GTS User Manual For Finite Element Solver

gts team
Princeton Plasma Physics Lab
P.O. Box 451, Princeton, NJ 08543

May 9, 2014

Contents

1 First Of All: How To Get The Code 1
2 Second Of All: How To Run The Code 2
3 GTS Mesh Grids and Safety Factor 3
4 Poisson Equation and new_gk_solver oo 4
5 Poisson Equation and new_fem_solver 6
6 Finite Elements Method 7
6.1 CO linear elements 9

6.2 C% 2nd order elements 11

6.3 C' 5th order elements 11

6.4 Find Derivatives e e e e e e e e e e e 13

6.5 Boundary Conditon L 14

6.6 Numerical Difficulty: periodic domain 17
Appendices 19
1 Flux Coordiante Basics 19
2 Numerical integration L 20

1 First Of All: How To Get The Code

GTS is under version control at
svn+ssh://svnsrv.pppl.gov/svn/gts
If you do
1) module load subverison
on portal, you can check what are there using command
2) svn list -R svn+ssh://svnsrv.pppl.gov/svn/gts
As a start, you need to check out a working copy for yourself using command
3) svn co svn+ssh://svnsrv.pppl.gov/svn/gts/trunk/GTS
To check your working copy status, go to GT'S directory and do
4) svn status -u
To check who did commits, go to GT'S directory and do
5) svn log
To check the difference of your working copy against the distribution, do
6) svn diff

To update your working copy with newest changes in the distribution, go to GT'S directory and do

7) svn update

To commit your changes into the distribution, the easiest way is to go to the parent directory of GT'S
and do

8) svn ci GTS -m "your message"

Note: before you commit, you must do ”"svn update” after you committed, you must do ”svn update”
again to avoid any future conflicts. To add a new file or directory under GTS dir into svn, go to GTS dir
and do

9) svn update
svn add filename/dirname
svn ci GTS -m "your message
svn update

2 Second Of All: How To Run The Code

GTS runs on hopper and edison at NERSC. The finite element solver starts from input parameter
order

given in the input file with default name
INPUT.d

It sets the order of finite elements to be used throughout the run:

order = 0 original new_gk_solver solver \\
order = 1 linear finite element \\
order = 2 2nd order finite element \\

and is save as
solverobjectjorder=order
where the solverobject can be either solverl, solver_dphi_dt, or masssolver defined in
main.F90
There is another variable declared in the solverobject
solverobject)fem,oder
which is set to
solverl),fem},oder=order

as well for solverl and solver_dphi_dt when boundary condition will be imposed for poisson equation in
subroutine

petsc_solve

If the solverobject is masssolver, called to find the partial derivative along the coordinate directions a
and/or 6 where (a,6) is the flux coordinates used in GTS, then we set

masssolveroder=0
which means masssolver doesn’t need a boundary condition to proceed in subroutine

petsc_solve

Each solverobject has its own set of mesh and elements so that different order of elements can be used
to improve efficiency. If order is set to 1 or greater, then the solverobject is created through calling

new_fem_solver
Otherwise,
new_gk_solver

is to be called as the default solver. In new_fem_solver, first a triangular mesh is generated through
utility triangle, then finite elements are created on this mesh, and finally the type of matrix and boundary
condition are applied to modify the stiffness matrices. The code returns the successfully created solver
contents if no error has been encountered. The solverobject can be used to solve the fem resulted linear
systems stored in

solverobjectksp

The rhs is modified according to section 6.5 in subroutine
petsc_solve

depending on the type of boundary condition, which is the second one must-be-set parameter. From
INPUT.d

the boundary is given by

a0 : a_min is the flux surface closest to magnetic axis
al : a_max, the outmost flux surface

which set the following 4 type of boundary conditons

bc_type = O neumann boundary conditions at both a=a0 and a=al

bc_type = 1 dirichlet boundary condition at a=aOl,

neumann boundary conditions at a=al
bc_type = 2 dirichlet boundary conditions at both a=a0 and a=al
bc_type = 3 neumann boundary condition at a=a0,

dirichlet boundary conditions at a=al

and bc_type is passed as an argument to new_fem_ solver. In the case of solver_dphi_dt is solved, only
homogeneous Dirichlet boundary conditions will be imposed on boundaries at ¢ = a0 and a = al.

The third important parameter is mat_type passed to new_fem_solver in the same way as that bc_type
is argumented. But we don’t use it in the current version of finite element solver. It is reserved for future
use.

