2π

∫

φ(x)δ(x−R− ρ)dxdΘ

φ̃(x) =
1

2π

∫

φ̄(R, µ)f0i(R, µ, v‖)δ(R− x+ ρ)dRdµdv‖dΘ

the ion density δni

δn̄i(x) =
1

2π

∫

δfi(R, µ, v‖)δ(R− x+ ρ)dRdµdv‖dΘ

the electron density δne

δne(x) =
1

2π

∫

δfe(R, µ, v‖)δ(R− x+ ρ)dRdµdv‖dΘ =
1

2π

∫

δfe(x, µ, v‖)dµdv‖

where ρ is the gyro-radius vector, Θ is the gyro-phase, f0i is assumed to be Maxwellian for ions, and δfi
is the perturbed ion distribution function. Using

δni(x, t) = δn̄i(x, t) + δn
polarization
i = δn̄i(x, t)− n0

qi

Ti
(φ− φ̃)

and the quasi-neutrality condition, we obtain the most used poission equation

qi

Ti
(φ− φ̃) =

δn̄i(x, t)

n0
−
δne(x, t)

n0
− (3)

Instead of solving total potential, one may solve for the turbulence contribution δφ and zonal flow
contribution 〈φ〉 given by

δφ = φ− 〈φ〉

The equation for δφ is derived by taking flux surface average of the total potential equation (3) and
subtracting this average from (3)

qi

Ti
(δφ− δφ̃) =

δn̄i − 〈δn̄i〉

n0
−
δne − 〈δne〉

n0
(4)

An alternate method to solve for electorns is the so called δh method. In summary, one way is to
solve the total potential.

(

1 +
Ti

Te

)
qi

Ti
φ−

qi

Ti
φ̃ =

δn̄i

n0
−
δnhe
n0

+
qi

Te
〈φ〉 (5)

and the other way is to solve equation for the turbulence potential

(

1 +
Ti

Te

)
qi

Ti
δφ−

qi

Ti
δφ̃ =

δn̄i − 〈δn̄i〉

n0
−
δnhe − 〈δnhe 〉

n0
(6)

5

5 Poisson Equation and new fem solver

new fem solver uses finite elements to solve partial differential GK equation.
Instead of solving integral equation, we can derive and solve the elliptic pde for the total potential φ.

From the total potential eq (3), we obtain

−∇⊥ ·

(
qin0

BΩi

∇⊥Φ

)

= 〈δn̄i〉 − δne (7)

More generally, the following GK poisson equation is implemented in the code

αΦ+ β∇⊥ ·

(
∑

s

gs∇⊥Φ

)

= b (8)

where
α(a) =

(
e
e0

)(
mo

me

)
1
Te
, β(a) = − 1

neo(a)
, gs(a) =

Zs

B2nso

(
eo
es

)(
ms

mo

)

b =
∑

s
δn̄s

nso

(
nso

neo

)

−
δnna

e

neo
+
(

e
eo

)(
mo

me

)
〈Φ〉
T̄e
, 〈Φ〉 =

∮
ΦJ dϕdθ∮
J dϕdθ

δnnae is the non-adiabatic electron fluctuation density

s specifies the ion species. From now on we assume single ion specie s = 1 for simplicity. In flux coordinate
(a, θ, ζ), the second term in eq (8) becomes

∇⊥ · (gs∇⊥Φ)
= ∇ · (gs∇⊥Φ)
= 1

J
∂
∂a

[J gs∇⊥Φ ·∇a] + 1
J

∂
∂θ

[J gs∇⊥Φ ·∇θ] + 1
J

∂
∂ϕ

[J gs∇⊥Φ ·∇ϕ]
(9)

where J represents the flux coordinate Jacobian [∇a×∇θ ·∇ϕ]
−1

. Please refer the Appendix for a
summary of formulae in curved coordinate systems. The first term in (9) can be written as

∇⊥Φ ·∇a =
[

∇Φ− (b̂ ·∇Φ)b̂
]

·∇a

≃ ∇Φ ·∇a

=
(
∂Φ
∂a

∇a+ ∂Φ
∂θ

∇θ
)
·∇a = ∂Φ

∂a
gaa + ∂Φ

∂θ
gaθ

(10)

in an axis-symmetry system. Similarly, the second term in (9) can be written as

∇⊥Φ ·∇θ =
[

∇Φ− (b̂ ·∇Φ)b̂
]

·∇θ

≃ ∇Φ ·∇θ

=
(
∂Φ
∂a

∇a+ ∂Φ
∂θ

∇θ
)
·∇θ = ∂Φ

∂a
gaθ + ∂Φ

∂θ
gθθ

(11)

and the third term in (9) becomes

1
J

∂
∂ϕ

[J gs∇⊥Φ ·∇ϕ] = gs
∂
∂ϕ

[∇⊥Φ ·∇ϕ] = gs
∂
∂ϕ

[

∇Φ− (b̂ ·∇ϕ)b̂
]

·∇ϕ

≃ gs
∂
∂ϕ

[∇Φ ·∇ϕ] = gs
∂
∂ϕ

[
∂Φ
∂ϕ

|∇ϕ|2
]

= gs|∇ϕ|2 ∂
∂ϕ

∂Φ
∂ϕ

= gs|∇ϕ|2 ∂
∂ϕ

[

− 1
q
∂Φ
∂θ

]

= − gs
q
|∇ϕ|2 ∂

∂ϕ
∂Φ
∂θ

≃ gs
q2
|∇ϕ|2 ∂2Φ

∂θ2 = gs
q2

∂2Φ
∂θ2 g

ϕϕ

(12)

Subtituting (10) (11) (12) into (8), the partial differential equation to be solved becomes

αΦ+

β
[

1
J

∂
∂a

J gs
(
∂Φ
∂a
gaa + ∂Φ

∂θ
gaθ
)
+ 1

J
∂
∂θ
J gs

(
∂Φ
∂a
gaθ + ∂Φ

∂θ
gθθ
)
+ gs

q2
∂2Φ
∂θ2 g

ϕϕ
]

= b

(13)

Here gaa, gaθ, gθθ represent the coordinate metrics.
If we decompose Φ into 2 parts

Φ = 〈Φ〉+ δΦ

6

Similarly to eq (8) the equation for δΦ will be

αδΦ+ β∇⊥ ·
∑

s

gs∇⊥δΦ = b− β∇⊥ ·
∑

s

gs
d〈Φ〉

da
∇a (14)

with an additional term on the rhs. This addtional term can be extended as follows

−β∇⊥ ·
∑

s gs
d〈Φ〉
da

∇a = −β 1
J

∂
∂a

(

J gs
d〈Φ〉
da

∇a ·∇a
)

− β 1
J

∂
∂θ

(

J gs
d〈Φ〉
da

∇θ ·∇a
)

= −β 1
J

∂
∂a

(

J gs
d〈Φ〉
da

gaa
)

− β 1
J

∂
∂θ

(

J gs
d〈Φ〉
da

gaθ
)

Thus eq (14) has a similar form as eq (13) with above additional writing on the right hand side.
solver dphi dt solves the following eq, which is similar to eq (8). The only differences come from

setting α = 0, the unknows ∂Φ
∂t

to be solved, and rhs vector b.