3 GTS Mesh Grids and Safety Factor

GTS mesh setup has been described in reference [1]. Here we only record the part important to understand
finite element mesh. The GTS mesh is constructed using modified safety factor ¢(a), which is used
everywhere in the code. In the magnetic flux coordinates (a,6,(), the field lines are straight and the

radial coordinate labels magnetic surface
o=/ Y
Ve

where ¢ and v, are the toroidal flux and its value on the plasma boundary, repectively. Therefore,

ad<a<al, 0<al<al <1

a0 and al are input parameters explained in section (2).
In the poloidal direction, the total number of radial grids, each one representing one flux surface, is
given by the global parameter

mpsi

in
INPUT.d

and the 0 grid with grid size Af(a) is computed and saved in array
mtheta(0:mpsi)

which is uniform on each flux surface, while varying from surface to surface. It is determined so as to
make poloidal arc length Alp near the midplane correlated with p; in the loop

do i=0,mpsi
tdum= ...

mtheta(i)= ... tdum ...
enddo

in code
setup_v2.F90

and the total number of grid on each poloidal plane is evaluated and saved in parameter
mgrid=sum(mtheta+1)

Note that the mesh points are doubly counted when 6 = 27 meets 6§ = 0 in mgrid caused by polidal 27
periodicity. By excluding this repeated redundancy, the total number of grids in each poloidal plane is
computed by

neg=sum(mtheta)

where [1 : mtheta(0)] corresponds to boundary at a = a0, and [neq — mtheta(mpsi — 1) + 1 : neq] corre-
sponds to boundary at a = al.

Once the 2D mesh was constructed on the ¢ = 0 plane, a 3D mesh is constructed by starting from a
grid point, following each (approximate) field line which satisfies

d(a)d — ¢ = const

d(a) is slightly different from the usual safety factor ¢(a) and makes approximate come back to one of
the grid points on the (= 0 plane.
The number of toroidal grids, i.e., the number of poloidal planes,

mzetamax

is chosen as input parameter to give adequate resolution for the parallel structure of the modes.

4 Poisson Equation and new_gk solver

new_gk_solver uses four-point averaging scheme to solve GK poisson eq.
Generally, with distribution function defined as a 7D function f(x, v,t) of real space x, velocity space
v, and time ¢, the density can be given as a 3D function of real space x

n(x,t) = /f(x7v,t)d31) (1)
Similarly, we can defined the perturbed ion density and electron density

oni(x,t) = [fi(x,v,t)d>v 5
one(x,t) = [fe(x,v,t)d>v (2)

in real space. The quasi-neutrality becomes
dni(x,t) = one(x,t)

But in gyro-kinetic studies, the distribution function is defined at guiding center R, as a 6D function
foe(R, p,v),t) of guiding center position R, magnetic moment p, the parallel velocity v, and time t.
Thus, the transformation between the particle position x and the guiding center position R should be
applied.

Briefly, we have the guiding center density

ngc(Ra t) = /fgc(RvﬂaVHvt)jdude

the potential ¢
- 1
B(Rop) = 5 [9x)5(0x ~ R~ plaxie

¢(x) = % /iﬁ(R, 1) foi (R, 1, v))6(R — x + p)dRdpdv d©

the ion density dn;
1

the electron density dn.

1 1
one(x) = o /5fe(R, v)0 (R — x + p)dRdpdvd© = o /5fe(x,u,v‘|)dudv|‘

where p is the gyro-radius vector, © is the gyro-phase, foy; is assumed to be Maxwellian for ions, and d f;
is the perturbed ion distribution function. Using

oni(x, 1) = 0ni(x, t) + SnPoloTEHON — 5 (x) — no%(qb —9)

and the quasi-neutrality condition, we obtain the most used poission equation

gy D) o) ®)

'3
T; ng ng

Instead of solving total potential, one may solve for the turbulence contribution §¢ and zonal flow
contribution (¢) given by

6 =¢—(9)

The equation for d¢ is derived by taking flux surface average of the total potential equation (3) and
subtracting this average from (3)

_ on; — <5’FLZ> B one — <5ne> <4)

no no

q; 7
ﬁ_(éé —49)

An alternate method to solve for electorns is the so called §h method. In summary, one way is to
solve the total potential.

T\ a g~ on; onl g
(”n) 0 T w1 (5)

and the other way is to solve equation for the turbulence potential

(E>@5¢_m5$:5ﬁi—<5ﬁi> _ ong — (ong)

1+ — 6
+ Te TZ TZ no 1o ()

5 Poisson Equation and new_fem solver

new _fem _solver uses finite elements to solve partial differential GK equation.
Instead of solving integral equation, we can derive and solve the elliptic pde for the total potential ¢.
From the total potential eq (3), we obtain

More generally, the following GK poisson equation is implemented in the code

a® + BV, - <Z gSV@) =b (8)

where

€o mg

@) = (&) (52) 22000 =~y 0n(0) = oo (2) (32)
— 0nis (Mo ong? e) (me) (2 _ $2Tdedo

b_ ZS Nso (neo) - Neo + (g) (m76> Tie, <(I)> - f._’]dg;fie

ong® is the non-adiabatic electron fluctuation density

s specifies the ion species. From now on we assume single ion specie s = 1 for simplicity. In flux coordinate
(a,0,¢), the second term in eq (8) becomes

Vi-(9sVL®)
V (gsVJ_(I)) (9)
J 3a [JgsV 1@ - Va] + %% [TgsV 1D VO] + %% [JgsV 1P - Vo)

where J represents the flux coordinate Jacobian [Va x V8 - Vgo]_l. Please refer the Appendix for a
summary of formulae in curved coordinate systems. The first term in (9) can be written as

V.3 Va= [ch— (B-Vcb)é] - Va
V- Va (10)
= (BVa+ Vo) - Va=52gm + 52 g0

1

in an axis-symmetry system. Similarly, the second term in (9) can be written as

V.6 Vl= [v<1> — (- vq>)6} Vo
~ Vo (11)
— (V + 0P VG) Vo = 8<I>ga9 4 %3999

2

and the third term in (9) becomes

LTV V= 0.2 1V.8 Vel =02 [Ve - (- V)] - vy

O
9.5 (V8 Vel =0 Vel | =0l VP gE)

R

— 2.9 100 _ _ g 2.0 9%
= 9s|Vep *[_QW *—*|V‘P g 00

= |V§0|2 892 = %gggsw

Subtituting (10) (11) (12) into (8), the partial differential equation to be solved becomes

USS
2
8|5 T 0 (5™ + 550) + 5 4T 0 (320 + 550™) + % ke (13)
=0

Here g, g%, g% represent the coordinate metrics.
If we decompose ® into 2 parts
b = (D) + 6P

Similarly to eq (8) the equation for §® will be
d(P)
adéd + [V - E gsV 100 =b—pV, - g QSWVG (14)

with an additional term on the rhs. This addtional term can be extended as follows

BV, Y, 0. %0V = -84+ 5 Tgs 4 da 'va. Va) -B%% (jgb nAE Va)
=875 T9% da) B3 (jgs da a0)
Thus eq (14) has a similar form as eq (13) with above additional writing on the right hand side.

solver _dphi_dt solves the following eq, which is similar to eq (8). The only differences come from
setting o = 0, the unknows ’% to be solved, and rhs vector b.

o Z; 00n; 1 (%n}; 0 [edd
Bla)V . - ngvl‘at_b7 b_;neo ot _neo ot _&(Te) (15)

The only boundary condition is Dirichlet type 2 8t =0at a =a0 and a = al.

6 Finite Elements Method
Finite elements are built upon the reference triangle:
(£1(0,0),£2(1,0),£3(0,1))
which is mapped from real triangle:
(x1(al, 01),x2(a2,02),x23(a3,03))

using transformation Jacobian J

da 90
SE e Oa 00 Oa 00
J=| g g |29 a9 16
‘gn % |=9gan oy (19
from real space x(a, 8) to reference space £(£,)
§=z==x()
The reverse transformation J—! is written as
L 98 on
J = ’ 22 8 ' (17)
90 90

from reference space &€(€,n) to real space x(a,)
z— & =§(2)

Three types of elements are available in the current version of GTS and are represented by N; for the ith
base function.

First we introuduce the variational formulation by multiplying quation (13) with base function N;(i =
1,2,---) on its both side, integrating over each triangle, and then assembling them together

af [ONdo + B[[]
+ ,Bff[
+ BIS|

— [[bNdo, i=1,2,-

T s (529" + 559)] Nido
. (3400 + 88 50Y] Nido
g‘p‘P} N;do

%%\wm\w

%\f’ Q=S)=

po—

do is the 2D differential area in real space. Using the approximated variable ® and rhs vector b
=) "®;N;, b= bN,
J J

the first term in the eq (18) is converted to

af [®N;do affZ@NdeadG
:a§ (ffNdeadH) (19)
=« Tim;;®;

Similarly, we have for the right-hand-side b term

fbeldO’ = fij ijlejdadH
=5, (J'f N;NiJ dad6) b (20)
=25 Jjmijb;

Where J is the flux coordiante Jacobian evaluated at node j and m,; is the mass matrix relted to IV;
and N;. Taking partial integration, the 2nd term on the left of eq (18) becomes

B[%2 [Tgs (529 + 52g%)] Nido+
gfff% [Jg (8a a6+3¢’ 69)]N,;d0+

B[|%5529%| Nido

=ﬁff§% [T 9 (aag““+ 9°%)] N T dadb+
Bfffaa (T gs (82990 + 22 o 99)} N, J dad6+

—5ff3%ﬂ79 %—jfg +g %) dadf
_Bff 307\7 s %g 899)dad9
B[] (J %5 “"Nl) 92 jadp
~ =B [[(Tg:9°") G %2dadd — B [[(Tgs9")6N 2 Jadf (21)

8 T (T0.0") B Boaads — 5[[(Tgu0") 5458 daas
B [(7%9°7) BBk dads
= =B, ®; [[(Tgs9°) G Fidadd — BY; @, [[(Tg)mg'amd df
B ®; [[(T9:9") Sy Gtdadd — B, @5 [[(T959") Syt St dadd
—BZ@)‘ff(jgigW) 36% 35\(;365 4o
= B30 (Tgsg") iy 5175 = B35 (T g)jSTZijq’j
_BZ («7999) szri; P /BZ ()jszzijq)j
-B>; (*7%9“0“0% SZZH(I)J