β(a)∇⊥ ·
∑

s

gs∇⊥
∂Φ

∂t
= b, b =

∑

i

Zi

neo

∂δn̄i

∂t
−

1

neo

∂δnhe
∂t

−
∂

∂t

(
eδΦ

Te

)

(15)

The only boundary condition is Dirichlet type ∂Φ
∂t

= 0 at a = a0 and a = a1.

6 Finite Elements Method

Finite elements are built upon the reference triangle:

(ξ1(0, 0), ξ2(1, 0), ξ3(0, 1))

which is mapped from real triangle:

(x1(a1, θ1),x2(a2, θ2),x3(a3, θ3))

using transformation Jacobian J

J =

∣
∣
∣
∣
∣

∂a
∂ξ

∂θ
∂ξ

∂a
∂η

∂θ
∂η

∣
∣
∣
∣
∣
=
∂a

∂ξ

∂θ

∂η
−
∂a

∂η

∂θ

∂ξ
(16)

from real space x(a, θ) to reference space ξ(ξ, η)

ξ =⇒ x = x(ξ)

The reverse transformation J−1 is written as

J−1 =

∣
∣
∣
∣

∂ξ
∂a

∂η
∂a

∂ξ
∂θ

∂η
∂θ

∣
∣
∣
∣

(17)

from reference space ξ(ξ, η) to real space x(a, θ)

x =⇒ ξ = ξ(x)

Three types of elements are available in the current version of GTS and are represented by Ni for the ith
base function.

First we introuduce the variational formulation by multiplying quation (13) with base function Ni(i =
1, 2, · · ·) on its both side, integrating over each triangle, and then assembling them together

α
∫ ∫

ΦNidσ + β
∫ ∫ [

1
J

∂
∂a

J gs
(
∂Φ
∂a
gaa + ∂Φ

∂θ
gaθ
)]
Nidσ

+ β
∫ ∫ [

1
J

∂
∂θ
J gs

(
∂Φ
∂a
gaθ + ∂Φ

∂θ
gθθ
)]
Nidσ

+ β
∫ ∫ [

gs
q2

∂2Φ
∂θ2 g

ϕϕ
]

Nidσ

=
∫ ∫

bNidσ, i = 1, 2, · · · .

(18)

7

dσ is the 2D differential area in real space. Using the approximated variable Φ and rhs vector b

Φ =
∑

j

ΦjNj , b =
∑

j

bjNj

the first term in the eq (18) is converted to

α
∫ ∫

ΦNidσ = α
∫ ∫ ∑

j ΦjNjNiJ dadθ

= α
∑

j

(∫ ∫
NjNiJ dadθ

)
Φj

= α
∑

j JjmijΦj

(19)

Similarly, we have for the right-hand-side b term

∫ ∫
bNidσ =

∫ ∫ ∑

j bjNjNiJ dadθ

=
∑

j

(∫ ∫
NjNiJ dadθ

)
bj

=
∑

j Jjmijbj

(20)

Where J is the flux coordiante Jacobian evaluated at node j and mij is the mass matrix relted to Ni

and Nj . Taking partial integration, the 2nd term on the left of eq (18) becomes

β
∫ ∫

1
J

∂
∂a

[
J gs

(
∂Φ
∂a
gaa + ∂Φ

∂θ
gaθ
)]
Nidσ+

β
∫ ∫

1
J

∂
∂θ

[
J gs

(
∂Φ
∂a
gaθ + ∂Φ

∂θ
gθθ
)]
Nidσ+

β
∫ ∫ [

gs
q2

∂2Φ
∂θ2 g

ϕϕ
]

Nidσ

= β
∫ ∫

1
J

∂
∂a

[
J gs

(
∂Φ
∂a
gaa + ∂Φ

∂θ
gaθ
)]
NiJ dadθ+

β
∫ ∫

1
J

∂
∂θ

[
J gs

(
∂Φ
∂a
gaθ + ∂Φ

∂θ
gθθ
)]
NiJ dadθ+

β
∫ ∫ [

gs
q2

∂2Φ
∂θ2 g

ϕϕ
]

NiJ dadθ

= −β
∫ ∫

∂Ni

∂a
J gs

(
∂Φ
∂a
gaa + ∂Φ

∂θ
gaθ
)
dadθ

−β
∫ ∫

∂Ni

∂θ
J gs

(
∂Φ
∂a
gaθ + ∂Φ

∂θ
gθθ
)
dadθ

−β
∫ ∫

∂
∂θ

(

J gs
q2
gϕϕNi

)
∂Φ
∂θ
dadθ

≃ −β
∫ ∫

(J gsg
aa) ∂Ni

∂a
∂Φ
∂a
dadθ − β

∫ ∫ (
J gsg

aθ
)

∂Ni

∂a
∂Φ
∂θ
dadθ

−β
∫ ∫ (

J gsg
aθ
)

∂Ni

∂θ
∂Φ
∂a
dadθ − β

∫ ∫ (
J gsg

θθ
)

∂Ni

∂θ
∂Φ
∂θ
dadθ

−β
∫ ∫ (

J gs
q2
gϕϕ

)
∂Ni

∂θ
∂Φ
∂θ
dadθ

= −β
∑

j Φj

∫ ∫
(J gsg

aa) ∂Ni

∂a

∂Nj

∂a
dadθ − β

∑

j Φj

∫ ∫ (
J gsg

aθ
)