I(;Iffre gz“vr”, srzij7 szryj, and szz;; are the stiffness matrices corresponding to operators 86121', 85;71', and
a0 -
> fadimi;
—B(Tgs9*);; 57735 — 2B (T 959) ;7215 — B (T 959°°) ; 52235 o)

_ﬁ (jg%gww)lj Szzm}q)j
= ijjmijbj, i:1,2,--~

A similar form for equation (14) in section 5 can be given easily. First the additional term on the rhs is

bS5 (Jgs U0 g0 Ndor — B [5 (jgs 1) 20) N,
=B [58 (T9u920 8) NiTdadt — B [[355 (79,95) NiTdado
~ B3, ff(Jgsg“‘M),M]Nd o -, [[(Jgsg’w"“l>)j INi Nydadf

[_ =B 87 (Jgsg‘m a)j — B2 5% (jgsgae w >J

= 5, (800" 5G2) S 5 Sh EnbeNT Tden + T (~Bong™ “52) [[(=) Sy EaxNod Tdedn
-5, (- ﬁgsgwd@) S0k f | EgNiTdgdn + 5, (- ﬁgsg“”@”) Sy f | EpNiJdédn

=3 [(Bgsgaadm)j (Bgsgaed <I>>) } >or Ok — ak) Pjk(i, 4, k)

where sr;; and sz;; are the partial stiffness matrices corresponding to operators aaj\; LN, and aNJ N;,
repspectively. The part given in square parentheses is the first option to evaluate this second term each
time the solver is called. The second option follows right away and can be understood by referring section
(6.4). The code can be found in subroutine add,h2bb. Thus we have the second type of linear systems
to be solved

> {adimy;
—B(Tgsg*); 57735 — 28 (T 959°°) ;7215 — B (T 959°) ; 82235

-8 (jgs g‘f"‘fo)i 522} P;

(23)

(= >;AmeTjb; — Bsryj (jgsgaa (P >] — Bz (jgsgaed@))j}]

= 2 AmiJib; — {(ﬂgsg““dfi?)j (Bgsg? L2)]Zk(— ax) Py (i, j, k) }

6.1 (Y linear elements

This set of simplest elements is built upon the three nodes of reference triangle and has continuity across
the element edges:

Ni=1-¢—1
Ny =¢ (24)
N3 =n

variable u(x) to be found in real space can be represent by
=> Ny (25)
J

where u; is the variable u(x) evaluated at triangle node j. With iso-parameter mapping from real triangle
to reference triangle, the coordinates can be written as

a=>.N;a;
g I

=3, Nb; (26)

Here j refers to the jth node of each triangle. Obvisously, the first order derivative of the base functions

are found to be

aévl -1 % =1
3552 =1 # =0 (27)
oNy _ oth
o€ on

So the Jacobian can be easily computed as
AN, AN, AN, ON;
J Za”b Z]GJT#_Zz l(’)nz 9] 8§J
AN; ON; ON,; ON;
—Zizg‘alj(ag anj on 8&)
=2 2.;wib;Eij

The inverse Jacobian J~! is computed below. We start from the following fact

v e e | a Lo
s (R RV E B[00
an 00

SESS

which gives the following two linear sysems. The first one is

o [1
T J—
i l-]] }
L 9y | L
and the second one is _)
gu [0
J Fol =
3 1
Their solution gives us the four entries in the inverse Jacobian J
o0]

98 _ 1 5} _ 1098
da — J 0 20 - Jon
- an -
da 9
98 _ 1| o¢ — _10a
90 — J | Qa g | T Joyg
- dn -

o 9
on _ 1 0 —_ _100
da — J | 1 90 | T T Jog
= 877 -

da
on _ 1|2 01 _10a
99 — J | 0a 1 | T ToE
L 9On]

Thus the differentition of base functions in real space x(a,) can be obtained in the following way.

ON, _ ON; 6£+8N on _ ON; 1 0 _|_ (_7)86 l(aN-@_aNi@)_lE. 0.
da ~— 0& Oa dn da — 9E Jony 87] o0& — J\ 9¢ In on & »J
8Ni _ 8Ni @ + aNi @ _ 8N1(l) + BN 1 da _ 1 (aN da gNl @

00 — 0¢ 060 on 00 — 9& J/on on JOE — T\ 9E on on o€

Introducing nw GLL points and weights w(nw) on these points, all the elemental matrices on each triangle

can be written using numerical integration:

1
—5Eija;

//NNdadé)-//NN dedn—niw]\f N;(n)J(n)w(n)

sTTi = //3N ade do = //aN aNdegd Z aajzi(n)%

n=1

(n)J(n)w(n)

ON; aNJ ON; ON; "V ON;, ON;
srzw—// 5a dadf = // 5a Wdedn— 7; 9a L(n)—2L 50 L () J(n)w(n)

o ON; ON, ON; N, " ON;, 0N,
52 ’// 90 g9 2010 = // a0 o9 e ;_1 o9 Mg (W (mw(n)

STy = //N L dadh = //N Jdedn— nin (n)J(n)w(n)

52i5 = //N - dadf = //N Jd{dn—nzan 8(;?; (n)

10

6.2 (Y 2nd order elements

This set of elements is built upon the linear elements given in the last section on 6 nodes (3 nodes and 3
edge nodes) of each triangle. All the formation of operators and matrices for the 2nd order elements are
exactly the same as section in 6.1. So we’ll just give the base functions and the corresponding first order
derivatives in the reference space here.

N =—A(1—2))

Ny =4XE

N3 = —=¢(1-2)

Ny = 4én (28)
N5 = —n(1 —2n)

Ng = 477)\

where A =1 — £ —n is the Ny, £ is the Ny, and 7 is the N3 base functions in section 6.1, respectively.
The derivative corresponding to £ and 7 are

ON; __ ON; __
a%_1—4x a%_pzu
2 =4\ =§) G2 =4

0, 9
Bfés:-1+4g s _ g

6264 — 477 @ — 45 (29)
aégs =0 %i =—1+4p
Ne— gy B —yr—y)

The iso-parameter mapping is used in tranforming from reference space to real space this set of elements.

6.3 (! 5th order elements

This set of elements is much more complicated than the two sets of elements introuduced in the previous
2 subsections. Here we have 18 base functions built upon the three nodes of each reference triangle, and

each node is related to 6 of them involving ¢, %, %, %, %, and %. These 18 base functions are

Ny = A2(10X — 152% + 673 + 30En(€ + 1))
No = EX2(3 — 2\ — 3£2 4 6¢&n)

N3 = nA2(3 — 2\ — 3n2 4 6&n)

Ny = 3E202(1 — X +2p)

N5 = 29\

Ng = 51N (1 +2€ — 1)

N7 = €2(1067 1562 + 6£3 + 15n2))
Ny = 56%(—86714€” — 66" — 159))
Ng = 5&°(6 — 4€ — 31 — 31> + 3¢n)
Nig = 3€%(26(1 = €)% + 51%))

Ny = ?6277(—2 +26+ 0417 —EN)
Nig = 152772)\ + %53772

(30)

Niz = n%(10n — 1512 + 61> + 15£2))

Nig = %5772(6 — 3¢ —4n — 367 + 3¢n)

N5 = ?772(_877 + 147> — 61> — 1562))

Nig = %5277%\ + 38%0%)

Nip = g€’ (=24 ¢+ 20 + £ — £1)

Nig = 37%(2n(1 —1)* + 5E2X)
which preseve first order derivative continuity across the element edges. Their derivatives in the reference
space oN. N

86’ 6777 2_1727"'718

11

are simple algebra and will be omitted here. Check the code for those who are interested in. The most
important numerical issue here is coordinate mapping. Instead of using iso-parameter mapping as we
did in section 6.1 and section 6.2, we use sub-parameter mapping given by C° linear element in the

section 6.1, i.e., ~

a=)>.N;a;
Z] ~J7 (31)

0= Z N;0;

to save cost and reduce complexity. Here the base function N; represents the set of elements given in

section 6.1 and we renam as N to differentiate it from the C! elements N; given in this subsection. If

the precision needs to be 1ncreased the N; can be replaced by the second order elements in secton 6.2.

Thus the transformation Jacobian won’t change from the previous subsections, i.e.,

J= da 00 da 96

0§ on _0n o¢ _
d ON,) ON;
= Z a; Bj\g Z 0] 87; 72 a; 8]’\[] Z Qj J
_ ON; 8N __ 9N, ON;
- Z'j(_aﬁ 6n on 0¢) 9
> iy Eijaib;

Note the bar sign over the above opetator E;j. We need to differentiate the base functions in real space
x(a, 0) as we did previously:

ON; _ ON; 96 | ON;dn __ ON; 19y |, ON;(_ 1\dy _ 1,0N; ON;

da - o€ 8a+8n da — 0¢ J6n+87](J)Oﬁ_J(af Ejyj on)
= 1E”0

ON; _ 8N ag ON; Op _ ONi(1\0a , ON;109a _ _1,0N; ON; 8N; ON;

20 + oy a0 = 65(J)6n+ an J o€ J(ag ijy aon an 245 i ag)

JEU a;

Apparently, E;; here is a mixed product of derivatives of IV; and Nj, thus is different from the F;; in
sections 6.1 and 6.2. However, the mass and stiffness matrices are computed in the same way as we did
in 6.1 with 4,7 =1,--- ,18. We rename them with a bar sign over each matrix just as we did for the Eij
operator:
Mij, STTi5, STZij, SZZij, STij, SZij
Besides this, the follwoing transformation matrix is needed to convert the higher order derivative from
reference space to real space before the matrices are assembled. This is not needed in C° elements when
only ¢(x) itself is solved. If you insist to have one, then the transformation matrix in such case would
be a matrix with one entry T = [1].
First of all, a new variable U() in real space is formed as

18
.’B):ZNjUj, (32)
j=1
where 96 96 2 6 5
U@) = (owr), 5o (1), S0 (), 55 (@), (), S),
nodel
d¢ ¢ 9%¢ 9%¢ ¢
¢($2)7%($2),%(w2)a@(332)7%(932)»@(932)7 (33)
96 06 o 9 5%