∂Ni

∂a

∂Nj

∂θ
dadθ

−β
∑

j Φj

∫ ∫ (
J gsg

aθ
)

∂Ni

∂θ

∂Nj

∂a
dadθ − β

∑

j Φj

∫ ∫ (
J gsg

θθ
)

∂Ni

∂θ

∂Nj

∂θ
dadθ

−β
∑

j Φj

∫ ∫ (

J gs
q2
gϕϕ

)
∂Ni

∂θ

∂Nj

∂θ
dadθ

= −β
∑

j (J gsg
aa)ij srrijΦj − β

∑

j

(
J gsg

aθ
)

ij
srzijΦj

−β
∑

j

(
J gsg

aθ
)

ij
szrijΦj − β

∑

j

(
J gsg

θθ
)

ij
szzijΦj

−β
∑

j

(

J gs
q2
gϕϕ

)

ij
szzijΦj

(21)

Here srrij , srzij , szrij , and szzij are the stiffness matrices corresponding to operators ∂Ni

∂a
, ∂Ni

∂θ
, and

∂Nj

∂a
,

∂Nj

∂θ
. Summing together, we obtain the following linear systems

∑

j {αJjmij

−β (J gsg
aa)ij srrij − 2β

(
J gsg

aθ
)

ij
srzij − β

(
J gsg

θθ
)

ij
szzij

−β
(

J gs
q2
gϕϕ

)

ij
szzij}Φj

=
∑

j Jjmijbj , i = 1, 2, · · ·

(22)

8

A similar form for equation (14) in section 5 can be given easily. First the additional term on the rhs is

−β
∫ ∫

1
J

∂
∂a

(

J gs
d〈Φ〉
da

gaa
)

Nidσ − β
∫ ∫

1
J

∂
∂θ

(

J gs
d〈Φ〉
da

gaθ
)

Nidσ

= −β
∫ ∫

1
J

∂
∂a

(

J gsg
aa d〈Φ〉

da

)

NiJ dadθ − β
∫ ∫

1
J

∂
∂θ

(

J gsg
aθ d〈Φ〉

da

)

NiJ dadθ

≃ −β
∑

j

∫ ∫ (

J gsg
aa d〈Φ〉

da

)

j

∂Nj

∂a
Nidadθ − β

∑

j

∫ ∫ (

J gsg
aθ d〈Φ〉

da

)

j

∂Nj

∂θ
Nidadθ

[

= −β
∑

j srij

(

J gsg
aa d〈Φ〉

da

)

j
− β

∑

j szij

(

J gsg
aθ d〈Φ〉

da

)

j

]

=
∑

j

(

−βgsg
aa d〈Φ〉

da

)

j

∫ ∫
1
J

∑

k EjkθkNiJ Jdξdη +
∑

j

(

−βgsg
aθ d〈Φ〉

da

)

j

∫ ∫ (
− 1

J

)∑

k EjkakNiJ Jdξdη

=
∑

j

(

−βgsg
aa d〈Φ〉

da

)

j

∑

k θk
∫ ∫

EjkNiJ dξdη +
∑

j

(

−βgsg
aθ d〈Φ〉

da

)

j

∑

k ak
∫ ∫

EjkNiJ dξdη

=
∑

j

[(

−βgsg
aa d〈Φ〉

da

)

j
+
(

−βgsg
aθ d〈Φ〉

da

)

j

]
∑

k (θk − ak)Pijk(i, j, k)

where srij and szij are the partial stiffness matrices corresponding to operators
∂Nj

∂a
Ni and

∂Nj

∂θ
Ni,

repspectively. The part given in square parentheses is the first option to evaluate this second term each
time the solver is called. The second option follows right away and can be understood by referring section
(6.4). The code can be found in subroutine addhh2bb. Thus we have the second type of linear systems
to be solved

∑

j {αJjmij

−β (J gsg
aa)ij srrij − 2β

(
J gsg

aθ
)

ij
srzij − β

(
J gsg

θθ
)

ij
szzij

−β
(

J gs
q2
gϕϕ

)

ij
szzij}Φj

[=
∑

j{mijJjbj − βsrij

(

J gsg
aa d〈Φ〉

da

)

j
− βszij

(

J gsg
aθ d〈Φ〉

da

)

j
}

]

=
∑

j{mijJjbj −

[(

−βgsg
aa d〈Φ〉

da

)

j
+
(

−βgsg
aθ d〈Φ〉

da

)

j

]
∑

k (θk − ak)Pijk(i, j, k)}

(23)

6.1 C
0 linear elements

This set of simplest elements is built upon the three nodes of reference triangle and has continuity across
the element edges:

N1 = 1− ξ − η

N2 = ξ

N3 = η

(24)

variable u(x) to be found in real space can be represent by

u(x) =
∑

j

Njuj (25)

where uj is the variable u(x) evaluated at triangle node j. With iso-parameter mapping from real triangle
to reference triangle, the coordinates can be written as

a =
∑

j Njaj
θ =

∑

j Njθj
(26)

Here j refers to the jth node of each triangle. Obvisously, the first order derivative of the base functions
are found to be

∂N1

∂ξ
= −1 ∂N1

∂η
= −1

∂N2

∂ξ
= 1 ∂N2

∂η
= 0

∂N3

∂ξ
= 0 ∂N3

∂η
= 1

(27)

9

So the Jacobian can be easily computed as

J =
∑

i ai
∂Ni

∂ξ

∑

j θj
∂Nj

∂η
−
∑

i ai
∂Ni

∂η

∑

j θj
∂Nj

∂ξ

=
∑

i

∑

j aiθj

(
∂Ni

∂ξ

∂Nj

∂η
− ∂Ni

∂η

∂Nj

∂ξ

)

=
∑

i

∑

j aiθjEij

The inverse Jacobian J−1 is computed below. We start from the following fact

J · J−1 =

[
∂a
∂ξ

∂θ
∂ξ

∂a
∂η

∂θ
∂η

]

·

[
∂ξ
∂a

∂η
∂a

∂ξ
∂θ

∂η
∂θ

]

=

[
1 0
0 1

]

= I

which gives the following two linear sysems. The first one is

J

[
∂ξ
∂x
∂ξ
∂y

]

=

[
1
0

]

and the second one is

J

[
∂η
∂x
∂η
∂y

]

=

[
0
1

]

Their solution gives us the four entries in the inverse Jacobian J

∂ξ
∂a

= 1
J

[

1 ∂θ
∂ξ

0 ∂θ
∂η

]

= 1
J

∂θ
∂η

;

∂ξ
∂θ

= 1
J

[
∂a
∂ξ

1
∂a
∂η

0

]

= − 1
J

∂a
∂η

;

∂η
∂a

= 1
J

[

0 ∂θ
∂ξ

1 ∂θ
∂η

]

= − 1
J

∂θ
∂ξ
;

∂η
∂θ

= 1
J

[
∂a
∂ξ

0
∂a
∂η

1

]

= 1
J

∂a
∂ξ

;

Thus the differentition of base functions in real space x(a, θ) can be obtained in the following way.

∂Ni

∂a
= ∂Ni

∂ξ
∂ξ
∂a

+ ∂Ni

∂η
∂η
∂a

= ∂Ni

∂ξ
1
J

∂θ
∂η

+ ∂Ni

∂η
(− 1

J
)∂θ
∂ξ

= 1
J
(∂Ni

∂ξ
∂θ
∂η

− ∂Ni

∂η
∂θ
∂ξ
) = 1

J
Ei,jθj

∂Ni

∂θ
= ∂Ni

∂ξ
∂ξ
∂θ

+ ∂Ni

∂η
∂η
∂θ

= ∂Ni

∂ξ
(− 1

J
)∂a
∂η

+ ∂Ni

∂η
1
J

∂a
∂ξ

= − 1
J
(∂Ni

∂ξ
∂a
∂η

− ∂Ni

∂η
∂a
∂ξ

) = − 1
J
Ei,jaj

Introducing nw GLL points and weights w(nw) on these points, all the elemental matrices on each triangle
can be written using numerical integration:

mij =

∫ ∫

NiNjdadθ =

∫ ∫

NiNjJdξdη =

n=nw∑

n=1

Ni(n)Nj(n)J(n)w(n)

srrij =

∫ ∫
∂Ni

∂a

∂Nj

∂a
dadθ =

∫ ∫
∂Ni

∂a

∂Nj

∂a
Jdξdη =

n=nw∑

n=1

∂Ni

∂a
(n)

∂Nj

∂a
(n)J(n)w(n)

srzij =

∫ ∫
∂Ni

∂a

∂Nj

∂θ
dadθ =

∫ ∫
∂Ni

∂a

∂Nj

∂θ
Jdξdη =

n=nw∑

n=1

∂Ni

∂a
(n)

∂Nj

∂θ
(n)J(n)w(n)

szzij =

∫ ∫
∂Ni

∂θ

∂Nj

∂θ
dadθ =

∫ ∫
∂Ni

∂θ

∂Nj

∂θ
Jdξdη =

n=nw∑

n=1

∂Ni

∂θ
(n)

∂Nj

∂θ
(n)J(n)w(n)

srij =

∫ ∫

Ni

∂Nj

∂a
dadθ =

∫ ∫

Ni

∂Nj

∂a
Jdξdη =

n=nw∑

n=1

Ni(n)
∂Nj

∂a
(n)J(n)w(n)

szij =

∫ ∫

Ni

∂Nj

∂θ
dadθ =

∫ ∫

Ni

∂Nj

∂θ
Jdξdη =

n=nw∑

n=1

Ni(n)
∂Nj

∂θ
(n)J(n)w(n)

10

6.2 C
0 2nd order elements

This set of elements is built upon the linear elements given in the last section on 6 nodes (3 nodes and 3
edge nodes) of each triangle. All the formation of operators and matrices for the 2nd order elements are
exactly the same as section in 6.1. So we’ll just give the base functions and the corresponding first order
derivatives in the reference space here.

N1 = −λ(1− 2λ)
N2 = 4λξ
N3 = −ξ(1− 2ξ)
N4 = 4ξη
N5 = −η(1− 2η)
N6 = 4ηλ

(28)

where λ = 1 − ξ − η is the N1, ξ is the N2, and η is the N3 base functions in section 6.1, respectively.
The derivative corresponding to ξ and η are

∂N1

∂ξ
= 1− 4λ ∂N1

∂η
= 1− 4λ

∂N2

∂ξ
= 4(λ− ξ) ∂N2

∂η
= −4ξ

∂N3

∂ξ
= −1 + 4ξ ∂N3

∂η
= 0

∂N4

∂ξ
= 4η ∂N4

∂η
= 4ξ

∂N5

∂ξ
= 0 ∂N5

∂η
= −1 + 4η

∂N6

∂ξ
= −4η ∂N6

∂η
= 4(λ− η)

(29)

The iso-parameter mapping is used in tranforming from reference space to real space this set of elements.

6.3 C
1 5th order elements

This set of elements is much more complicated than the two sets of elements introuduced in the previous
2 subsections. Here we have 18 base functions built upon the three nodes of each reference triangle, and

each node is related to 6 of them involving φ, ∂φ
∂a

, ∂φ
∂θ

, ∂2φ
∂a2 ,

∂2φ
∂a∂θ

, and ∂2φ
∂θ2 . These 18 base functions are

N1 = λ2(10λ− 15λ2 + 6λ3 + 30ξη(ξ + η))
N2 = ξλ2(3− 2λ− 3ξ2 + 6ξη)
N3 = ηλ2(3− 2λ− 3η2 + 6ξη)
N4 = 1

2ξ
2λ2(1− λ+ 2η)

N5 = ξ2ηλ2

N6 = 1
2η

2λ2(1 + 2ξ − η)

N7 = ξ2(10ξ−15ξ2 + 6ξ3 + 15η2λ)
N8 = 1

2ξ
2(−8ξ+14ξ2 − 6ξ3 − 15η2λ)

N9 = 1
2ξ

2η(6− 4ξ − 3η − 3η2 + 3ξη)
N10 = 1

4ξ
2(2ξ(1− ξ)2 + 5η2λ)

N11 = 1
2ξ

2η(−2 + 2ξ + η + η2 − ξλ)
N12 = 1

4ξ
2η2λ+ 1

2ξ
3η2

N13 = η2(10η − 15η2 + 6η3 + 15ξ2λ)
N14 = 1

2ξη
2(6− 3ξ − 4η − 3ξ3 + 3ξη)

N15 = 1
2η

2(−8η + 14η2 − 6η3 − 15ξ2λ)
N16 = 1

4ξ
2η2λ+ 1

2ξ
2η3)