B(x3), 9 - (x3), 89()’@(333)’8@80(3:3)’@(%3))z

node3

and U; is U(x) evaluated at x = (a,6) on each node. Our problem is converted to solve for U(x).
Once U(x) is solved, we not only have ¢(x) but also we have its first order derivatives and second order

12

derivatives. In the reference space U(€) has a similar form

99 99 ¢ ¢ 9*¢

U(ﬁ) = (‘25(51)7 D€ (51) (‘5) 852 (51)7 @(51) (51)
nodel
0 0%¢ 0%¢ 0%¢
P(&2), g(52) 377(52), 8752(52) dEam (Ez) (52)
node2
o, . 0¢. . . 0% 9%¢ W¢
P(&3), 8?(53)7 877(53)’ 8752(53) oean 2e9r 88) 5,2 (E)s,)
node3
From U(x) to U(&), the transformation matrix at each node ¢ is given as:
1
Jin Ji2
T — Ja1 J22
i Jh o 20udh T2
Jundor Jigdor + Ji1doo Ji2J22
J3 2J21J22 I3

It is derived in the following steps.

T TR TN
Ou _0udi Oudd _Quj | Ouj
oy ~ Ba an 06 an - 21T g /22
P
a = 7(Z)]H+ J12) 35J1188%+8J118 85 ‘2085‘71260 —ai—guaag % 5 o o6
_ u u Oa uw u Oa
- J118a+85J12 +J11(%%6*€+%%afé)—FJlQ(aig%afg‘F%a*?)
e 0 2 92
LT angl Sa T 05 9 Jia S5 + Ju aaz + Ji1J1g 2k 300 T J12d11 5,50 T Ji2 597
3353“77 = *(“ T+ 9 J12) J11 4+ Jui a%au + anJ12 56 +J1238 gu
_ “a 5 bu 0 du 90 9 ud 9 9u 00
= anJll 5a T aan 0 + Jll(%a%a*fy + %FZ%) + Jw(%a%a*% + %FZ(’T)
= —Jugg + 8n 0 J129% + J11J21 T+ Ty Jo 2l aaag + Ji2do1 2 + J12 o0 54
2u) 00
e = 7(le ¥ J° Jzz) o leaaaa +aJ218%8§ ‘geag T2 5i ;;{22895 o o u 0
p— u a U u a U
= agJQl a + agJ22 o0 +J21(5q oa 90 0¢ + 96 9a ag) + J22(54 56 29,0¢ + %%a*)
) = 65J21 S T as 8 Joo T4 + Jo1J115 o0 T+ T Jro 2l + JaoJi1 22 + JooJ12 2%
37;; = *(U oy + 94 J22) =2 J21 Ut Jo 2 0u 4 87,J22 50 T J2288,, Gu
_ 5 bu 0 %% 00 o dud du 06
= *J’A 5a T anJ22 a6 T J21(%¢‘TZ5TZ + %(jéa*n) + J22(%{TZ<‘TZ + 30 %6 1)
= anJﬂ 3?: + an']22 gg + ']21 daz T J21J22[‘)a89 + J22J21 S5 9090 + I3 293
Thus on each triangle
T T
Ue) = TU(w), T = T
T3
mij =T" -my; - T
srri; =TT - siry T, srzyy =T stz T, szzyy=T" -s72;;- T
S’f’ij = TT . 877‘2']' . T’7 SZij = TT . SiZij -T

6.4 Find Derivatives

Given a function f, we find derivatives in real space ga and

of _of
da Ba

usmg the fact

13

Multipying it with base function N; on both side of the above equaiton and integrating it over each

triangle element
of _ of
//%dea—//%]\fzda
//gNijdadez//a—fNijdadG,
da da
in flux coordinate, we have

//Z(af> NNJJdEdn—//Zf] ’NJJdgdn (36)

ie.,

where o7 of
f:ijNja aazz<3a>.NJ
j j J

The derlvatlve is found by solving the linear system

S ams (50) = S Gt

with the use of m;; and sr;; matrices. The other way to compute the rhs vector of eq (36) makes use of
operator P;ji
ON; _
SIS, 5NN g adedn =Y, fi [[LY, BN, T dado
= Zj fj Zk Qk f f %EjkNideagdn (37)
=225 2n fiOkPijeT

In the same way, we can find its 6 derivative by solving the linear system

af ON;

— | N;N;JJdédn = —LN; T JdEd 38

//;(39>jajén //%jfjae J Jdgdn (38)
ie.,
of
> Timi (89) = Tisziji
J J J

or compute the rhs vetor using Pz

[IS, o N T Jdedn =~ f [[35, Eypay Ny dadf
Z fi Dk akf [LE; N, T Jdatn (39)
= _Z Zk f]akpz]kj

The computing of (37) and (39) are implemented in subroutine findgzxdadxzdt. If you just need (37) call
subroutine findgzda; If you just need (39) call subroutine findqrdadxdt.