N17 = 1
2ξη

2(−2 + ξ + 2η + ξ2 − ξη)
N18 = 1

4η
2(2η(1− η)2 + 5ξ2λ)

(30)

which preseve first order derivative continuity across the element edges. Their derivatives in the reference
space

∂Ni

∂ξ
,

∂Ni

∂η
, i = 1, 2, · · · , 18

11

are simple algebra and will be omitted here. Check the code for those who are interested in. The most
important numerical issue here is coordinate mapping. Instead of using iso-parameter mapping as we
did in section 6.1 and section 6.2, we use sub-parameter mapping given by C0 linear element in the
section 6.1, i.e.,

a =
∑

j N̄jaj
θ =

∑

j N̄jθj
(31)

to save cost and reduce complexity. Here the base function N̄i represents the set of elements given in
section 6.1 and we renam as N̄j to differentiate it from the C1 elements Ni given in this subsection. If
the precision needs to be increased, the N̄i can be replaced by the second order elements in secton 6.2.
Thus the transformation Jacobian won’t change from the previous subsections, i.e.,

J = ∂a
∂ξ

∂θ
∂η

− ∂a
∂η

∂θ
∂ξ

=
∑

i ai
∂N̄i

∂ξ

∑

j θj
∂N̄j

∂η
−
∑

i ai
∂N̄i

∂η

∑

j θj
∂N̄j

∂ξ

=
∑

i,j(
∂N̄i

∂ξ

∂N̄j

∂η
− ∂N̄i

∂η

∂N̄j

∂ξ
)aiθj

=
∑

i,j Ēi,jaiθj

Note the bar sign over the above opetator Ēij. We need to differentiate the base functions in real space
x(a, θ) as we did previously:

∂Ni

∂a
= ∂Ni

∂ξ
∂ξ
∂a

+ ∂Ni

∂η
∂η
∂a

= ∂Ni

∂ξ
1
J

∂y
∂η

+ ∂Ni

∂η
(− 1

J
)∂y
∂ξ

= 1
J
(∂Ni

∂ξ

∑

j yj
∂N̄j

∂η
− ∂Ni

∂η

∑

j yj
∂N̄j

∂ξ
)

= 1
J
Eijθj

∂Ni

∂θ
= ∂Ni

∂ξ
∂ξ
∂θ

+ ∂Ni

∂η
∂η
∂θ

= ∂Ni

∂ξ
(− 1

J
)∂a
∂η

+ ∂Ni

∂η
1
J

∂a
∂ξ

= − 1
J
(∂Ni

∂ξ

∑

j xj
∂N̄j

∂η
− ∂Ni

∂η

∑

j xj
∂N̄j

∂ξ
)

= − 1
J
Eijaj

Apparently, Eij here is a mixed product of derivatives of Ni and N̄j , thus is different from the Eij in
sections 6.1 and 6.2. However, the mass and stiffness matrices are computed in the same way as we did
in 6.1 with i, j = 1, · · · , 18. We rename them with a bar sign over each matrix just as we did for the Ēij

operator:
m̄ij , ¯srrij , ¯srzij , ¯szzij , s̄rij , s̄zij

Besides this, the follwoing transformation matrix is needed to convert the higher order derivative from
reference space to real space before the matrices are assembled. This is not needed in C0 elements when
only φ(x) itself is solved. If you insist to have one, then the transformation matrix in such case would
be a matrix with one entry T = [1].

First of all, a new variable U(x) in real space is formed as

U(x) =
18∑

j=1

NjUj , (32)

where

U(x) = (φ(x1),
∂φ

∂a
(x1),

∂φ

∂θ
(x1),

∂2φ

∂a2
(x1),

∂2φ

∂a∂θ
(x1),

∂2φ

∂θ2
(x1)

︸ ︷︷ ︸

node1

,

φ(x2),
∂φ

∂a
(x2),

∂φ

∂θ
(x2),

∂2φ

∂a2
(x2),

∂2φ

∂a∂θ
(x2),

∂2φ

∂θ2
(x2)

︸ ︷︷ ︸

node2

,

φ(x3),
∂φ

∂a
(x3),

∂φ

∂θ
(x3),

∂2φ

∂a2
(x3),

∂2φ

∂a∂θ
(x3),

∂2φ

∂θ2
(x3)

︸ ︷︷ ︸

node3

)T

(33)

and Uj is U(x) evaluated at x = (a, θ) on each node. Our problem is converted to solve for U(x).
Once U(x) is solved, we not only have φ(x) but also we have its first order derivatives and second order

12

derivatives. In the reference space U(ξ) has a similar form

U(ξ) = (φ(ξ1),
∂φ

∂ξ
(ξ1),

∂φ

∂η
(ξ1),

∂2φ

∂ξ2
(ξ1),

∂2φ

∂ξ∂η
(ξ1),

∂2φ

∂η2
(ξ1)

︸ ︷︷ ︸

node1

,

φ(ξ2),
∂φ

∂ξ
(ξ2),

∂φ

∂η
(ξ2),

∂2φ

∂ξ2
(ξ2),

∂2φ

∂ξ∂η
(ξ2),

∂2φ

∂η2
(ξ2)

︸ ︷︷ ︸

node2

,

φ(ξ3),
∂φ

∂ξ
(ξ3),

∂φ

∂η
(ξ3),

∂2φ

∂ξ2
(ξ3),

∂2φ

∂ξ∂η
(ξ3),

∂2φ

∂η2
(ξ)3

︸ ︷︷ ︸

node3

,)T

(34)

From U(x) to U(ξ), the transformation matrix at each node i is given as:

Ti =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
J11 J12
J21 J22

J2
11 2J11J12 J2

12

J11J21 J12J21 + J11J22 J12J22
J2
21 2J21J22 J2

22

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

It is derived in the following steps.