6.5 Boundary Conditon

The solution domain is bounded by two magnetic flux surfaces. One is the innermost flux surface a = a0
and the other one is the outermost flux surface a = al. Dirichlet boundary condition and Neumann
boundary condition can be specified on either one of these two surfaces. We use a set of array to store
the index of the grid points which sit on boudnaries.

The Dirichlet boundary condition can be imposed by zeroing the row of the matrix with indices on
the boundaries and then set their diagonal entries to 1. The rhs vector will be changed acoordingly by
setting those elements to the real solution. Here is a simple example. Assumping there are 5 grid points
and they are numbered as 1,2,3,4,5. The linear system is given as

al a2 a3 a4 ad xl bl
bl b2 b3 b4 b5 2 b2
cl 2 3 c4 b z3 | = | b3
dl d2 d3 d4 db x4 b4
el e2 e3 ed4d e€b 5 b5

14

Suppose the boundary points are at 2 and 5, and the Dirichlet bounnday condition is given on these
points, i.e.

2 =0l

x5 =02

Then the matrix and rhs are modified in the following way

al a2 a3 a4 ab rl bl
1 x2 v2

cl 2 3 c4 b z3 | = | b3
dl d2 d3 d4 d5 x4 v4
1 x5 b5

By solving the above linear system, we immediately get 2 = vl and 5 = v2. This is unsymmetrical
zeroing. We can do symmetric zeroing to keep the modified matrix symmetrical so that better linear
solver can be applied. It can be explained by continuing zero the corresponding columns, i.e., column 2
and 5, of the row-zeroing modified matrix

al a2—a2 a3 a4 ad—ad rl bl — a2vl — abv2
1 x2 v2
cl 2—c2 3 ¢4 ch—cb z3 | = | b3 — c2vl — chv2
dl d2—d2 d3 d4 d5—db x4 v4d — d2vl — db5v2
1 5 b5
ie.,
al a3 a4 zl bl — a2vl — abv?2
1 2 v2
cl c3 c4 3 | = | b3 — c2vl — chv2
dl d3 d4 x4 v4d — d2vl — dbv2
1 x5 b5

Note that the rhs vector b was modified acoordingly.
If Neumann boundary condition is imposed, the correction is much more complicated. We need to start
from the variational form

//NZ‘VJ_ -gSVJfI)jdadez/jgsNin-VﬂI)dl—//VJ_(jNi) - g5V 1 ®dadl

Suppose on the boundary we have
n-V, ®=7(a,0)

n is the boundary normal directon pointing away from the solution domain. In the current version of
GTS, this directon is equivalent to Va. Thus,

Va- -V =+(a,0)

Using the previous expression for V&, it becomes

0P 0P
Va (8 Va+ %VH) v(a,6)
ie.,
aa o® a@aj _
g aa +g 80 - ’Y(a79)
Therefore

[TgsNin - Vldl

= [TgsNi ““52+g“95¢’)dz

= J., T9:Ni(9** 57 +g“98‘1> Ydl+ [, TgsNi(g** 5% + g*°S%)dl + [,, TgsNi(g°* S + g°° 5%)dl
Eh+b+m

= fjgsNi'y(a,O)dl

15

where Iy, I, and I3 are the linear integral along one of the 3 edges of each triangle, respectively. For
simplicity, we use the C? linear elements N;.
(1) if the boundary falls on edge 1,

Ny=1-¢
Ny =¢
Ny =0

a=3;a;N;=ai(l1-§) +af=a +a21§
0=>0iNi =01(1-¢) + 606 =01+ 08
di? = da? + d6? = a3,d€? + 03,d¢* = (a3, + 03,)de? = 13, d¢?

The following terms are used to modify the right hand side

rhs(vy) =rhs(vy) — fo N1(€,0)T gsylo1dé
=rhs(v1) — fo (1 —=8)Tgsvl21dE
~rhs(vy) — Jgszm

rhs(vy) = rhs(ve) — fo N5 (&,0)T gsyla1dé
= rhs(va) — fo §)T gsyla1dg
~ rhs(vy) — 3957121

rhs(vs) = rhs(vs) — fo N3(£,0)T gsylordé
= rhs(vs) — [, (0)T gavl21dé
= rhs(vs)

(2) if the boundary falls on edge 2,

lel—g—?]:()

N1:1—77

Ny =1

a=7;a;N; =az(1 —n)+azn = az + az2&
022791]\77,:92(1—)+031’]—02+032§

di? = da® + db? = a3,dn? + 034dn? = (a3, + 0%,)dn? = 13,dn?

The following terms are used to modify the right hand side

rhs(vy) =rhs(vy) — fo N1(&,1)T gsylzadn
= rhs(vy) — f (0)T gsvlz2dn
= rhs(vy)

rhs(vs) = rhs(va) — [y Na(&,1)T gsls2dn
= rhs(va) = [y (1 =)T gsHladr
=~ rhs(vs) — %Jgs“ﬂ?,z

rhs(vs) = rhs(vs) — f N3(&,m)T gsvls2dn
= rhs(vs) — f ()T gsvlz2dn
=~ rhs(vs) — 5.7 957132

(3) if the boundary falls on edge 3,

N1:1—77

Ny =0

Ngina:ZiQiNi—al(lf)+a3nfa1+61317
@_Z 9N—91(1*)+0377—01+93177

di? = da? +dO? = a2,dE? + 0%5dn?* = (a35 + 035)dn* = 124dn?

16

The following terms are used to modify the right hand side

rhs(vy) = rhs(vy fo N1(0,7)T gsv(—l13)dn
0 1 —=n)T gs7(=li3)dn
jgsW’(l3)
N2 (0,m)T gsv(—liz)dn

Jo(
f
f)T g5 (—l13)dn
f
f

rhs U1
s\U1

~

rhs(va) :rhs 2

) —

(v1) —
hs(v1) —
(va) —
8(02)
(va)
(v3) —
(v3) —
(v3) —

<

=rhs (%)

rhs(vs) = rhs U3 N3(0,7 jgs’Y(li3)dn
= rhs(vs)T 957 (—l13)dn
~ rhs(vs Jgs’Y(l13)

These are implemented in subroutine neumbcfiz.

6.6 Numerical Difficulty: periodic domain

The numerical difficulty comes from the 27 peroidicity in 6 direction when numerical integration is
performed. The value of 27w must be subtracted from 6 whenever the elements has one or two nodes
crossing the 6 = 0, 27 line. This is implemented in subroutine fixtheta.

17

Bibliography

[1] W. X. Wang et al, Gyro-kinetic silumation of global turbulent transport properties in tokamak experi-
ments, Physcs of Plasma, vol 13, 2006

[2] W. D. D’haeseleer, Fluz coordinates and magnetic field structure, 1991.

[3] G. E. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for CFD, 1999.

18

1 Flux Coordiante Basics

We review some important facts here about curved coordiante system that will be needed in the the
derivation of pde equations and in the implementation of finite elements in the flux coordiantes. We list
them here so we will not mention them when we use these facts.

As a start, we introduce the coordinate surface u’ = const. V' is perpendicular to the ith surface.
i=1,2,3.

The coordinate curve v’ is defined by the intersection of 2 surfaces u?/ = const, u* = const. On this
curve, du/ = duf =0, j £ k,j # i,k # 1.

‘ , OR . .
R=Ru',v*u?), e =Vu', e=—-— e -e =25
out J

i eixer 1

e'=————=—¢; Xe
€;-e; X e J
R el x eF -
e, =—= =Jel x eF

ut el-el xek

Di=D-e;,D'=D e/, D= Die'=Y De;
i J

du® are contravariants. V@ is a covariant vector:

oe , 00
Vo = auiV“ =5.¢
1). gradient
;00 09
Vo =Vu 9 = i
2). divergence
10 ; 1 0 ; 1 0 S 1 0 y
‘D=—-—"(JD) = =- (JD €)= —— (ID;e - €') = —— (I D,g"
vp= L0 gpy= L0 gp.e)= L (gpe)= L0 (gn,)

3). laplacian

10 10 N) oD . 10 oD
— - — 7 et = T el Lot) — 7t
AD_jaui (jVD)_jW (JVD-e) 7 30 <jauje e) ,(j g)

4). Jacobian

_ov o0 oo
T oul w2 T oud

J

5). metrics
¢ =Va-Va, ¢¥=Va-V0, ¢°=vV0.-V0,

6). the differential arc length

di(along w/) = di(i) = ||dR|| = \/dR(i) - dR(7)

dR(i) = —1du1 + —Qdu2 + —gdu?’ =e;du’ = J||Vu x V|| du’
u U U
7). the differential area element

dS(in u® = const) = dS(i)

= [|dR(j) x R(K)]
||g§ X gTIEHdujdu’c
= |lej x ey | dudu®

= J|l€’||du? du*

= J||Vu?|du du*

19

2 Numerical integration

The basic problem considered by numerical integration is to compute a definite integral

/ u(€)de (40)

There are many methods of approximating the integral with arbitrary precision. A method which yields
a small error for a small number of evaluations is usually considered superior. Gauss Quadrature is one
of such algorithms.

The integrand is evaluated at a finite set of points called integration points and a weighted sum of
these values is used to approximate the integral. The integration points and weights depend on the
specific method used and the accuracy required from the approximation.

In Gauss quadrature technique, the integrand is represented as a Lagrange polynomial using @) points

&i
Q-1
u(§) = Z u(&i)hi(§) + e(u)

If we substitute it into the integral (40), we obtain a representation of the integral as a summation

Q-1

[wlpte = Y- wiate) + rew

where L
w; = [, hi(€)d¢
R(u) = [1, e(u)de

Since u(&) is represented by a polynomial of order @) — 1, we would expect the above relation to be exact
if u(§) is a polynomial of order @ — 1 or less. This would be true if the points are equispaced in the
interval. There is, however, a better choice of abscissae which permits exact integration of polynomials
of higher order than @ — 1.

If we ensure that the quadrature formula is exact for polynomials of order k at least, then the formula
is also exact for the next (k — 1) order of polynomials.

20