∂u
∂ξ

= ∂u
∂a

∂a
∂ξ

+ ∂u
∂θ

∂θ
∂ξ

= ∂u
∂a
J11 +

∂u
∂θ
J12

∂u
∂η

= ∂u
∂a

∂a
∂η

+ ∂u
∂θ

∂θ
∂η

= ∂u
∂a
J21 +

∂u
∂θ
J22

∂2u
∂ξ2

= ∂
∂ξ
(∂u
∂a
J11 +

∂u
∂θ
J12) =

∂
∂ξ
J11

∂u
∂a

+ J11
∂
∂ξ

∂u
∂a

+ ∂
∂ξ
J12

∂u
∂θ

+ J12
∂
∂ξ

∂u
∂θ

= ∂
∂ξ
J11

∂u
∂a

+ ∂
∂ξ
J12

∂u
∂θ

+ J11(
∂
∂a

∂u
∂a

∂a
∂ξ

+ ∂
∂θ

∂u
∂a

∂θ
∂ξ
) + J12(

∂
∂a

∂u
∂θ

∂a
∂ξ

+ ∂
∂θ

∂u
∂θ

∂θ
∂ξ
)

= ∂
∂ξ
J11

∂u
∂a

+ ∂
∂ξ
J12

∂u
∂θ

+ J2
11

∂2u
∂a2 + J11J12

∂2u
∂θ∂a

+ J12J11
∂2u
∂a∂θ

+ J2
12

∂2u
∂θ2

∂2u
∂ξ∂η

= ∂
∂η

(∂u
∂a
J11 +

∂u
∂θ
J12) =

∂
∂η
J11

∂u
∂a

+ J11
∂
∂η

∂u
∂a

+ ∂
∂η
J12

∂u
∂θ

+ J12
∂
∂η

∂u
∂θ

= ∂
∂η
J11

∂u
∂a

+ ∂
∂η
J12

∂u
∂θ

+ J11(
∂
∂a

∂u
∂a

∂a
∂η

+ ∂
∂θ

∂u
∂a

∂θ
∂η

) + J12(
∂
∂a

∂u
∂θ

∂a
∂η

+ ∂
∂θ

∂u
∂θ

∂θ
∂η

)

= ∂
∂η
J11

∂u
∂a

+ ∂
∂η
J12

∂u
∂θ

+ J11J21
∂2u
∂a2 + J11J22

∂2u
∂a∂θ

+ J12J21
∂2u
∂θ∂a

+ J12J22
∂2u
∂θ2

∂2u
∂η∂ξ

= ∂
∂ξ
(∂u
∂a
J21 +

∂u
∂θ
J22) =

∂
∂ξ
J21

∂u
∂a

+ J21
∂
∂ξ

∂u
∂a

+ ∂
∂ξ
J22

∂u
∂θ

+ J22
∂
∂ξ

∂u
∂θ

= ∂
∂ξ
J21

∂u
∂a

+ ∂
∂ξ
J22

∂u
∂θ

+ J21(
∂
∂a

∂u
∂a

∂a
∂ξ

+ ∂
∂θ

∂u
∂a

∂θ
∂ξ
) + J22(

∂
∂a

∂u
∂θ

∂a
∂ξ

+ ∂
∂θ

∂u
∂θ

∂θ
∂ξ
)

= ∂
∂ξ
J21

∂u
∂a

+ ∂
∂ξ
J22

∂u
∂θ

+ J21J11
∂2u
∂a2 + J21J12

∂2u
∂a∂θ

+ J22J11
∂2u
∂θ∂a

+ J22J12
∂2u
∂θ2

∂2u
∂η2 = ∂

∂η
(∂u
∂a
J21 +

∂u
∂θ
J22) =

∂
∂η
J21

∂u
∂a

+ J21
∂
∂η

∂u
∂a

+ ∂
∂η
J22

∂u
∂θ

+ J22
∂
∂η

∂u
∂θ

= ∂
∂η
J21

∂u
∂a

+ ∂
∂η
J22

∂u
∂θ

+ J21(
∂
∂a

∂u
∂a

∂a
∂η

+ ∂
∂θ

∂u
∂a

∂θ
∂η

) + J22(
∂
∂a

∂u
∂θ

∂a
∂η

+ ∂
∂θ

∂u
∂θ

∂θ
∂η

)

= ∂
∂η
J21

∂u
∂a

+ ∂
∂η
J22

∂u
∂θ

+ J2
21

∂2u
∂a2 + J21J22

∂2u
∂a∂θ

+ J22J21
∂2u
∂θ∂a

+ J2
22

∂2u
∂θ2

(35)

Thus on each triangle

U(ξ) = TU(x), T =





T1
T2

T3





T

mij = T T · m̄ij · T

srrij = T T · ¯srrij · T , srzij = T T · ¯srzij · T , szzij = T T · ¯szzij · T

srij = T T · s̄rij · T , szij = T T · s̄zij · T

6.4 Find Derivatives

Given a function f , we find derivatives in real space ∂f
∂a

and ∂f
∂θ

using the fact

∂f

∂a
=
∂f

∂a

13

Multipying it with base function Ni on both side of the above equaiton and integrating it over each
triangle element ∫ ∫

∂f

∂a
Nidσ =

∫ ∫
∂f

∂a
Nidσ

i.e., ∫ ∫
∂f

∂a
NiJ dadθ =

∫ ∫
∂f

∂a
NiJ dadθ,

in flux coordinate, we have
∫ ∫

∑

j

(
∂f

∂a

)

j

NjNiJ Jdξdη =

∫ ∫
∑

j

fj
∂Nj

∂a
NiJ Jdξdη (36)

where

f =
∑

j

fjNj ,
∂f

∂a
=
∑

j

(
∂f

∂a

)

j

Nj

The derivative ∂f
∂a

is found by solving the linear system

∑

j

Jjmij

(
∂f

∂a

)

j

=
∑

j

Jjsrijfj

with the use of mij and srij matrices. The other way to compute the rhs vector of eq (36) makes use of
operator Pijk

∫ ∫ ∑

j fj
∂Nj

∂a
NiJ Jdξdη =

∑

j fj
∫ ∫

1
J

∑

k EjkθkNiJ dadθ

=
∑

j fj
∑

k θk
∫ ∫

1
J
EjkNiJ Jdaξdη

=
∑

j

∑

k fjθkPijkJ

(37)

In the same way, we can find its θ derivative by solving the linear system
∫ ∫

∑

j

(
∂f

∂θ

)

j

NjNiJ Jdξdη =

∫ ∫
∑

j

fj
∂Nj

∂θ
NiJ Jdξdη (38)

i.e.,
∑

j

Jjmij

(
∂f

∂θ

)

j

=
∑

j

Jjszijfj

or compute the rhs vetor using Pijk

∫ ∫ ∑

j fj
∂Nj

∂θ
NiJ Jdξdη = −

∑

j fj
∫ ∫

1
J

∑

k EjkakNiJ dadθ

= −
∑

j fj
∑

k ak
∫ ∫

1
J
EjkNiJ Jdaξη

= −
∑

j

∑

k fjakPijkJ

(39)

The computing of (37) and (39) are implemented in subroutine finddxdadxdt. If you just need (37) call
subroutine finddxda; If you just need (39) call subroutine finddxdadxdt.

6.5 Boundary Conditon

The solution domain is bounded by two magnetic flux surfaces. One is the innermost flux surface a = a0
and the other one is the outermost flux surface a = a1. Dirichlet boundary condition and Neumann
boundary condition can be specified on either one of these two surfaces. We use a set of array to store
the index of the grid points which sit on boudnaries.

The Dirichlet boundary condition can be imposed by zeroing the row of the matrix with indices on
the boundaries and then set their diagonal entries to 1. The rhs vector will be changed acoordingly by
setting those elements to the real solution. Here is a simple example. Assumping there are 5 grid points
and they are numbered as 1, 2, 3, 4, 5. The linear system is given as









a1 a2 a3 a4 a5
b1 b2 b3 b4 b5
c1 c2 c3 c4 c5
d1 d2 d3 d4 d5
e1 e2 e3 e4 e5

















x1
x2
x3
x4
x5









=









b1
b2
b3
b4
b5









14

Suppose the boundary points are at 2 and 5, and the Dirichlet bounnday condition is given on these
points, i.e.

x2 = v1
x5 = v2

Then the matrix and rhs are modified in the following way









a1 a2 a3 a4 a5
1

c1 c2 c3 c4 c5
d1 d2 d3 d4 d5

1

















x1
x2
x3
x4
x5









=









b1
v2
b3
v4
b5









By solving the above linear system, we immediately get x2 = v1 and x5 = v2. This is unsymmetrical
zeroing. We can do symmetric zeroing to keep the modified matrix symmetrical so that better linear
solver can be applied. It can be explained by continuing zero the corresponding columns, i.e., column 2
and 5, of the row-zeroing modified matrix









a1 a2− a2 a3 a4 a5− a5
1

c1 c2− c2 c3 c4 c5− c5
d1 d2− d2 d3 d4 d5− d5

1

















x1
x2
x3
x4
x5









=









b1− a2v1− a5v2
v2
b3− c2v1− c5v2
v4− d2v1− d5v2
b5









i.e.,








a1 a3 a4
1

c1 c3 c4
d1 d3 d4

1

















x1
x2
x3
x4
x5









=









b1− a2v1− a5v2
v2
b3− c2v1− c5v2
v4− d2v1− d5v2
b5









Note that the rhs vector b was modified acoordingly.
If Neumann boundary condition is imposed, the correction is much more complicated. We need to start
from the variational form

∫ ∫

Ni∇⊥ · gs∇⊥ΦJ dadθ =

∫

J gsNin ·∇⊥Φdl −

∫ ∫

∇⊥(JNi) · gs∇⊥Φdadθ

Suppose on the boundary we have
n ·∇⊥Φ = γ(a, θ)

n is the boundary normal directon pointing away from the solution domain. In the current version of
GTS, this directon is equivalent to ∇a. Thus,

∇a ·∇Φ = γ(a, θ)

Using the previous expression for ∇Φ, it becomes

∇a · (
∂Φ

∂a
∇a+

∂Φ

∂θ
∇θ) = γ(a, θ)

i.e.,

gaa
∂Φ

∂a
+ gaθ

∂Φ

∂θ
= γ(a, θ)

Therefore
∫
J gsNin ·∇⊥dl

=
∫
J gsNi(g

aa ∂Φ
∂a

+ gaθ ∂Φ
∂θ

)dl
=
∫

e1
J gsNi(g

aa ∂Φ
∂a

+ gaθ ∂Φ
∂θ

)dl +
∫

e2
J gsNi(g

aa ∂Φ
∂a

+ gaθ ∂Φ
∂θ

)dl +
∫

e3
J gsNi(g

aa ∂Φ
∂a

+ gaθ ∂Φ
∂θ

)dl

≡ I1 + I2 + I3
=
∫
J gsNiγ(a, θ)dl

15

where I1, I2, and I3 are the linear integral along one of the 3 edges of each triangle, respectively. For
simplicity, we use the C0 linear elements Ni.

(1) if the boundary falls on edge 1,

N1 = 1− ξ

N2 = ξ

N3 = 0
a =

∑

i aiNi = a1(1− ξ) + a2ξ = a1 + ā21ξ

θ =
∑

i θiNi = θ1(1− ξ) + θ2ξ = θ1 + θ̄21ξ

dl2 = da2 + dθ2 = ā221dξ
2 + θ̄221dξ

2 = (ā221 + θ̄221)dξ
2 = l221dξ

2

The following terms are used to modify the right hand side

rhs(v1) = rhs(v1)−
∫ 1

0
N1(ξ, 0)J gsγl21dξ

= rhs(v1)−
∫ 1

0
(1− ξ)J gsγl21dξ

≃ rhs(v1)−
1
2J gsγl21

rhs(v2) = rhs(v2)−
∫ 1

0
N2(ξ, 0)J gsγl21dξ

= rhs(v2)−
∫ 1

0
(ξ)J gsγl21dξ

≃ rhs(v2)−
1
2J gsγl21

rhs(v3) = rhs(v3)−
∫ 1

0
N3(ξ, 0)J gsγl21dξ

= rhs(v3)−
∫ 1

0
(0)J gsγl21dξ

= rhs(v3)

(2) if the boundary falls on edge 2,

N1 = 1− ξ − η = 0
N1 = 1− η

N2 = η

a =
∑

i aiNi = a2(1− η) + a3η = a2 + ā32ξ

θ =
∑

i θiNi = θ2(1− η) + θ3η = θ2 + θ̄32ξ

dl2 = da2 + dθ2 = ā232dη
2 + θ̄232dη

2 = (ā232 + θ̄232)dη
2 = l232dη

2

The following terms are used to modify the right hand side

rhs(v1) = rhs(v1)−
∫ 1

0
N1(ξ, η)J gsγl32dη

= rhs(v1)−
∫ 1

0
(0)J gsγl32dη

= rhs(v1)

rhs(v2) = rhs(v2)−
∫ 1

0
N2(ξ, η)J gsγl32dη

= rhs(v2)−
∫ 1

0
(1− η)J gsγl32dη

≃ rhs(v2)−
1
2J gsγl32

rhs(v3) = rhs(v3)−
∫ 1

0
N3(ξ, η)J gsγl32dη

= rhs(v3)−
∫ 1

0
(η)J gsγl32dη

≃ rhs(v3)−
1
2J gsγl32

(3) if the boundary falls on edge 3,

N1 = 1− η

N2 = 0
N3 = ηa =

∑

i aiNi = a1(1− η) + a3η = a1 + ā13η

θ =
∑

i θiNi = θ1(1− η) + θ3η = θ1 + θ̄31η

dl2 = da2 + dθ2 = ā213dξ
2 + θ̄213dη

2 = (ā213 + θ̄213)dη
2 = l213dη

2

16

The following terms are used to modify the right hand side

rhs(v1) = rhs(v1)−
∫ 1

0
N1(0, η)J gsγ(−l13)dη

= rhs(v1)−
∫ 1

0
(1− η)J gsγ(−l13)dη

≃ rhs(v1)−
1
2J gsγ(−l13)

rhs(v2) = rhs(v2)−
∫ 1

0
N2(0, η)J gsγ(−l13)dη

= rhs(v2)−
∫ 1

0
(0)J gsγ(−l13)dη

= rhs(v2)

rhs(v3) = rhs(v3)−
∫ 1

0
N3(0, η)J gsγ(−l13)dη

= rhs(v3)−
∫ 1

0
(η)J gsγ(−l13)dη

≃ rhs(v3)−
1
2J gsγ(−l13)

These are implemented in subroutine neumbcfix.

6.6 Numerical Difficulty: periodic domain

The numerical difficulty comes from the 2π peroidicity in θ direction when numerical integration is
performed. The value of 2π must be subtracted from θ whenever the elements has one or two nodes
crossing the θ = 0, 2π line. This is implemented in subroutine fixtheta.

17

Bibliography

[1] W. X. Wang et al, Gyro-kinetic silumation of global turbulent transport properties in tokamak experi-
ments, Physcs of Plasma, vol 13, 2006

[2] W. D. D’haeseleer, Flux coordinates and magnetic field structure, 1991.

[3] G. E. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for CFD, 1999.

18

1 Flux Coordiante Basics

We review some important facts here about curved coordiante system that will be needed in the the
derivation of pde equations and in the implementation of finite elements in the flux coordiantes. We list
them here so we will not mention them when we use these facts.

As a start, we introduce the coordinate surface ui = const. ∇ui is perpendicular to the ith surface.
i = 1, 2, 3.

The coordinate curve ui is defined by the intersection of 2 surfaces uj = const, uk = const. On this
curve, duj = duk = 0, j 6= k, j 6= i, k 6= i.

R = R(u1, u2, u3), ei = ∇ui, ei =
∂R

∂ui
ei · ei = δij

ei =
ej × ek

ei · ej × ek
=

1

J
ej × ek

ei =
R

ui
=

ej × ek

ei · ej × ek
= J ej × ek

Di = D · ei, D
j = D · ej ,D =

∑

i

Die
i =

∑

j

Djej

dui are contravariants. ∇Φ is a covariant vector:

∇Φ =
∂Φ

∂ui
∇ui =

∂Φ

∂ui
ei

1). gradient

∇Φ = ∇ui
∂Φ

∂ui
=
∂Φ

∂ui
ei

2). divergence

∇ ·D =
1

J

∂

∂ui

(
JDi

)
=

1

J

∂

∂ui

(
JD · ei

)
=

1

J

∂

∂ui

(
JDje

j · ei
)
=

1

J

∂

∂ui

(
JDjg

ji
)

3). laplacian

∆D =
1

J

∂

∂ui
(J∇D) =

1

J

∂

∂ui

(
J∇D · ei

)
=

1

J

∂

∂ui

(

J
∂D

∂uj
ej · ei

)

=
1

J

∂

∂ui

(

J
∂D

∂uj
gji
)

4). Jacobian

J =
∂Φ

∂u1
·
∂Φ

∂u2
×
∂Φ

∂u3

5). metrics
gaa = ∇a ·∇a, gaθ = ∇a ·∇θ, gθθ = ∇θ ·∇θ,

6). the differential arc length

dl(along uj) ≡ dl(i) = ‖dR‖ =
√

dR(i) · dR(i)

while

dR(i) =
R

u1
du1 +

R

u2
du2 +

R

u3
du3 = eidu

i = J ‖∇uj ×∇uj‖dui

7). the differential area element

dS(in ui ≡ const) ≡ dS(i)
= ‖dR(j)×R(k)‖

= ‖∂R
∂uj × ∂R

∂uk ‖du
jduk

= ‖ej × ek‖du
jduk

= J ‖ei‖dujduk

= J ‖∇ui‖dujduk

19

2 Numerical integration

The basic problem considered by numerical integration is to compute a definite integral

∫

u(ξ)dξ (40)

There are many methods of approximating the integral with arbitrary precision. A method which yields
a small error for a small number of evaluations is usually considered superior. Gauss Quadrature is one
of such algorithms.

The integrand is evaluated at a finite set of points called integration points and a weighted sum of
these values is used to approximate the integral. The integration points and weights depend on the
specific method used and the accuracy required from the approximation.

In Gauss quadrature technique, the integrand is represented as a Lagrange polynomial using Q points
ξi

u(ξ) =

Q−1
∑

i=0

u(ξi)hi(ξ) + ǫ(u)

If we substitute it into the integral (40), we obtain a representation of the integral as a summation

∫

u(ξ)dξ =

Q−1
∑

i=0

wiu(ξi) +R(u)

where
wi =

∫ 1

−1
hi(ξ)dξ

R(u) =
∫ 1

−1
ǫ(u)dξ

Since u(ξ) is represented by a polynomial of order Q− 1, we would expect the above relation to be exact
if u(ξ) is a polynomial of order Q − 1 or less. This would be true if the points are equispaced in the
interval. There is, however, a better choice of abscissae which permits exact integration of polynomials
of higher order than Q− 1.

If we ensure that the quadrature formula is exact for polynomials of order k at least, then the formula
is also exact for the next (k − 1) order of polynomials.

20

